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Abstract: DNA methylation plays essential roles in various cellular processes. Next-generation
sequencing has enabled us to study the functional implication of DNA methylation across the
whole genome. However, this approach usually requires a substantial amount of genomic DNA,
which limits its application to defined cell types within a discrete brain region. Here, we applied
two separate protocols, Accel-NGS Methyl-Seq (AM-seq) and Enzymatic Methyl-seq (EM-seq), to
profile the methylome of D2 dopamine receptor-expressing medium spiny neurons (D2-MSNs)
in mouse nucleus accumbens (NAc). Using 40 ng DNA extracted from FACS-isolated D2-MSNs,
we found that both methods yielded comparably high-quality methylome data. Additionally, we
identified numerous unmethylated regions (UMRs) as cell type-specific regulatory regions. By
comparing the NAc D2-MSN methylome with the published methylomes of mouse prefrontal
cortex excitatory neurons and neural progenitor cells (NPCs), we identified numerous differentially
methylated CpG and non-CpG regions. Our study not only presents a comparison of these two
low-input DNA whole genome methylation profiling protocols, but also provides a resource of DNA
methylome of mouse accumbal D2-MSNs, a neuron type that has critical roles in addiction and other
neuropsychiatric disorders.
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1. Introduction

DNA methylation is an epigenetic mechanism that plays important roles in gene
regulation and genome stability [1]. In mammals, DNA cytosine methylation is vital
for development and cell fate commitment, cell identity maintenance, and various other
cellular functions [2–9]. DNA cytosine methylation is deposited by a group of DNA
methyltransferase enzymes (DNMTs) [10] and can be oxidized by ten-eleven translocation
(TET) methylcytosine dioxygenases that may lead to DNA demethylation [6,11].

To study DNA methylation, several methodologies have been developed. For example,
methylation-sensitive restriction enzymes are used to infer the methylation status of ge-
nomic loci based on their differential enzymatic cutting activity at DNA motifs containing
methylated or unmethylated cytosines [12]. In contrast, antibodies against methylated
cytosines have also been developed to examine methylation status by immunostaining or
by immunoprecipitation followed by sequencing [8,13,14]. Additionally, sodium bisulfite-
based techniques can be used to differentiate methylated and unmethylated states of DNA,
as sodium bisulfite deaminates unmethylated cytosines into uracils while leaving methy-
lated ones intact [15,16]. Combining bisulfite treatment and next-generation sequencing,
therefore, allows for DNA methylation profiling across the entire genome with single-base
resolution and in a quantitative manner [17–21].

With the advent of methylome profiling techniques, the spatiotemporal dynamics of
DNA methylation during embryogenesis and development have been revealed to usually
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exist in cell type-specific patterns [22–26]. Accumulating evidence also implicates the
role of DNA methylation in brain functions as well as in brain disorders, such as drug
addiction [27–31]. Nucleus accumbens (NAc) is a key structure of the ventral striatum that
plays a critical role in adaptive, goal-directed behaviors and mediates the seeking and using
of addictive drugs [32,33]. In NAc, over 95% of neuronal cells are GABAergic medium spiny
neurons (MSNs), which are further classified as D1 dopamine receptor-expressing MSNs
(D1-MSNs) and D2 dopamine receptor-expressing MSNs (D2-MSNs) [34,35]. Furthermore,
NAc D1-MSNs and D2-MSNs belong to separate circuitries that have distinct roles in
drug-induced behavioral responses, whereby stimulation of D1-MSNs promotes reward
and motivational behaviors, while activation of D2-MSNs inhibits these behaviors. Due
to the heterogeneity of neuronal populations within NAc, it is of interest to profile the
accumbal DNA methylome in a neuronal subtype-specific manner.

A major challenge to study the DNA methylome of neuronal subtypes from discrete
brain regions is the limited yield of genomic DNA that can be retrieved from these cells,
which is usually below the range of conventional whole-genome methylome profiling
protocols. To address this, several innovative variations of these protocols have been devel-
oped, such as tagmentation-based whole-genome bisulfite sequencing [36], post-bisulfite
adaptor tagging (PBAT) [25,37–39], and other methods using DNA modification enzymatic
conversion [40–42]. Unlike traditional sequencing library preparations, in which substantial
sample loss occurs at multiple library preparation steps, tagmentation-based methods (e.g.,
Tn5mC-seq) utilize a Tn5 transposase derivative to fragment DNA and append adaptors in
a single step to increase library preparation efficiency. Therefore, Tn5mC-seq can be used
to generate high-quality bisulfite sequencing libraries from low-input (1–10 ng) genomic
DNA [36]. However, it may have potential biases due to the preference of transposase,
and substantial DNA damage owing to bisulfite treatment. Traditionally, whole-genome
bisulfite sequencing requires larger quantities (microgram) of DNA. This is mainly be-
cause sequencing adaptors are ligated to DNA fragments before bisulfite treatment, which
results in a significant DNA template loss after bisulfite conversion. To overcome this
limitation, post-bisulfite library preparation (e.g., PBAT) takes an alternative approach to
prepare DNA adaptor tagging after bisulfite treatment [37]. It also incorporates random
priming with biotin-labeled primers followed by enrichment of biotinylated fragments
to circumvent a potential amplification failure due to bisulfite treatment-induced DNA
break. However, this highly efficient low-input protocol still relies on the recovery rate of
bisulfite-treated DNA and has shown GC content-related biases associated with random
priming amplifications. Lately, methods based on an enzymatic conversion of methylated
DNA, which do not include any bisulfite treatment, have been used to bypass the associated
bisulfite-induced DNA degradation, and promise better DNA recovery than bisulfite-based
approaches [40–42]. For example, TET-assisted pyridine borane sequencing (TAPS) adapts
sequential pyridine borane reduction followed by TET1 oxidation of methylated cytosine to
detect cytosine methylation of samples as little as 10 ng DNA. While these approaches have
been successfully applied for low-input DNA samples in various studies, comparisons of
performance and potential biases of such methods in low-abundance neuronal samples
remain limited.

Here, we generated the methylome of D2-MSNs from NAc of male mice using two
independent library preparation methods. The preparation was achieved through two
distinct strategies from separate commercial kits: the sodium bisulfite-based Accel-NGS
Methyl-Seq (AM-seq) of Swift biosciences (Cat# 30024) and the enzymatic conversion-based
method Enzymatic Methyl-seq (EM-seq) from New England Biolabs (Cat# E7120S). AM-seq
takes advantage of a proprietary adaptase to effectively capture single-stranded DNA and
may improve library preparation efficiency after sodium bisulfite treatment of DNA. In
contrast, EM-seq potentially improves the metrics of methylation profiling by substituting
bisulfite treatment with enzymatic reactions; TET2 and β-glucosyltransferase are used
to catalyze the conversion of methylated cytosine, followed by apolipoprotein B mRNA
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editing enzyme catalytic subunit 3A (APOBEC3A)-mediated deamination of unmethylated
cytosines [42].

We applied fluorescence-activated cell sorting (FACS) to isolate D2-MSNs from NAc
of Drd2a-eGFP (D2-eGFP) mice, in which D2-MSNs are labelled with eGFP [43]. Using
40 ng DNA available from NAc D2-MSNs of a single mouse brain, we were able to gener-
ate high-quality whole-genome methylome data using either of the two aforementioned
methods. Therefore, our study not only provides valuable technical evaluations of the
current methods available for low cell number whole genome methylome profiling, but
also generates a reference methylome dataset of NAc D2-MSNs, which play important
roles in addiction and various other neuropsychiatric disorders.

