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Abstract

Background: Clostridioides (Clostridium) difficile is an important pathogen of healthcare- associated diarrhea,
however, an increase in the occurrence of C. difficile infection (CDI) outside hospital settings has been reported. The
accumulation of antimicrobial resistance in C. difficile can increase the risk of CDI development and/or its spread.
The limited number of antimicrobials for the treatment of CDI is matter of some concern.

Objectives: In order to summarize the data on antimicrobial resistance to C. difficile derived from humans, a
systematic review and meta-analysis were performed.

Methods: We searched five bibliographic databases: (MEDLINE [PubMed], Scopus, Embase, Cochrane Library and
Web of Science) for studies that focused on antimicrobial susceptibility testing in C. difficile and were published
between 1992 and 2019. The weighted pooled resistance (WPR) for each antimicrobial agent was calculated using a
random- effects model.

Results: A total of 111 studies were included. The WPR for metronidazole and vancomycin was 1.0% (95% CI 0–3%)
and 1% (95% CI 0–2%) for the breakpoint > 2 mg/L and 0% (95% CI 0%) for breakpoint ≥32 μg/ml. Rifampin and
tigecycline had a WPRs of 37.0% (95% CI 18–58%) and 1% (95% CI 0–3%), respectively. The WPRs for the other
antimicrobials were as follows: ciprofloxacin 95% (95% CI 85–100%), moxifloxacin 32% (95% CI 25–40%), clindamycin
59% (95% CI 53–65%), amoxicillin/clavulanate 0% (0–0%), piperacillin/tazobactam 0% (0–0%) and ceftriaxone 47%
(95% CI 29–65%). Tetracycline had a WPR 20% (95% CI 14–27%) and meropenem showed 0% (95% CI 0–1%);
resistance to fidaxomicin was reported in one isolate (0.08%).

Conclusion: Resistance to metronidazole, vancomycin, fidaxomicin, meropenem and piperacillin/tazobactam is
reported rarely. From the alternative CDI drug treatments, tigecycline had a lower resistance rate than rifampin. The
high-risk antimicrobials for CDI development showed a high level of resistance, the highest was seen in the second
generation of fluoroquinolones and clindamycin; amoxicillin/clavulanate showed almost no resistance. Tetracycline
resistance was present in one fifth of human clinical C. difficile isolates.
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Introduction
Clostridium difficile, recently reclassified as Clostri-
dioides difficile [1], is an important pathogen of
healthcare-associated diarrhea [2]. Recently, however, an
increase in the occurrence of CDI outside hospital
settings has been reported [3, 4].
Previous antibiotic use was recognized as one of the

risk factors for developing CDI through an alteration of
gut microbiota. The accumulation of antimicrobial
resistance mechanisms may provide an advantage to C.
difficile as it is not affected by antimicrobials present in
the gut [5].
An antibiotic stewardship intervention, that limited

the use of the fluoroquinolones, clindamycin, amoxicil-
lin/clavulanate, and cephalosporins, was shown to be ef-
fective in reducing the occurrence of multidrug-resistant
epidemic ribotypes, e.g. 001 and 027 [6].
Currently, three antimicrobial agents, metronidazole,

vancomycin and fidaxomicin are recommended for the
treatment of CDI [7–9] and several new anti-CDI drugs
are being tested in clinical trials [9]. The new data
suggest tigecycline is effective in treating patients with a
severe course of CDI [10], and rifaximin might be bene-
ficial in preventing a CDI relapse [11].
In addition to humans, C. difficile has been cultured

from livestock, food and the environment [12]. Tetra-
cycline is one of the most commonly used antimicro-
bials in agriculture providing antimicrobial selective
pressure in this sphere. This is supported by observa-
tions of a high prevalence of the tetracycline resistance
gene tetM in livestock-associated C. difficile ribotype
078 isolates [13]. Moreover, the zoonotic transmission
of C. difficile between farm animals and humans has
been demonstrated [14].
Carbapenems are antimicrobials used for the treat-

ment of infections caused by multidrug-resistant
gram-negative pathogens. However, some carbapenem
resistance mechanisms are transferable to other
bacterial species [15]. Hence, the monitoring of carba-
penem resistance in C. difficile is justified.
We aimed to review the data on the resistance of

antimicrobials to C. difficile that have been recom-
mended for CDI treatment; alternative drugs for CDI
treatment; high-risk antimicrobials associated with
CDI development; agriculture-related antimicrobials;
and antimicrobials reserved for the treatment of
multidrug pathogens.

