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Agriculture is fundamental for food production, and microbiomes support agriculture
through multiple essential ecosystem services. Despite the importance of individual (i.e.,
niche specific) agricultural microbiomes, microbiome interactions across niches are not
well-understood. To observe the linkages between nearby agricultural microbiomes,
multiple approaches (16S, 18S, and ITS) were used to inspect a broad coverage of
niche microbiomes. Here we examined agricultural microbiome responses to 3 different
nitrogen treatments (0, 150, and 300 kg/ha/yr) in soil and tracked linked responses
in other neighbouring farm niches (rumen, faecal, white clover leaf, white clover root,
rye grass leaf, and rye grass root). Nitrogen treatment had little impact on microbiome
structure or composition across niches, but drastically reduced the microbiome network
connectivity in soil. Networks of 16S microbiomes were the most sensitive to nitrogen
treatment across amplicons, where ITS microbiome networks were the least responsive.
Nitrogen enrichment in soil altered soil and the neighbouring microbiome networks,
supporting our hypotheses that nitrogen treatment in soil altered microbiomes in soil
and in nearby niches. This suggested that agricultural microbiomes across farm niches
are ecologically interactive. Therefore, knock-on effects on neighbouring niches should
be considered when management is applied to a single agricultural niche.

Keywords: agriculture, microbiomes, 16S, 18S, ITS, amplicon sequencing, nitrogen treatment, microbiome
networks

INTRODUCTION

A farm is a collection of interlinked ecological habitats split by locations, including above-ground,
below-ground, and animal-associated niches each harbouring unique microbiomes. Microbiomes
are essential as providers of ecosystem services including biogeochemical nutrient cycling,
greenhouse gas emission, and host-microbiome interactions (Kinross et al., 2011; Chaparro et al.,
2012; Rubino et al., 2017). The interactions within and between niche microbiomes are the drivers
for nutrient cycling through microbial metabolic processes, such as bacterial-plant symbioses and
nitrogen cycling (Richardson et al., 2009; Mendes et al., 2013; Vandenkoornhuyse et al., 2015).

Abbreviations: ASV, amplicon sequence variant; BS, bulk soil; DM, dry matter; F, faecal; ITS, internal transcribed spacer;
N, nitrogen; R, rumen; RGL, ryegrass leaf; RGR, ryegrass root; RPM, rising-plate meter; rRNA, ribosomal RNA; WCL, white
clover leaf; WCR, white clover root.
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Saprotrophic organisms in soil break down organic matter
into composites inducing fertility (Anderson et al., 1981;
Dighton, 2007; Morris and Blackwood, 2015). Microbiomes
from phyllosphere (above-ground parts associated with plants)
and rhizosphere (below-ground parts associated with roots)
provide benefits to host growth and wellbeing (Adesemoye et al.,
2009), for instance helping with nutrient acquisition from soil,
defence against plant-pathogens or adapting to environmental
stresses (Mendes et al., 2013; Turner et al., 2013; Muller et al.,
2016). These benefits are also seen in animal microbiomes
through nutrient acquisition mediated by gut microbiomes
(Flint et al., 2008).

Physical and functional connections at a multi-niche scale
are poorly understood in farm ecosystems but are established
in the human microbiomes. Significant co-occurrence and co-
exclusion are found between human microbiomes from different
body sites, where most relationships are niche-specific but multi-
niche linkages are also discovered (Faust et al., 2012). Although
microbiomes interactions across multiple farm niches have not
been widely established (Turner et al., 2013), it is reasonable to
postulate that there are microbial interactions across multiple
niches based on the accumulated evidences from different
studies. For instance, change of nutrition in soils can lead to
variations of vegetation (i.e., pasture) compositions in farmlands
(Ledgard et al., 2001; Eschen et al., 2007). The altered vegetation
compositions would lead to a diet change for grazing animals
which consequently affect the rumen microbiomes.