2. Materials and Methods
2.1. Animal, D2-MSN Isolation, and DNA Extraction

Male D2-eGFP mice [43] were born and raised in a controlled laboratory environment
under a 12 h reverse light/dark lighting cycle at 22–25 ◦C. Pups were weaned at postnatal
day 21 and were group-housed alongside up to 4 mice per cage with ad libitum access to
food and water. All mice used in this study were of a C56BL/6J genetic background. All
experiments followed the guidelines of the Animal Care and Use Committee of Florida
State University.

Mouse brains were immediately removed after cervical dislocation and decapitation,
and then sectioned in a stainless-steel brain matrix (1 mm intervals) on ice. Four micro-
punches of NAc were collected from each brain by a 14-gauge blunt-tip needle and minced
into small pieces in ice-cold Hibernate A minus calcium medium (Brainbits, #HACA500,
Springfield, IL, USA) plus B27 supplement (Fisher scientific, #17504044, Waltham, MA,
USA). The minced tissue was then incubated in Hibernate A minus calcium medium with
20 unit/mL papain (Worthington, #LK003176, Lakewood, NJ, USA), 5% trehalose (Acros
organics, #AC30987, Geel, Belgium), and 0.1 mg/mL DNase (Worthington, #LK003170,
Lakewood, NJ, USA) at 37 ◦C for 30 min with 700 rpm agitation. After being washed
by Hibernate A minus calcium medium with 1% BSA, the tissue was triturated to cell
suspension. After passing through a 70 µm cell strainer, the cell suspension was sorted on
a FACS Aria SORP (BD, San Jose, CA, USA) using a 100 µM nozzle, and the GFP-positive
D2-MSNs were collected in ice-cold 1× PBS buffer with 1% BSA. To isolate D2-MSNs by
FACS, all cells were initially gated on SSC-A vs. FSC-A plot (‘P1’ gate). GFP positive cells
represented 4–5% of the parent population (Figure S1a). Next, we derived gate ‘P6’ by
plotting SSC-H vs. FSC-H, which was then used to discriminate GFP positive cells from
negative cells. The GFP-positive population was increased to 9.9–12.7%, or more than
2-fold higher when plotted by just SSC-A and FSC-A. Within each sample, the P6 gating
was compared to P1 gating and adjusted to match the GFP positive cell number. In total,
12k–22k GFP-positive cells were collected as D2-MSNs from each mouse brain. Using
real-time PCR, we confirmed that the GFP-positive population we collected expressed high
levels of a D2-MSN marker gene rather than D1-MSN marker genes (Figure S1b).

Genomic DNA was extracted with the AllPrep DNA/RNA Micro Kit (Qiagen, #80284,
Hilden, Nordrhein-Westfalen, Germany) by following the product manual. Briefly, sorted
cells were pelleted by 500× g centrifugation for 5 min, and the supernatant was carefully
removed. Next, 350 µL RLT Plus buffer with 2-Mercaptoethanol added was used to release
genomic DNA, which was subsequently enriched on supplied binding columns. The
columns were washed with 500 µL buffer AW1, followed by 13,000× g centrifugation
for 1 min. After another round of washing with 500 µL buffer AW2 and 13,000× g cen-
trifugation for 1 min, the flow-through was removed, and the column was centrifuged at
13,000× g for another 2 min. DNA was then eluted into 30 µL elution buffer. In this study,
three adult male mice were used: one was 96 days old and used as replicate 1 (Rep1); the
other two were 97 days old and combined as replicate 2 (Rep2).
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2.2. qPCR

Four NAc micropunches each from three untreated D2-eGFP adult male mice were
used to verify the identity of FACS-isolated cells. For each sample, GFP-positive cells
identified by FACS were sorted into 1 mL ice-cold TRIzol Reagent (Invitrogen, #15596026,
Waltham, MA, USA), and total RNA was extracted according to manufacturer’s instructions.
Briefly, cells were lysed in TRIzol Reagent, and cellular contents were separated into phases
by vigorously mixing with chloroform and centrifuging. RNA was then precipitated
by transferring the aqueous phase into absolute ethanol, pelleted by centrifugation, and
washed with 75% ethanol. Following the final ethanol wash, RNA pellets were air-dried
and resuspended in nuclease-free water. Total RNA from GFP-positive cells was reverse-
transcribed into cDNA using qScript cDNA SuperMix (Quantabio, #95048025, Beverly, MA,
USA). cDNA and target gene primers were mixed with PerfeCTa SYBR Green SuperMix
(Quantabio, #95056500, Beverly, MA, USA) according to the manufacturer’s instructions,
and target gene expression was quantified by qPCR using a 7500 Fast Real-Time PCR System
(Applied Biosystems, #4351107, Waltham, MA, USA ). For every gene target, three biological
replicates with two technical replicates each were used for quantification. Average target
gene expression was normalized to average Gapdh expression within each sample.

The primers are as follows. Gapdh F: GGGTGTGAACCACGAGAAAT, Gapdh R:
GTCTTCTGGGTGGCAGTGAT; Drd1 F: GTCTCCCAGATCGGGCATT, Drd1 R: AGT-
CACTTTTCGGGGATGCT; Pdyn F: TGAATCTTGGATCGGCCACC, Pdyn R: CCACGCA-
GATCTCAAAGCCT; Zfp521 F: GGGCCTTGCTTCCATTTTCC, Zfp521 R: TTGAGGGATCTCG-
GTTTCGC; Drd2 F: ATCTCTTGCCCACTGCTCTTTGGA, Drd2 R: ATAGACCAGCAGGGT-
GACGATGAA.

2.3. Sequencing Library Preparation

Each of the two biological replicates (Rep1, Rep2) were split into two 40 ng genomic
DNA aliquots for AM-seq and EM-seq library preparation, respectively. For AM-seq
preparation, we used the Accel-NGS Methyl-Seq DNA Library Kit (Swift, #30024, Ann
Arbor, MI, USA) by following kit instructions. For EM-seq preparation, we applied the
NEBNext Enzymatic Methyl-seq Kit (NEB, #E7120S, Ipswich, MA, USA) by following the
product manual. Therefore, for each of the two biological replicates (Rep1, Rep2), one
AM-seq and one EM-seq libraries were prepared.

For AM-seq library preparation, 40 ng D2-MSN DNA with 4 pg unmethylated lambda
DNA (Promega, #D1521, Madison, WI, USA) and 4 pg CpG methylated puc19 DNA (NEB,
#E7120S, Ipswich, MA, USA) as spike-in controls were fragmented to an average size of
350 bp using Covaris E220 (Covaris, Woburn, MA, USA) (60s duration, 30 peak power, 20%
duty factor, 50 cycles/burst, average power 6), followed by bisulfite treatment with EZ
DNA Methylation-Gold Kits (Zymo, #D5005, Irvine, CA, USA) per the provided instruction.
The 20 ul fragmented DNA went through conversion with 130 µL CT Conversion Reagent
by incubating for 10 min at 98 ◦C followed by 2.5 h at 64 ◦C. Each converted sample
was mixed with 600 µL M-Binding buffer, loaded into an IC column, and centrifuged at
13,000× g for 30 s. Each column was then washed with 100 µL M-Wash buffer, followed
by 13,000× g centrifugation for 30 s. Next, 200 µL of M-Desulphonation buffer was added
to the column and incubated at room temperature for 15 min. After desulphonation, each
column was centrifuged at 13,000× g for 30 s, washed with 200 µL M-Wash buffer twice,
then 15 µL M-Elution buffer was applied to elute DNA. The resultant converted DNA was
used for library preparation with the Accel-NGS Methyl-Seq DNA Library kit by following
the manufacturer’s instructions. Briefly, 15 µL converted DNA was denatured for 2 min
at 95 ◦C and then placed on ice for 2 min. Then, 25 µL Adaptase mix was added to the
denatured DNA and incubated for 15 min at 37 ◦C, followed by 2 min at 95 ◦C. Next,
44 µL of extension reaction mix was added, and the extension reaction was carried out in a
thermocycler with an extension program of 98 ◦C for 1 min, 62 ◦C for 2 min, 65 ◦C for 5 min,
and held at 4 ◦C. The DNA was cleaned up with 1.2× volume of SPRIselect magnetic beads
(Beckman Coulter, #B23317, Indianapolis, IN, USA) and reclaimed with 15 µL elution buffer.
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The ligation was then performed by adding 15 µL ligation mix followed by a purification
step with 1× volume of magnetic beads. The purified DNA was then used for 7 cycles of
indexing PCR with indexed primers. Finally, the amplified library was purified by using
0.85× volume of magnetic beads.