Methods
Search strategy and study selection
Five bibliographic databases, including international
databases (MEDLINE [PubMed], Scopus, Embase,
Cochrane Library and Web of Science) were searched
for relevant articles (Until October 2019) using the

following keywords: (“Clostridium difficile” OR “Clostri-
dioides difficile” OR C. difficile) AND (“Antimicrobial-
Drug Resistance” OR “drug resistance” OR “antibiotic
resistance” OR “aminoglycosides” OR “beta-lactams” OR
“cephalosporins” OR “clindamycin” OR “tetracyclines”
OR “fluoroquinolones” OR “macrolides” OR “vanco-
mycin” OR “metronidazole” OR “fidaxomicin” OR “car-
bapenems”) in the Title/Abstract/Keywords fields. No
limitation was used while searching the databases, but
for the study to be included in our analysis, the available
abstract had to be written in English. The recorded hits
were merged, and any duplicates were removed using
EndNote X7 (Thomson Reuters, New York, NY, USA).

Selection criteria and data extraction
All selected studies were reviewed by three authors inde-
pendently: Ebrahim Kouhsari, Behnam Ahmadzadeh and
Abbas Maleki. Studies were excluded if they met the fol-
lowing conditions: (1) C. difficile antibiotic resistance
was not presented; (2) resistance rates were not clearly
reported; (3) no human clinical C. difficile strain was
tested; (4) it was a meta-analysis and systematic review
or a review article or not an original research article; (5)
a duplicated report using the same database; (6) a con-
ference abstract and article without the full text upon re-
quest from the author; (7) less than 5 isolates were
tested. Any discrepancies and inconsistencies with the
selection of an article were resolved through discussion,
and a fourth author (Nourkhoda Sadeghifard) acted as
arbiter.
The information extracted from each included study

was: (1) author; (2) publication year; (3) study period; (4)
number of C. difficile isolates; (5) antimicrobial suscepti-
bility methods; (6) interpretation of resistance; (7) resist-
ance rates (Supplementary Data 1).

Quality assessment
A quality evaluation of the included studies was
performed independently (Behnam Ahmadzadeh, Ebra-
him Kouhsari), using an adapted version of the tool
proposed by the Newcastle-Ottawa assessment scale
adapted for cross-sectional studies [16] (Supplementary
Table 1). A score ranging from 0 to 8 points was attrib-
uted to each study (≥ 5 points: high quality, 4–3 points:
Moderate quality, ≤ 2 points: low quality). A higher
score indicated a higher study quality. A third reviewer
(Leila Molaeipour) adjudicated in any cases where there
was a disagreement.

Definition of resistance
In individual studies, resistance was defined according to
either the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) [17] or the Clinical &
Laboratory Standards Institute (CLSI) [18] minimal
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inhibitory concentration (MIC) interpretative break-
points. The individual MICs were as follows: vanco-
mycin ≥32 mg/L; metronidazole ≥32 mg/L; clindamycin
≥8mg/L; tetracycline ≥16mg/L; ciprofloxacin ≥8 mg/L;
moxifloxacin ≥8 mg/L; meropenem ≥16mg/L; piperacil-
lin/tazobactam ≥128/4 mg/L, amoxicillin/clavulanate
≥16/8 mg/L and ceftriaxone 64mg/L according to the
(CLSI) [18]. The MIC interpretive breakpoints for
vancomycin >2mg/L, metronidazole >2 mg/L, rifampin
>0.004 mg/L, moxifloxacin >4 mg/L and tigecycline
>0.25 mg/L were based on the epidemiological cut-off
values (ECOFFs) defined by EUCAST [17].