For EM-seq library preparation, 40 ng D2-MSN DNA with 4 pg unmethylated lambda
DNA (Promega #D1521, Madison, WI, USA) and 4 pg CpG methylated puc19 DNA (NEB,
#E7120S, Ipswich, MA, USA) as spike-in was fragmented to an average size of 270 bp using
Covaris E220 (Covaris, Woburn, MA, USA) (120 s duration, 50 peak power, 25% duty factor,
1000 cycles/burst, avg power 12.5). The library was then prepared using the NEBNext
Enzymatic Methyl-seq kit per the manufacturer’s instructions. For each sample, 50 µL
fragmented DNA was repaired with 10 µL End Prep Mix at 20 ◦C for 30 min and followed
by incubation at 65 ◦C for 30 min. Repaired DNA was ligated with methylated adaptors,
purified with 110 µL magnetic beads and reclaimed with 28 µL elution buffer. The 28 µL
purified DNA was used for methylcytosine oxidation with 17 µL TET2 reaction mix and
5 µL Fe(II) solution. After 1 h of TET2 oxidation at 37 ◦C, the reaction tube was placed on
ice, 1 µL of Stop Reagent was added, and samples were incubated at 37 ◦C for 30 min to
stop the oxidation reaction. The oxidated DNA was purified with 90 µL magnetic beads
and eluted in 16 µL elution buffer. Then, 4 µL 0.1 M NaOH was added to denature the
purified oxidated DNA at 50 ◦C for 10 min, and the reaction tube was placed on ice after
the denaturation. Deamination was immediately carried out by adding 80 µL APOBEC
reaction mix and incubated at 37 ◦C for 3 h. The converted DNA was purified with an
equal volume of magnetic beads and reclaimed with 20 µL elution buffer. Indexed primers
were added to purified DNA for 5 cycles of amplification, and each amplified library was
purified with 0.9× volume of magnetic beads.

The AM-seq and EM-seq libraries were assayed by a 4200 TapeStation system (Ag-
ilent, Santa Clara, CA, USA), and the molar concentrations were quantified by a KAPA
library quantification kit (Roche #07960336001, Basel, Switzerland). The libraries were then
pooled with base-balanced libraries and sequenced for 100 bp paired-end reads on Illumina
Novaseq 6000 S1 flow cell with 30% spike-in of whole-genome sequencing libraries. All
libraries were sequenced twice and combined to reach the final read depths.

2.4. AM-Seq and EM-Seq Data Analysis

FASTQ files containing sequencing reads were checked by FastQC v0.11.9 (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 31 January 2020).
To remove low-quality sequences (Quality Phred score < 20) and artificial adaptor se-
quences, Trim Galore 0.6.4 and Cutadapt 1.18 were used. Due to the synthetic adaptors
generated during library preparation, we trimmed an additional 18 bp from the 5′ end
and 4 bp from the 3′ end for both reads of AM-seq libraries. For both reads of EM-seq
libraries, we trimmed 8 bp from the 5’ end and 4 bp from the 3’ end according to the
positional base content bias result by FastQC. Read-pairs with any one read less than
20 bp were removed. Processed read-pairs were aligned to the male mm10 mouse genome
(https://www.encodeproject.org/files/male.mm10, accessed on 9 February 2019) by Bis-
mark [44]. We performed alignment with the same processed reads as well as DNA
reference sequence of lambda DNA or puc19 DNA to assess the conversion rate. Af-
ter alignment, deduplication, and filtration of unconverted read pairs, methylation sites
with genomic base coordinates and genomic context information were extracted by Bis-
mark_methylation_extractor. Downstream analysis was performed with methylation sites
separated according to their dinucleotide context (CG, CA, CT, CC).

2.5. Bioinformatic Analysis of Methodology Comparison

We used CollectGcBiasMetrics of Picard (http://broadinstitute.github.io/picard/,
accessed on 18 August 2021) and QualiMap v.2.2.2-dev [45] to perform coverage analy-
sis. For unconverted tetranucleotide bias analysis, the frequency of unconverted tetranu-
cleotides was extracted by Bismark. For coverage deviation per dinucleotide analysis,

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.encodeproject.org/files/male.mm10
http://broadinstitute.github.io/picard/
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4 million randomly sampled aligned read pairs (~1% of total) were analyzed against ran-
domly shuffled regions in the covered genomic region of the same library, and this analysis
was repeated three times with different sampling seeds. All called methylation sites were
used to calculate the global CpG and CpH methylation levels.

The genomic features of CpG islands were downloaded from the University of Cal-
ifornia at Santa Cruz (UCSC) Table Browser [46]. A list of putative mouse striatum en-
hancers was obtained from EnhancerAtlas 2.0 [47], and liftOver was applied to convert
enhancer coordinate annotations in mm9 to mm10. Transcription starting sites (TSS)
and other gene annotations were extracted from the Ensembl gene annotation system
(Mus_musculus.GRCm38.90) [48]. The aggregated methylation profile was generated using
BEDTools [49] and Deeptools [50]. To calculate methylated sites, we performed a binomial
test as previously reported [51]. The non-conversion rate for each cytosine context was
used to calculate the binomial P-value, and a threshold was chosen with false discovery
rate (FDR) less than 1%.

2.6. Unmethylated Region Analysis

The unmethylated regions (UMRs) were identified by MethylSeekR with recom-
mended parameters (30 CpG sites, 50% methylation level threshold) [52,53] using CpG
methylation data after merging the four individual D2-MSN methylomes. The genomic
annotation of UMR was performed by “annotatePeaks.pl” of Homer [54]. Histone ChIP-seq
data was retrieved with the accession number GSE42810 and GSE63749 from the National
Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). Motif enrich-
ment was conducted by “findMotifsGenome.pl” of Homer. The genomic data files were
transformed to bigWig format and visualized by IGV 2.8.6.06 [55]. The GO analysis of UMR
regions was performed in R with the “clusterProfiler” package [56].

2.7. Differential Methylation Region (DMR) Analysis

The D2-MSN methylome was compared to the methylomes of mouse PFC CamKIIa-
positive (CamKIIa+) excitatory neurons (GSM1541958 and GSM1541959) [22] and neural
progenitor cells (GSE111283) [57]. Methylome data of MethylC-seq were downloaded from
NCBI. We filtered the common mouse SNP sites and removed sites with coverage less
than 4. To perform differential methylation analysis for CpG methylation, DSS [58] with a
smoothing function [59] was used to identify DMRs. The methylation change threshold
was set as 20%, and the P-value threshold was set as 1× 10−5 to focus on substantially
changed regions. We merged DMRs within 500 bp and set the length threshold for CpG
DMR as 100 bp with a minimum of 5 CpG sites.

For non-CpG methylation, we chose to analyze methylated CpA dinucleotides (mCpA)
as a representative [60]. In calculating mCpA levels of all genes, only the longest isoform of
each gene was used. The methylation level of 1 kb windows with 500 bp slide was used
for differential mCpA analysis with DSS, the methylation change threshold was set as 2%,
and the p-value threshold as 0.01. We merged mCpA DMRs within 50 kb and set the length
threshold as 2 kb. The web-based tool GREAT [61] was used to perform gene ontology
analysis for DMR regions.

3. Results
3.1. Whole Genome Methylome Library Preparation and Sequencing

One AM-seq and one EM-seq libraries were generated from each of the two biological
replicates (Rep1, Rep2) of mouse nucleus accumbens D2-MSNs. Similar amounts of DNA
libraries were obtained from AM-seq (7 cycles of PCR library amplification) and EM-seq
(5 cycles of PCR library amplification) (Table S1). Each library yielded around 400 M
paired-end reads (Table S1). Though all reads have consistently high quality, read 1 of all
libraries is of notably better quality than read 2, with fewer base pairs removed during
quality-trimming (Table S2). After adaptor trimming, quality trimming (q > 20), and read
length filtering, over 99.6% of all reads passed quality thresholds. AM-seq has a slightly
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lower survival rate than EM-seq, mainly because AM-seq has more short reads (<20 bp)
that were removed (Figure 1a, Table S2).
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lands (CGIs). Coverage data of CGI with extended 2 kb up- and down-stream regions are plotted 
with a 50 bp bin size. (h) The mean coverage at each CpN context (CpA, CpC, CpG, CpT). Note the 
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Figure 1. Quality analysis of NAc D2-MSN methylome libraries. (a) Survival rate of sequencing
reads for each library. The calculation was performed after adaptor trimming, quality trimming, and
short reads removal. Y-axis starts from 99%. (b) Unique alignment rate of each library. (c) Library
insertion size distribution and count numbers. Data were extracted only from aligned fragments.
(d) Cumulative coverage plot shows percentages of CG sites (out of all CG sites in the mm10 genome)
reaching a certain amount of CpG coverage. Data of CpG coverage from 1- to 15-fold are shown.
(e) Coverage deviation between AM-seq and EM-seq at each dinucleotide context. CC, CG, GC, and
GG are dash-lined to highlight the divergent biases between AM-seq and EM-seq. (f) The normalized
coverage according to CpG content percentage. (g) CpG coverage at around CpG islands (CGIs).
Coverage data of CGI with extended 2 kb up- and down-stream regions are plotted with a 50 bp bin
size. (h) The mean coverage at each CpN context (CpA, CpC, CpG, CpT). Note the relative lower
coverage of CpC in AM-seq samples (*).

Using an unmethylated lambda DNA spike-in, we calculated the conversion rates
of CpG, CpA, CpT, and CpC dinucleotides. The CpG conversion rates of lambda DNA
are over 99.8% for both AM-seq and EM-seq. EM-seq had slightly lower non-conversion
rates (0.1% ~ 0.2%) when compared to AM-seq in all 4 CpN (CpG, CpA, CpT, CpC) con-
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texts (Figure S2a). Furthermore, AM-seq libraries also had the highest non-conversion
rates at CpA sites, whereas EM-seq had the lowest non-conversion rates at CpA sites
(Figures S2a and S2b). Using CpG-methylated puc19 DNA as a conversion control, we
found that AM-seq libraries had slightly higher over-conversion rates (3–4%) compared to
EM-seq (1–2%) (Figure S2c).

Trimmed sequencing reads were then aligned to the male mouse mm10 reference
genome, which revealed that the mapping ratio is more variable across biological replicates
than library preparation methods (Figure 1b). In either AM-seq or EM-seq, Rep 2 had ~6%
higher mapping ratio than Rep 1. For each sample, the AM-seq library had slightly higher
(~1%) mapping ratios than that of its EM-seq library counterpart. The duplication rates of
the four libraries were between 13.5% and 17.5% (Figure S2d), and the lower duplication
rates in EM-seq indicate that the EM-seq libraries had better library complexity, given that
they had the same sequencing depth as AM-seq but with two fewer PCR amplification
cycles during library preparation. Consistent with this finding, when we extrapolated
the library sizes using Preseq [62], we found the predicted unique fragments of the four
libraries were between 1.4–1.6 billion, with better complexity and larger library sizes in
EM-seq (Figure S2e).

AM-seq was previously reported to have an excellent genomic coverage [63]. By com-
paring AM-seq and EM-seq, we found both methods generated similar genome coverage
across the whole genome (Figure S2f). We achieved over 15-fold genome coverage with
400 M paired-end reads in each of the four libraries. Comparing the libraries derived from
the same DNA, EM-seq yielded higher coverage compared to AM-seq. Part of the coverage
difference may be attributed to the randomly added synthetic tail (~15 bp) to 3′ ends
of ssDNA during AM-seq library preparation, which required extra base pair sequence
trimming before alignment. Another possible explanation is that EM-seq libraries had
larger insert sizes as shown in sequencing (Figure 1c) or TapeStation analysis (Figure S2g),
with AM-seq libraries shifted more toward the smaller size range, whereas EM-seq libraries
had a more balanced size distribution.

We next extracted the methylated cytosine sites from the four libraries after balancing
them to the same uniquely aligned reads by down-sampling. From an equal amount of
uniquely aligned reads, similar coverage was observed between the two methods, with
EM-seq having a slightly better performance. Out of the ~43.7 million CpG sites in the
mouse genome (mm10), EM-seq covered more than 41 million (93.8% of total CpG sites)
CpG sites, compared to AM-seq at about 40.5 million (92.7% of total CpG sites). EM-seq
also had marginally better depth of CpG sites coverage than AM-seq (Figure 1d). Among
them, the EM-seq Replicate 1 (EM_Rep1) library had the longest inserts (Figure 1c) and the
highest CpG coverage after balancing aligned fragment counts.

Sodium bisulfite treatment, upon which the AM-seq protocol is based, has been known
to cause DNA breaks and have biases at CG-rich regions during PCR amplification [21,64].
In comparison to the conventional whole genome bisulfite sequencing method, AM-seq
was reported to perform better with respect to nucleotide amplification bias [63]. We
found that both AM-seq and EM-seq have minuscule coverage deviations per dinucleotide
context. However, compared to EM-seq, AM-seq had lower coverages at CpC, CpG, and
GpG dinucleotides, possibly related to the bisulfite-induced DNA damage (Figure 1e).
Notably, we found EM-seq had an over-representation at CpG and GpC dinucleotides,
which indicates the bias might be an effect of high hydrogen bonding in CpG dinucleotides
on PCR amplification, or of the TET2-mediated enzymatic conversion. We also noted a
consistent trend that the genomic regions with higher CG content are less represented in
AM-seq (Figure 1f). For example, at CpG islands (CGIs), which are genomic regulatory
elements characterized by a high frequency of CpG sites and hypomethylation [65], AM-
seq had lower (~14% less) coverage than at adjacent regions, whereas EM-seq lacked any
such variation. Similarly, EM_Rep1 had an increased coverage around CGI regions, while
EM_Rep2 showed a slight decrease (Figure 1g). The average coverage for single-stranded
CpN sites is 6.6 and 6.9 folds for the two AM-seq libraries, respectively, and more than



Genes 2022, 13, 306 9 of 23

7.5 folds for the two EM-seq libraries (Figure 1h). We also noticed AM-seq had a slightly
lower CpC coverage than CpG, CpA, and CpT, which were more similar to each other
(Figure 1h).