Statistical analysis
Studies presenting raw data on antimicrobial resistance
were included in the meta-analysis which was performed
by computing the pooled prevalence of resistance for
each antimicrobial agent using a random- effects model
with Stata/SE software, v.14.1 (StataCorp, College Sta-
tion, TX). The inconsistency across studies was exam-
ined by the forest plot as well as the I2 statistic. Values
of I2 (25, 50 and 75%) were interpreted as the presence
of low, medium or high heterogeneity, respectively and
the random effects models were used [19]. Subgroup
analyses were then employed by assuming continents,
year, antimicrobial susceptibility testing, and the quality
of studies as sources of variation. All statistical interpre-
tations were reported on a 95% confidence interval (CI)
basis.

Study outcomes
The main outcome of interest was the weighted pooled
resistance rate (WPR) of strains resistant to specific anti-
microbial agents according to the CLSI and/or EUCAST
guidelines, respectively. A subgroup analysis was per-
formed (1) for geographical regions (Asia, Europe, Af-
rica, Oceania, South and North America); (2) publication
date (1992–2014, and 2015–2019, 3) antimicrobial
susceptibility testing method (agar dilution, Etest, and
microbroth dilution); and (4) the quality of the studies
(high quality, moderate quality, low quality). Subgroup
analyses were not performed when the number of
studies in the category was lower than five.

Results
Search results
We evaluated six electronic databases and categorized
14,582 articles published up to October 2019 (Fig. 1).
From these, after an initial screening of the title and ab-
stract, 11,204 articles were excluded, due to their irrele-
vance and duplication, but the full text of the remaining
335 articles was reviewed (Fig. 1). From the 335 articles,
224 were excluded again for the following reasons:
review, not original research, conference abstract and

article without full text (n = 162), no human clinical C.
difficile strains (n = 24), no data for susceptibility testing
or used disk diffusion method or no resistance data (n =
27), and data using the same isolates or low number of
isolates (n = 11). Finally, 111 studies were included in
this systematic review and meta-analysis (Supplementary
Data 1). The studies included in the meta-analysis
assessed antibiotic resistance to metronidazole,
clindamycin, tetracycline, moxifloxacin and ciprofloxa-
cin, meropenem, piperacillin/tazobactam, amoxicillin/
clavulanate, vancomycin, rifampin and tigecycline.

Characteristics of the included studies
The 111 included studies [20–130] were performed in
35 countries and investigated 19,733 C. difficile isolates.
The majority of the studies originated in Asia (n = 42),
followed by Europe (n = 37).
Epsilometer (E-test) strips were the most frequent

antimicrobial susceptibility testing method used (n = 58),
followed by agar dilution (n = 49). All studies had a
cross-sectional design, and the mean Newcastle-Ottawa
score was 4.5. The quality was high in 62 (55.8%) stud-
ies, medium in 46 (41.4%) studies, and low in 3 (2.7%)
studies (Supplementary Data 1). Most of the studies
(93.69%) included in the meta-analysis had determined
the resistance to metronidazole.
The WPR rates for each antimicrobial are shown in

Table 1 and Fig. 2. The forest plots that show the
analyses for resistance to individual antimicrobials and
subgroups are displayed in the Supplementary Figure 1.
Data on the resistance of each antimicrobial and the
subgroup analyses by year, continent, quality and
method of susceptibility testing are shown in the Supple-
mentary Table 2.

Resistance to metronidazole
The susceptibility to metronidazole was determined in
104 studies and included 19,645 C. difficile isolates.
The EUCAST breakpoint (2 mg/L) was applied in 32

studies (5900 C. difficile isolates) and 190 C. difficile iso-
lates were found to be resistant (3.2%); the WPR (to
metronidazole) was 1% (95% CI 0–3%) with substantial
heterogeneity (I2 = 91.97%).
The subgroup analysis that compared the data from

1992 to 2014 (WPR 0%; 95% CI 0–1%) and 2015–2019
(WPR 2%; 95% CI 0–4%) indicated an increase in the re-
sistance rate. However, this difference was not statisti-
cally significant (P = 0.06). Based on the quality of the
studies, the resistance rates did not differ between the
groups (p = 0.998), T\he highest resistance rate was re-
ported in Asia, followed by North America and Europe
(4, 95% CI 0–12%; 3, 95% CI 0–8%; 1, 95% CI 0–2%).
No statistical difference was found in the method used
for antimicrobial susceptibility testing (AST), (p = 0.523).
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Table 1 The WPR rates for each antimicrobial