3.2. Methylation Profiling of D2-MSNs

Next, the global methylation levels were calculated after cytosine methylation site
extractions. The four libraries had comparable global CpG methylation levels ranging from
80.3–81.2% (Figure 2a). Both AM-seq and EM-seq detected a slightly higher CpG level in
Rep 2 than in Rep 1 (0.16% higher by AM-seq and 0.88% higher by EM-seq). Furthermore,
the methylation level measurements between the two methods were very close, with the
CpG level of EM_Rep1 being 0.2% lower than that of AM_Rep1, and the CpG level of
EM_Rep2 being 0.3% higher than AM_Rep2.
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In addition, for non-CpG methylation, EM-seq demonstrated consistently lower methy-
lation levels (Figure 2b) when compared to AM-seq. The methylated CpH (mCpH) levels
(measurements of mCpA, mCpC, and mCpT together) were 1.77% and 1.8% in the two
libraries of AM-seq and 1.65% and 1.67% in Rep1 and Rep2 of EM-seq, respectively. In
D2-MSNs, similar to the previously reported non-CpG methylation distribution in neuronal
methylomes [23], mCpA was found to be the predominant methylated non-CpG. Further-
more, we noted that, in both AM-seq and EM-seq datasets, mCpG accounted for 65–67%
of all cytosine methylation events, while mCpA and mCpT were responsible for ~25%
and ~7%, respectively. CpC had the lowest methylation frequency, which was 1.3–1.4%
in AM-seq and 0.7–0.8% in EM-seq (Figure S3a). To identify high-confidence non-CpG
methylation sites, we performed a binomial test with a false discovery rate method [23] and
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observed closer numbers of methylated CpG sites (~52%) and methylated non-CpG sites
(~48%) in AM-seq, and slightly less methylated CpG sites (47%) than methylated non-CpG
sites (53%) in EM-seq (Figure S3b).

Furthermore, the mCpA sites in D2-MSNs usually have an adjacent ‘T’ upstream and a
‘CC’ dinucleotide immediately downstream (Figure 2c). This sequence motif coincides with
DNMT3A binding sites and is consistent with previous neuronal methylome reports [23,24,
51,66]. Interestingly, the flanking sequences (5’-T and 3’-CC) not only exist at mCpA sites,
but also occur at CpT, and CpC methylation sites (Figure S3c), which indicates a functional
role of flanking DNA sequences at non-CpG methylation sites.

To examine the reproducibility of D2-MSN methylomes, we calculated the correla-
tion of 10 kb-binned mCpG and mCpH levels (Figure 2d). We found a strong correlation
of mCpG methylation between the two D2-MSN replicates using either library prepara-
tion method. A significant correlation of mCpH methylation between the two biological
replicates was also observed. Furthermore, we confirmed a strong correlation between
methylomes generated by the two different methods (Figure 2d). As we observed subtle
coverage bias between AM-seq and EM-seq according to GC content, we matched ag-
gregated methylation levels of all four methylome libraries at various genomic regions
(Figure 2e). We found that both mCpG and mCpH methylation are depleted at enhancers,
CGIs, and transcription start sites (TSSs). Though the distribution patterns of CpG and
CpH methylation in AM-seq and EM-seq were well-matched across these genomic features,
we noticed that the CpH methylation levels of AM-seq libraries were slightly higher than
that of EM-seq (Figure 2e). We then stratified CpH methylation to mCpA, mCpT, and
mCpC, and confirmed their consistent methylation patterns as well as relatively lower
methylation levels in EM-seq (Figure S3d).

3.3. D2-MSN Unmethylated Regions (UMRs)

Using AM-seq and EM-seq, we profiled the D2-MSN methylome from the NAc of
adult male mice. Given the high reproducibility of the four D2-MSN methylomes, we
merged them to achieve a combined ~30-fold coverage for each strand to identify D2-
MSN-specific regulatory regions. While the majority of the mammalian genome is highly
methylated, a small portion of regions remains hypomethylated and are usually enriched
with regulatory elements. Therefore, we focused on unmethylated regions (UMRs), which
are long stretches of DNA segments with high CG frequency (i.e., more than 30 CpG sites
per region) and low DNA methylation levels (Figure S4a) that may have regulatory roles
on transcription [51,52,67–70]. We found 15,310 UMRs (Table S4), with the majority of
them located at regions close to transcription start sites, such as promoters, first introns,
first exons, and 5’ UTRs (Figure 3a). In addition, 12% of UMRs were located in intergenic
regions. In comparison to annotated mouse CGIs (UCSC Table Browser) and reported
mouse striatal enhancers [47], the majority of UMRs (85% of all UMRs) overlap with either
85% of CGIs or 89% of striatal enhancers (Figure 3b). The remaining 15% of UMRs that
were not located at a CGI or enhancer may represent additional regulatory regions with
low methylation levels in D2-MSNs. Furthermore, when compiled with the previously
published mouse NAc histone modification ChIP-seq data [71], we found the UMRs were
enriched with histone markers H3K4me1, H3K27ac, H3K4me3, and H3K27me3, which are
usually associated with enhancers (H3K4me1, H3K27ac), active transcription initiation sites
(H3K4me3), and repressive regulation (H3k27me3). In contrast, we found no enrichment of
H3K36me3 or H3K9me2 at UMR regions (Figure 3c).
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Figure 3. Characterization of NAc D2-MSN UMRs. (a) Genomic feature distribution of NAc D2-MSN
UMRs. They are mostly located in TSS-proximal regions, including “Promoter-TSS”, “5’-UTR”,
“First exon”, and “First intron”. (b) D2-MSN UMRs significantly overlap with CGIs and striatal
enhancers. (c) Histone modification enrichments at D2-MSN UMRs. H3K4me1, H3K4me3, H3K27ac,
H3K27me3, H3K9me2, H3K36me3 Chromatin IP signals are presented along up- and down-stream
5 kb regions of UMR sites. RPKM normalization is performed across all histone ChIP-seq data.
(d) The top enriched motif sequence and matched transcription factor in each of the four categories
of CGI/UMR regions. CGI in D2-UMR: CpG islands located in D2-MSN UMRs; CGI out of D2-UMR:
CpG islands located outside of D2-MSN UMRs; UMR without CGI: D2-MSN UMRs that do not
have a CpG island inside; intergenic UMR without CGI: intergenic D2-MSN UMRs that do not have
a CpG island inside. (e) Adcy5 locus with two neighboring D2-MSN UMRs. The proximal UMR
overlaps with a CGI and the distal UMR does not. The two shaded areas highlight regions with
cell type-specific differential methylation. D2: D2-MSNs. CamKIIa_Excit: PFC CamKIIa+ excitatory
neurons. NPC: neural progenitor cells. AM: AM-seq. EM: EM-seq. CG sites lane shows the CpG
frequency. Black arrowhead indicates a CTCF motif in UMR regions.

To gather biological insight of D2-MSN UMRs, we then performed de novo motif
analysis at four genomic feature regions: 1. “CGI in UMR” (CpG islands located in D2-MSN
UMRs), 2. “CpG out of UMR” (CpG islands located outside of D2-MSN UMRs), 3. “UMR
without CGI” (D2-MSN UMRs that do not have a CpG island inside), or 4. “Intergenic UMR
without CGI” (intergenic D2-MSN UMRs that do not have a CpG island inside) (Table S5).
The enriched motifs in the four categories of regions were matched to dozens of DNA
binding proteins (Table S6). For example, the highest ranked motifs for CGIs in UMRs (i.e.,
low methylation level at these CGIs) belonged to the ELK of the ETS family. In CGIs out of
UMR, the top motif is CUX2, indicating accumulation of DNA methylation silencing around
those regions in D2-MSNs (Figure 3d). The most significantly enriched motif in UMRs
without CGI was matched to CTCF [72], and CTCF motif enrichment was also ranked first
in intergenic UMRs without CGI (Figure 3d), which suggests an interplay between DNA
methylation and higher order chromosomal organization in D2-MSNs. A representative
example is shown near Adcy5 (Figure 3e), a gene in which mutation is associated with
various brain disorders [73]. This gene has one upstream distal UMR, which does not
overlap with a CGI, and another UMR that runs across the TSS and does overlap with
a CGI. Two CTCF binding sites were predicted in the distal UMR, and one such motif



Genes 2022, 13, 306 12 of 23

existed in the proximal UMR. In comparison to published methylome datasets from mouse
neural progenitor cells (NPCs) [57] and mouse prefrontal cortex (PFC) CamKIIa+ excitatory
neurons [22], we found both UMRs have differential methylation patterns among the
three cell types, with robust hypomethylation in D2-MSNs. Therefore, such UMR-specific
methylation changes demonstrate methylation dynamics that are specific to D2-MSNs.

Furthermore, we performed pathway analyses of these four categories of UMR related
genomic regions in D2-MSNs [74]. We found that the 13,550 genomic regions in the “CGIs
within UMR” category covered a broad range of genes and biological pathways (Figure S4b,
Table S7), whereas the other three categories were enriched with limited numbers of specific
pathways. “CGIs outside UMR” were mainly associated with genes in the “Hippo signaling
pathway” and “Signaling pathways regulating pluripotency of stem cells” pathways,
which is consistent with the notion that DNA methylation represses pluripotency genes in
mature neurons. Genes associated with “UMR without CGI” also had pertinent pathways
enriched, such as “oxytocin signaling pathway”, “glutamatergic synapse”, and “long-term
depression”. Interestingly, the GO term “alcoholism” was enriched in genes associated
with the “CGI-free intergenic UMR” category, including Shc3, Shc4, Araf, Fosb, Hdac11,
Adcy5, Creb3l2, Gnai2, Grin2d, and Ppp1r1b. This suggests a regulatory role of intergenic
region D2-MSN-specific DNA methylation in alcohol addiction.

3.4. D2-MSN Specific CpG Differential Methylation Regions (DMRs)

To further explore D2-MSN regulatory regions beyond UMRs, we performed differ-
ential CpG methylation analysis by comparing our data to the methylomes of postnatal
day 3–4 mouse NPCs [57], and CamKIIa+ excitatory neurons from PFC of 8–14 weeks old
adult male mice [22]. Both datasets were generated using the MethylC-seq protocol [75]
with around seven-fold coverage of each strand. Compared to accumbal D2-MSNs, the
global CpG methylation level was about 2% lower in NPCs (~78.5%) and slightly higher
(less than 1%) in excitatory neurons (81.2% and 81.4% for two replicates). Furthermore, we
identified 24,284 CpG DMRs between D2-MSN and NPC methylomes, with the majority
of them (21,854) being hypomethylated in D2-MSNs (Figure 4a, Table S8), supporting the
concept of accumulation of global methylation during cell differentiation with widespread
depletion of methylation at regulatory regions [57,76,77]. When compared to PFC exci-
tatory neurons, we identified 30,660 CpG DMRs with 10,440 hypomethylatedDMRs and
20,220 hypermethylatedDMRs (Figure 4a, Table S9) in D2-MSNs. Most of these CpG DMRs
were located within distal introns and intergenic regions (Figure S5a).

We then performed a K-means clustering analysis to classify all autosomal CpG DMRs
into seven clusters (Figure 4a, Table S10). We observed that the four libraries were better
clustered together by biological replicates than by methods. This was further confirmed by
PCA analysis (Figure S5b). Based on the methylation status in comparison to PFC excitatory
neurons and NPCs, the D2-MSN hypomethylation CpG DMRs were classified into four clus-
ters (clusters 1 to 4), while the D2-MSN hypermethylation CpG DMRs were separated into
three clusters (clusters 5 to 7) (Figure 4a). CpG DMRs of clusters 1, 2, and 4 represent regions
where CpG methylation is significantly depleted in D2-MSNs compared to the other two
cell types. DMRs in cluster 3 show reduced methylation levels in both D2-MSNs and PFC
excitatory neurons when compared to NPCs. Though fewer in number, the cluster 5 CpG
DMRs represent genomic regions that gained CpG methylation in both NAc D2-MSNs
and PFC excitatory neurons. DMRs in cluster 6 represent divergent hypermethylation in
D2-MSNs and hypomethylation in PFC excitatory neurons stemming from moderate DNA
methylation in NPCs. Lastly, cluster 7 shows regions with contrasting hypermethylation in
D2-MSNs and hypomethylation in PFC neurons and NPCs (Figure 4a). Using ontology
analysis, we found each of the seven DMR clusters was enriched with a defined set of
biological process terms (Figure 4b). Generally, genes associated with hypomethylation in
NAc D2-MSNs (e.g., clusters 1, 2, 3, and 4) were mostly enriched with various terms related
to neuronal functions (Figure 4b, Table S11), such as “cAMP/cGMP catabolic process”,
“dopamine receptor signaling”, “ion transport”, “learning”, and “behavior”. In contrast,
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genes associated with hypermethylated DMRs in both NAc D2-MSNs and PFC excitatory
neurons (cluster 5) were enriched with terms related to “maintenance of cell number”,
“glial cell fate commitment”, and “somatic stem cell population maintenance”. In addition,
genes associated with PFC-specific hypomethylated DMRs (clusters 6, 7) demonstrated
enrichments in “long-term synaptic potentiation”, “forebrain neuron fate commitment”,
“limbic system development”, and “apoptotic process involved in development”. Together,
this suggests that D2-MSN-specific DNA methylation changes may play dual roles in both
cell fate commitment during development and biological function specification.
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autosomal CpG DMRs, in comparison to NPCs and PFC CamKIIa+ excitatory neurons. Two sets
of DMRs are combined. For each DMR, the delta β values of individual samples (compared to the
average methylation level across all samples) are used for clustering. (b) Representative biological
process gene ontology (GO) terms enriched with genes associated with each cluster of CpG DMRs
in panel a. (c) Transcription factors (TFs) with matched sequences of the top 4 motifs enriched in
each of the seven CpG DMR clusters. Identical or similar transcription factors are in the same color,
except where black is used for motifs only recognized in a single cluster. (d) The genomic locus of
Neurod2 is a representative of transcription factor genes enriched in D2-MSN hyper CpG DMRs with
D2-MSN-specific hypermethylation. The shaded regions indicate notable cell type-specific differential
methylation when compared to NPCs or PFC excitatory neurons. (e) UMRs and cell type-specific
DMRs are largely overlapped with mouse cCREs. D2: D2-MSNs. CamKIIa_Excit: PFC CamKIIa+
excitatory neurons. NPC: neural progenitor cells. AM: AM-seq. EM: EM-seq.
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Next, we carried out a motif analysis to identify the transcription factors that may
be associated with methylome remodeling (Figure 4c, Table S12). We found that each of
the seven clusters was enriched with a unique set of transcription factor binding motifs.
Among them, AP-1 transcription complex (FOSB::JUNB) motifs were one of the top hits
in clusters 2, 3, and 4. Motifs of EGR2, MEF2, MEIS1, and NF1 were also enriched in
three clusters. Notably, AP-1 is a heterodimer of the FOS family and JUN family and has
been recognized as a key transcription factor in addiction and stress response [78–80]. In
particular, FOS family genes are transiently induced in NAc by acute drug exposure, with
a truncated form of FOSB (∆FOSB) demonstrating a lasting accumulation [32,81]. The
immediate early genes EGR2 and EGR1 have also been implicated in drug response and
may be subjected to drug-induced DNA methylation changes as well [82–84]. Similarly,
MEF2 in NAc has also been reported to regulate synapse plasticity and sensitized responses
to cocaine [85]. The enrichment of these motifs in D2-MSN CpG DMRs not only supports
the functional roles of the relevant transcription factors in drug addiction but also implies a
D2-MSN-specific function that is DNA methylation dependent.