Antimicrobials Breakpoint
(mg/L)

Number of
isolates tested

Number of resistant
isolates n (%)

Weighted pooled
resistance rate

95% Confidence
interval

Heterogeneity

Metronidazole >2 5900 190 (3.2) 0.01 0–0.03 91.97

Metronidazole ≥32 13,207 129 (1.0) 0.00 0–0.00 81.4

Vancomycin ≥32 2307 13 (0.6) 0.00 0–0.00 38.6

Vancomycin ≥16 2296 10 (0.4) 0.00 0–0.00 7.62

Vancomycin ≥4 1107 7 (0.6) 0.00 0–0.01 50.1

Vancomycin >2 11,188 416 (3.7) 0.01 0–0.02 89.79

Moxifloxacin ≥8 11,484 3912 (34.1) 0.32 0.25–0.4 93.89

Meropenem ≥16 2756 20 (0.7) 0.00 0–0.01 71.49

Piperacillin/
Tazobactam

≥128/4 3041 8 (0.3) 0.00 0–0.00 0

Clindamycin ≥8 19,645 6685 (34.0) 0.59 0.53–0.65 97.50

Ciprofloxacin ≥8 4339 3356 (77.0) 0.95 0.85–1.0 99.12

Tetracycline ≥16 4861 886 (18.2) 0.20 0.14–0.27 97.04

Amoxicillin/
Clavulanate

≥16/8 2803 4 (0.1) 0.00 0–0.00 45.4

Ceftriaxone ≥64 3476 1289 (37.1) 0.47 0.29–0.65 99.05

Rifampin >0.004 1861 787 (42.3) 0.37 0.18–0.58 97.69

Moxifloxacin >4 2809 929 (33.1) 0.49 0.30–0.67 98.68

Tigecycline >0.25 2375 39 (1.6) 0.01 0–0.03 83.53

Fig. 1 Flow Diagram Showing the Study Selection Process
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The CLSI breakpoint (32 mg/L) was applied to 69
studies and 129 of the 13,207 C. difficile isolates investi-
gated were found to be resistant (1.0%); the WPR was
0% (95% CI 0–0%), with substantial heterogeneity (I2 =
81.4%). No statistical significant difference was found
between data from 1992 to 2014 and 2015–2019 (p =
0.280). Subgroup analyses by continent showed a signifi-
cant difference between the groups (p = 0.038); the high-
est resistance was in Europe (1%; 95% CI 0–2%). No
statistical difference was found in the method used for
AST (P = 0.281).

Resistance to vancomycin
A susceptibility to vancomycin was determined in 94
studies where 15,515 C. difficile isolates were tested.
Eighteen studies used the breakpoint of 32 mg/L and

13 C. difficile isolates of the 2307 isolates tested were re-
sistant (0.6%). Another nine studies used the breakpoint
of 16 mg/L and ten C. difficile isolates of 2296 tested
were resistant (0.4%). Eight studies used the breakpoint
of 4 mg/L and seven isolates of the 1107 isolates tested
were resistant (0.6%). Overall the WPRs were, based on
the breakpoints of 32, 16 and 4mg/L, 0% (95% CI 0–
0%), 0% (95% CI 0–0%), and 0% (95% CI 0–1%) with a
heterogeneity of ≤50.1%. The subgroup analyses were
not performed.
Based on the EUCAST breakpoint of 2 mg/L, a sensi-

tivity to vancomycin was investigated in 58 studies and

of the 11,188 C. difficile isolates tested, 416 isolates were
found to be resistant (3.7%). The WPR was 1% (95% CI
0–2%), with substantial heterogeneity (I2 = 93.89%, P =
0.00).
The subgroup analysis, that compared data from 1992

to 2014 (WPR 1%; 95% CI 0–2%) and from 2015 to 2019
(WPR 1%; 95% CI 0–3%), indicated an increase in the
resistance rate, however, this difference was not statisti-
cally significant (P = 0.48). In the continental subgroup
analyses, a significant difference was found (P = 0.000)
and the highest resistance rates were reported in South
America followed by North America (53, 95% CI 38–68
and 4%, 95% CI 1–9%).
The resistance rates differ significantly when compar-

ing the quality of studies (P = 0.01). In the low quality ar-
ticles, the WPR was 6% (95% CI 2–11%) higher than in
the moderate and high quality articles with a WPR of 2%
(95% CI 0–2%). No statistical difference was found in
the method used for AST (P = 0.47).