In addition, we recognized that some motif enriched transcription factors themselves
were subjected to DNA methylation changes. For example, the NEUROD2 motif was highly
enriched in clusters 6 and 7 of D2-MSN DMRs (Figure 4c), which was accompanied by two
hypermethylated DMRs near the Neurod2 gene (Figure 4d); the upstream DMR was heavily
methylated in NAc D2-MSNs but had moderate methylation in NPCs and low methylation
in PFC excitatory neurons, while the downstream DMR showed hypermethylation in both
neuronal cell types.

By comparing the methylation-related regulatory regions that we identified as UMRs
and CpG DMRs with the curated set of mouse candidate cis-regulatory elements (cCREs)
from the ENCODE project [86], we found that almost all UMRs overlapped with one or more
cCRE. Out of the 15,310 UMRs, 15,163 overlapped with 74,870 cCREs, and 14,585 D2-MSN
CpG DMRs overlapped with 17,423 cCREs (Figure 4e). Furthermore, a total of 1567 D2
CpG DMRs were located in 1843 UMR regions covering 2303 cCREs. This further supports
the regulatory role of DNA methylation in cell identity and function in NAc D2-MSNs.

3.5. D2-MSN non-CpG DMRs

We then analyzed non-CpG methylation in NAc D2-MSNs by comparing them to NPC
and PFC excitatory neurons, respectively. Mammalian non-CpG methylation accumulates
during development, remains prevalent in neurons, and is inversely correlated with gene
transcription [23,87,88]. Given that the methylomes of NPCs and excitatory neurons were
produced by a different protocol (MethylC-seq), we only considered CpH sites that passed
the binomial test in order to mitigate any potential bias that may be derived from methy-
lation profiling methodologies (Figure 2b). We thus confirmed the non-CpG methylation
differences among cell types. The NPC methylome had a significantly lower level of global
mCpH (less than 0.001%) compared to NAc D2-MSNs and the PFC excitatory neurons,
which were both ~1%. As mCpA accounts for the majority of non-CpG methylation, which
also highly correlates with total mCpH methylation, we analyzed CpA methylation as a
representative of non-CpG methylation. We first calculated the gene body CpA methylation
levels of all genes. By overlapping the top 1000 (~5% of all genes) highly methylated genes
in D2-MSNs and PFC excitatory neurons, we found that 349 genes obtained high levels
of non-CpG methylation in both cell types. Among them, genes encoding microRNA,
transcription factors, and peptide ligands were over-represented (Table S13).

Next, we performed differential analysis with binned CpA methylation windows to
identify non-CpG DMRs (996 hypomethylated DMRs, and 5911 hypermethylated DMRs in
comparison to PFC CamKIIa+ neurons) (Table S14). We found that the genes associated
with hypomethylated non-CpG DMRs were specifically clustered in the ontology categories
related to D2-MSN functions, such as “gamma-aminobutyric acid (GABA) biosynthetic
process”, “gamma-aminobutyric acid (GABA) metabolic process”, “learning or memory”,
and “dopamine receptor signaling pathway” (Figure S6a, Table S15). In contrast, genes
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associated with hyper non-CpG DMRs were enriched in GO terms mostly related to devel-
opment or differentiation (Table S15). Given the repressive role of non-CpG methylation on
transcription, this suggests these genes were silenced during D2-MSN maturation. For ex-
ample, dopamine receptor Drd1 and transcription factor Neurod6, which are not expressed
in mature D2-MSNs, were found to have hyper non-CpG DMRs (Figure 5a). To further sup-
port the functional role of CpA methylation in D2-MSNs, we found non-CpG hypo DMRs
in the gene body of two D2-MSN marker genes: Drd2 and Penk. These non-CpG DMRs
also appeared to overlap with CpG DMR in the same trend (Figure 5a). Further analysis
of all CpG DMRs with non-CpG DMRs demonstrated substantial overlaps between CpG
hyper-DMRs (~9.8% overlaps) with mCpA hyper-DMRs (~27.0% overlaps), and mCpG
hypo-DMRs (~2.8% overlaps) with mCpA hypo-DMRs (~23.7% overlaps) (Figure 5b). By
analyzing the mCpA levels at all CpG DMR regions, we found that PFC excitatory neurons
had significantly decreased CpA methylation at CpG DMRs that were hypermethylated
in D2-MSNs, and D2-MSNs hypomethylated DMRs also had significant CpA hypomethy-
lation (Figure 5c). In light of the observed synergy, we performed a regression analysis
between CpG methylation and non-CpG methylation levels at CpG DMRs. The results
presented a moderate correlation (0.475–0.645) between the two modalities in CpG DMRs.
The CpG methylation can explain ~ 42% variance of CpA methylation in excitatory neurons,
and 22–25% variance in D2-MSNs (Figure S6b).
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Figure 5. NAc D2-MSN-specific non-CpG DMRs. All non-CpG DMRs are identified by comparing
NAc D2-MSNs to PFC CamKIIa+ excitatory neurons (D2 vs. Excit). (a) Representative view of
Drd1 and Neurod6 loci with CpG and CpA hypermethylation in D2-MSNs. In contrast, D2-MSN
marker genes Drd2 and Penk have CpG and CpA hypomethylation along their genomic loci when
compared to PFC CamKIIa+ excitatory neurons. Pink-shaded regions highlight CpG DMR regions,
yellow-shaded regions highlight CpA DMR regions. β value range of all CpG lanes is 0–1. β value
range of CpA for Neurod6 and Drd1 is 0–1. β value range of CpA for Drd2 and Penk is 0–0.5. NPC has
virtually no CpA methylation. (b) CpG DMRs and CpA DMRs are significantly overlapped. (c) CpA
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methylation levels at CpG DMRs. Left: CpA methylation levels of D2 hyper-methylated CpG DMRs
(blue and red) are noticeably higher than surrounding regions in D2-MSNs and much lower in
PFC excitatory neurons (purple). Right: The CpA methylation levels of D2 hypo-methylated CpG
DMRs are much lower in D2-MSNs (blue and red) and are discernibly higher in PFC excitatory
neurons(purple) compared to the adjacent regions. The NPC methylome is devoid of non-CpG
methylation (cyan).