Resistance to moxifloxacin
A susceptibility to moxifloxacin was determined in 78
studies and from those studies 14,383 isolates were
investigated.
Using the CLSI breakpoint of 8 mg/L, 11484 C. difficile

isolates were investigated and 3912 isolates were found
to be resistant (34.1%); the WPR to moxifloxacin was

Fig. 2 Weighted pooled resistance rate for each antimicrobial in the study
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32% (95% CI, 25–40%) with a substantial heterogeneity
(I2 = 93.89%, P = 0.00).
The subgroup analysis, that compared data from 1992

to 2014 and 2015–2019, did not find any significant dif-
ference between these groups (p = 0.508). In the contin-
ental categorisation, the difference between the groups
was significant (P = 0.000); the highest WPR was in
Africa, followed by North America and Asia (94, 95% CI
85–98%; 44, 95% CI 33–55 and 33%, 95% CI 25–40%),
respectively. In a subgroup analysis on the quality of
articles, the results showed a significant difference (P =
0.014); the low, moderate and high quality reports gave
WPRs of 54% (95% CI 39–68%), 35% (95% CI 22–49%),
and 30% (95% CI 22–38%). No statistical difference was
found in the method used for AST (P = 0.543).
Using the EUCAST breakpoint of 4 mg/L, 11484 C.

difficile isolates were investigated and 3912 isolates were
found to be resistant; 34.1%); the WPR was 49% (95% CI
0.34–0.65) with a substantial heterogeneity (I2 = 98.4%,
P = 0.00). The subgroup analyses were not performed.

Resistance to ciprofloxacin
The susceptibility to ciprofloxacin was determined in 28
studies investigating 4339 C. difficile isolates and used a
breakpoint of 8 mg/L. From them, 3356 isolates were
found to be resistant (77%); the WPR to ciprofloxacin
was 95% (95% CI 85–100%) with a substantial hetero-
geneity (I2 = 99.12%, P = 0.00).
A subgroup analysis, that compared the data from

1992 to 2014 and 2015–2019, showed a significant dif-
ference (P = 0.001), 100% (95% CI 100%) versus 79%
(95% CI 54–97%). The difference in continental categor-
isation was also significant (P = 0.000); the highest WPR
was in South America (100, 95% CI 40–100%) followed
by Asia (96, 95% CI 89–100% and North America (94,
95% CI 40–100%). No statistical difference was found in
the method used for AST (P = 0.495).

Resistance to clindamycin
The susceptibility to clindamycin was determined in 64
studies investigating 19,645 C. difficile isolates and, using
the CLSI breakpoint (8 mg/l), 6685 C. difficile isolates
were reported to be resistant (34.0%).
The overall WPR to clindamycin was 59% (95% CI,

53–65%), with a substantial heterogeneity (I2 = 97.50%,
P = 0.00); there was no significant difference in the time
categories (P = 0.96). The groups differed in continental
categorization (p = 0.000) with the highest rates in Asia
and South America (72, 95% CI 65–78 and 59%, 95% CI
19–94%, respectively). Also, in the subgroup analysis on
the quality of articles, the results showed a significant
difference (P = 0.000); the low, moderate and high
quality reports reported resistance rates of 17% (95%CI
9–27%), 57% (95% CI 46–68%) and 63% (95% CI 55–

70%), respectively. There was statistical significance
between the methods used for AST (p = 0.020).

Resistance to tetracycline
The susceptibility to tetracycline was determined in 31
studies investigating 4861 C. difficile isolates and from
those 886 isolates (18.2%) were found to be resistant
using the breakpoint of 16 mg/L. The WPR was 20%
(95% CI, 14–27%), with substantial heterogeneity (I2 =
97.04%, P = 0.00).
There was no difference between the data from 1992 to

2014 and 2015–2019 (p = 0.26). A statistically significant
difference was found in the continental categorization
(P = 0.000); the highest resistances were 34% (95% CI, 26–
43%), 26% (95% CI, 17–35%), and 16% (95% CI, 5–31%) in
Oceania, Asia, and Europe, respectively. In a subgroup
analysis on the quality of articles, the results showed a sig-
nificant difference (P = 0.01); the low, moderate and high
quality reports gave resistance rates of 40% (95%CI 29–
52%), 16% (95% CI 7–28%) and 22% (95% CI 13–32%),
respectively. No statistical difference was found in the
method used for AST (P = 0.216).

Meropenem
The susceptibility to meropenem was determined in 17
studies using the breakpoint (≥16mg/L mg/L) and 2756
C. difficile isolates were investigated; 20 isolates found to
be resistant (0.7%). The overall WPR was 0% (95% CI,
0%-%1) with moderate heterogeneity (I2 = 71.49%, P =
0.00). No statistical difference was found between the
data from 1992 to 2014 and 2015–2019 (p = 0.106). The
continental, quality and methods subgroup differences
were not analysed.

Amoxicillin/Clavulanate
The susceptibility to co-amoxicillin was investigated in
10 studies using the breakpoint of ≥16/8 mg/L. A total
of 2803 C. difficile isolates were investigated and 4
isolates were reported as resistant (0.1%); the WPR was
0% (95% CI, 0–0%), with low heterogeneity (I2 = 45.4%,
P = 0.06). No subgroup analyses were performed.

Piperacillin/Tazobactam
The susceptibility to piperacillin/tazobactam was investi-
gated in 17 studies applying the breakpoint of ≥128/4
mg/L mg/L and included 3041 C. difficile isolates. Eight
isolates were found to be resistant (0.3%); the WPR to
this antibiotic was 0% with (95% CI, 0–0%). No sub-
group analyses were performed.

Ceftriaxone
The susceptibility to ceftriaxone was investigated in 13
studies. Of the 3476 C. difficile isolates investigated,
1289 isolates were found to be resistant (37.1%) using
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the breakpoint of ≥64mg/L. The WPR for ceftriaxone
was 47% (95% CI, 29–65%), with substantial heterogen-
eity (I2 = 99.05%, P = 0.00). No subgroup analyses were
performed.

Rifampin
The susceptibility to rifampin was investigated in 10
studies on 1861 of C. difficile isolates. Using the break-
point of 0.004 mg/L, 787 isolates were reported to be re-
sistant (42.3%), the WPR was 37% (95% CI, 18–58%)
with substantial heterogeneity (I2 = 97.69%, P = 0.00). No
subgroup analyses were performed.

Tigecycline
The susceptibility to tigecycline was investigated in 10
studies in 2375 C. difficile isolates. Thirty-nine isolates
were reported to be resistant (1.6%) based on the break-
point of 0.25 mg/L; the WPR was 1% (95% CI 0–3%)
with substantial heterogeneity (I2 = 83.53%, P = 0.00). No
subgroup analyses were performed.

Fidaxomicin
The susceptibility to fidaxomicin was investigated in
1184 isolates from six studies. One isolate found to be
resistant (0.08%) based on the breakpoint of ≥8 mg/L.
The analyses were not performed because of the absence
of a recommended breakpoint and the low number of
studies.

Discussion
Due to the limited number of antimicrobials that can be
used for the treatment [7–9] of CDI, it is important to
obtain information about the resistance profiles of circu-
lating C. difficile strains. Moreover, the accumulation of
resistance mechanisms gives C. difficile an advantage
since CDI can develop after the use of antimicrobials
due to an alteration in gut microbiota [5].
Several methods can be used to determine the MIC in

antimicrobial susceptibility testing. In our study, the
Etest was the most used method followed by agar dilu-
tion. The agar dilution method is suitable for AST when
there is high number of isolates since there is a need to
prepare fresh testing plates for each experiment; how-
ever the commercially available Etest can be used inde-
pendently for individual isolates.
Three antimicrobials are recommended for the treat-

ment of CDI; metronidazole, vancomycin and fidaxomi-
cin. For AST, there is still no MIC breakpoint available
for fidaxomicin; for vancomycin and metronidazole two
values exist but with a wide range: EUCAST 2mg/L and
CLSI 32mg/L, The difference between the resistance
rates, according to the breakpoint used, was also noted
in our study. For metronidazole, the WPR was 1% (95%
CI, 0–3%) using EUCAST but using CLSI, the WPR was