4. Discussion

In this study, we characterized the mouse NAc D2-MSN methylomes using two
different methods, namely AM-seq and EM-seq, using the Swift Accel-NGS Methyl-Seq
DNA Library Kit and the NEB Enzymatic Methyl-seq Kit, respectively. Our side-by-
side comparison demonstrates good consistency and reproducibility between the two
methods. We found the library quality and yields, global methylation and loci specific
methylation, and potential biases were all highly comparable between the two methods.
AM-seq or EM-seq was compared to other methods, such as MethyC-seq [89], QIAseq [63],
and PBAT [90], with better performance. However, as both methods were suitable to
handle lower amounts of DNA (ng scale), a direct comparison between the two will be
helpful when deciding on a method for whole-genome methylome profiling with low cell
numbers, such as neuronal subtypes from discrete brain regions. In studies with brain tissue,
methylation landscapes of different neural cell types are usually superimposed, which
inevitably obscures epigenetic changes that are often cell type-specific, given the remarkable
neuronal heterogeneity in the brain. Therefore, brain cell type-specific methylation profiling
is necessary to aid our understanding of the functional role of DNA methylation in the
brain. Using D2-MSNs from mouse nucleus accumbens as an example, our study shows
that these two methods are comparable and suitable for methylome profiling of low-input
DNA samples (i.e., 40 ng DNA extracted from D2-MSNs isolated from NAc of a single
mouse). We found the CpG methylation levels to be closely correlated not only between
biological replicates, but also between the two methods. A similar correlation also holds for
non-CpG methylation. Notably, both AM-seq and EM-seq detected the subtle difference
in global CpG methylation levels between Rep 1 and Rep 2. Moreover, D2-MSN CpG
DMRs were slightly more separated according to biological replicates than methods in the
first principal component of PCA analysis, indicating that methylation variations between
individual mice were similarly detected by both methods. However, it should be noted
that the methylomes generated from the two methods were not identical. For example,
the library yield of EM-seq was substantially higher than AM-seq, considering EM-seq
took two fewer PCR amplification cycles to generate similar amounts of libraries from
AM-seq. The library yield with less amplification cycles is beneficial for library complexity,
which is also supported by our analysis. In addition, we found that EM-seq libraries had
a larger insert size, which should contribute to better data yield and mapping ratio, and
generated more valid reads under the same expense. While optimization is possible for
both methods, we have followed the default library preparation protocols and sonicated
the gDNA into the recommended fragmentation sizes (350 bp for AM-seq, 270 bp for
EM-seq). The eventual shorter library inserts in AM-seq could be attributed to the DNA
destruction under sodium bisulfite treatment. Moreover, AM-seq had a slightly higher
unique mapping ratio and over-conversion rate of mCpG, while the two protocols exhibited
different dinucleotide preferences of non-conversion and coverage bias per GC content.
Despite the subtle individual differences between the two biological replicates, we have
observed good consistency among our methylome datasets. A recent study reported the
single-cell methylome profiling of the mouse cortex, which identified 161 cell clusters
including D1-MSNs and D2-MSNs based upon the methylation status of marker genes [91].
Our datasets provide a valuable reference with a different cell isolation strategy and high
genomic coverage. In addition, we need to point out that neither of the two methods we
applied in this study can distinguish methylated cytosine from its oxidative derivatives.
As sodium bisulfite does not convert 5-hydroxymethylcytosine (5hmC), 5hmC cannot be
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separated from 5-methylcytosine (5mC) in AM-seq. Furthermore, the methylated cytosine
callings in EM-seq may not be distinguished from 5hmC, 5-formylcytosine (5fC), nor
5-carboxylcytosine (5caC) [40]. Since 5hmC is most abundant in the brain [23,92–94], it
would be beneficial to chart 5hmC at base-resolution in MSNs in the future. Though 5fC
and 5caC are only present at extremely low levels [95], whether they contributed to the
methylation differences between AM-seq and EM-seq deserves further investigation.

The gain of non-CpG methylation in neuronal cells is known to have a repressive
effect on gene expression, possibly through MECP2 [23,88,96–100]. Notably, we found
that the hyper- and hypo- non-CpG methylation regions in D2-MSNs appear to be en-
riched with contrasting functionally distinct gene categories. Additionally, the selective
deposition and depletion of non-CpG methylation are in accordance with the notion that
non-CpG methylation may serve as a fine-tuning mechanism in brain function. We found a
significant overlap between D2-MSN CpG DMRs and non-CpG DMRs, with a moderate
correlation between CpG and non-CpG methylation levels in those CpG DMR regions. This
noticeable synergy might result from shared gene transcriptional activity or other local
epigenetic modalities.

In NAc, the two types of principal neurons, D1-MSNs and D2-MSNs, belong to distinct
neural circuits [35,101,102]. It has long been recognized that D1- and D2-MSNs not only
have unique molecular signatures that mediate their respective functions [103,104], but
also play contrasting roles in behaviors. For example, activation of D2-MSNs inhibits
reward and motivational behaviors [105–107], whereas activation of D1-MSNs promotes
the responses. Notably, the NAc neuronal methylome was recently reported to be more
distinct compared to the ones from other brain regions, with the differential methylation
regions being highly enriched for heritability of addictive behaviors [60,108]. The DNA
modification enzymes were also subjected to expression changes in NAc after cocaine
exposure, which may alter neural plasticity and genome-wide DNA modification land-
scapes [109,110]. With such accumulating evidence, to study neuron subtype-specific
roles of DNA epigenetics in NAc medium spiny neurons becomes necessary. Through the
characterization of NAc D2-MSN methylome, and its comparison to NPCs and PFC excita-
tory neurons, we identified numerous regulatory regions that include 15,310 UMRs and
54,944 D2-MSN-specific CpG DMRs. Almost all UMRs and about one-fourth of D2-MSN
CpG DMRs overlapped with at least one cCRE curated by the ENCODE project, which
indicates the important role of DNA methylation in D2-MSN functions. For example,
the motif analysis of UMRs lacking a CGI has shown an enrichment of CTCF binding.
CTCF plays pivotal roles in higher-order genome architecture [72,111] that may mediate a
broad range of cellular functions [112,113]. The DNA binding affinity of CTCF was found
to be negatively affected by DNA methylation [114–116]. Crystal structure analysis [117]
and direct binding assays [118,119] further supported that CpG methylation inhibits the
DNA binding affinity of CTCF. Recently, growing evidence indicates the role of chromatin
architecture in brain disorders, such as addiction [120–123]. For example, cocaine exposure
was found to increase DNA methylation, decrease CTCF binding, and inhibit the three-
dimensional looping interaction between the Auts2 and Caln1 genes in mouse nucleus
accumbens, which was associated with D2-MSN-specific upregulation of Auts2 [124]. In
addition, a smoking-related DNA methylation change was found near the CTCF locus
in postmortem NAc tissue [125]. Our identification of CTCF motif enrichment in NAc
D2-MSN-specific UMRs and the recognition of an “alcoholism” pathway within the same
UMR category suggests D2-MSN-specific interplay between DNA methylation and higher
order chromatin architecture in addiction [122].

5. Conclusions

Taken together, we performed a comparison of two methylome profiling methods
using 40 ng DNA from mouse NAc D2-MSNs. Though the two methods are based upon
distinct chemistries, the methylome data generated from them were highly comparable.
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We therefore provided a valuable resource of the neuron subtype-specific methylome of
mouse nucleus accumbens D2-MSNs.
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