0% (95% CI, 0–0%). A similar pattern was also observed
for vancomycin where using the EUCAST breakpoint,
the WPR was higher (1% (95% CI 0–2%) than for the
CLSI breakpoint 0% (95% CI, 0–0%).
Recently, a systematic review and meta-analysis [131]

of metronidazole and vancomycin resistance in C. diffi-
cile showed higher WPRs than observed in our study;
1.9% (95% CI, 0.5–3.6%) for metronidazole and 2.1%
(95% CI, 0–5.1%) for vancomycin. The analyses differed
in the date of publication for data collection, (1982–
2017) vs (1992–2019), and in the origin of the isolates
since, in our analyses, the data on the C. difficile isolates
of animal origin were not included.
The data on the susceptibility testing for metronida-

zole, vancomycin and moxifloxacin were included in the
“enhanced level” of a CDI surveillance protocol pub-
lished by the European Centre for Disease Prevention
and Control (ECDC) [2]. Moxifloxacin, a fluoroquino-
lone, is not considered as a drug for CDI treatment but
moxifloxacin resistance in C. difficile strains was shown
to be an important marker for the spread of C. difficile
in a healthcare setting [132]. Two representatives of
fluoroquinolones were analysed in our study: ciprofloxa-
cin and moxifloxacin. From all the antimicrobials in our
study, ciprofloxacin showed the highest level of resist-
ance (WPR 95%) and the resistance to moxifloxacin was
32 and 49% according to the CLSI and EUCAST break-
points, respectively.
In addition to fluoroquinolones, clindamycin, amoxi-

cillin/clavulanate and cephalosporins are indicated for
limited use in hospital settings in order to reduce CDI
rates [6]. From these four classes of antimicrobials, three
classes exhibited high rates of resistance; however with
amoxicillin/clavulanate, only 4 isolates out of 2803 iso-
lates were investigated.
Rifaximin has been suggested as an alternative to exist-

ing CDI therapies, especially in CDI recurrences and
their prevention [133, 134]. Data on rifampin resistance,
which correlate with rifaximin [135], showed a high level
of resistance in investigated C. difficile isolates (787/
1861) and suggest more risk to treatment failure due to
C. difficile strain resistance compared to recommended
CDI treatments.
The effectiveness of tigecycline use in the treatment of

CDI was evaluated in several studies [10]. According to
the reported resistance rates in our study, treatment fail-
ure is less likely with tigecycline than with rifaximin.
However, recently, the emergence of mobile tigecycline-
resistance genes, tet(X3) and tet(X4) that inactivate all
tetracyclines, including tigecycline, was reported recently
in gram-negative bacteria [136]. Moreover, Tet proteins
have, in vitro, the potential to acquire mutations leading
to an increased MICs for tigecycline [137]. From the
available data, the tet classes of ribosomal protection
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genes are the most common molecular mechanism for
tetracycline resistance in C. difficile [13]. The spread of
newly detected tet(X) genes or mutations in present tet
classes genes (e.g tetM or tetW) could increase the
prevalence of resistance to tigecycline.

Conclusion
A resistance to metronidazole, vancomycin, fidaxomicin,
meropenem and piperacillin-tazobactam is reported
rarely. From alternative CDI treatment drugs, tigecycline
had a lower resistance rate than rifampicin. The high-
risk antimicrobials for CDI development showed a high
level of resistance, the highest was seen in the second
generation of fluoroquinolones and clindamycin; amoxi-
cillin/clavulanate showed almost no resistance. Tetracyc-
line resistance was present in one fifth of human clinical
C. difficile isolates.
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