Fertilisers are commonly used for better agricultural yields,
but intensive fertilisations could also introduce environmental
and biological impacts on soils and other linked habitats.
Application of fertilisers supplies a large amount of nutrients
which could lead to increased greenhouse gas emissions,
nutrient leaching, and disturbances to microbiomes (Snyder
et al., 2009; Potter et al., 2010; Wang et al., 2017). Many
studies focused on fertilisation impacts on microbiomes in
individual niches [e.g., soil or rhizosphere (Ramirez et al.,
2012; Zeng et al., 2016; Wang et al., 2018)], but impacts on
surrounding niches were unexplored. Apart from microbiome
diversities and compositions, both organic and inorganic
fertilisation influenced microbiome networks, consequently
affected microbiome community stability (Coyte et al., 2015;
Butler and O’Dwyer, 2018). Liu et al. (2020) showed that
soil organic fertilisation was linked to more connective soil
microbiome networks compared to that without fertilisation, but
Wang et al. (2017) found that organic fertiliser treated soil had
less interactions among bacteria and fungi. Overall, findings on
fertilisation effects in agricultural ecosystem were complex and
usually from a narrow focus (in individual niches). Thus more
attention is required to investigate if and how disturbances to
a single habitat have successive influences on other interlinked
habitats. In other words, a broader view of treatment effects
should be taken on a multi-niche scale to capture a more
complete view on the entire ecosystem.

Therefore, the current study examined microbiome responses
to nitrogen treatment applied to soils across different agricultural
niches within the same farm. The objectives of this study were
(1) to better understand microbiomes in individual farm niches,

and (2) to investigate linkages between microbiomes across farm
niches, using nitrogen treatment (i.e., urea based fertilisation) as
disturbances. In order to obtain representational characteristics
of microbiomes across farm niches (i.e., soil, ryegrass root,
ryegrass leaf, white clover root white clover leaf, faecal, and
rumen), multiple approaches (16S, 18S, and ITS amplicon
sequencing) focusing on specific organisms were used. Alpha
diversities, beta diversities, and microbiome networks analyses
were used to asses both microbiomes and their linkages across
farm niches. We hypothesised that (1) nitrogen treatment in soil
reduces microbiomes richness, composition, or networks in soil
and nearby niches in prokaryotes; (2) nitrogen treatment will
have unique responses across each microbiome subpopulation
(i.e., prokaryotes, eukaryotes, and fungi).

MATERIALS AND METHODS

Farm Site and Urea Treatment
The experiments were carried out at perennial ryegrass and
white clover swards at Lincoln University’s Ashley Dene Research
and Development Station, Canterbury, New Zealand (−43.6468,
172.3467). Urea was applied to separate sampling sites during the
farm season (1 June 2017 to 31 May 2018) to achieve designed
nitrogen treatment [no-nitrogen (0 N kg/ha/yr), medium-
nitrogen (150 N kg/ha/yr), and high-nitrogen (300 N kg/ha/yr)].
The three levels of nitrogen treatment were selected based on
the range of nitrogen application rates in pastoral dairy farms in
Canterbury as previously described (Beukes et al., 2020).

The experimental swards were grazed by 30 lactating dairy
cows (10 cows per nitrogen treatment) to allow the normal
grazing practise for pasture and animals. Same amount of herbage
intake was controlled across cows (∼30 kg DM/cow/day) by
break feeding. To stabilise the environmental microbiomes, the
experimental sites were grazed by cows 2 weeks before sampling.
The allocated swards were examined daily before and after
grazing using a rising-plate meter (RPM) to estimate pasture
intake during sampling by using the equation RPM reading×140
+ 500 kg DM/ha.

Sample Collections
Seven types of samples (bulk soil, cow rumen content, cow faeces,
white clover leaf, white clover root, ryegrass leaf, and ryegrass
root) were taken from three ecological niches (soil, plant, and
animals). A total of 169 samples were used in the current study
where metadata details can be found in Supplementary Table 1.

Soil cores were taken using a 110 mm wide (internal
measurement) corer, with a 100 mm wide (internal
measurement) plastic sleeve inserted. Plant materials were
gently twisted into the centre of the core and sleeve to minimise
damage during sampling. The corer was driven into the soil to
a depth of 150 mm to ensure that at least the top 100 mm soil
is recovered intact. Once the depth was reached, the corer was
gently twisted and lifted out of the ground. Two smaller plastic
sleeves were used to transfer the soil from the corer. The soil
sample was then wrapped in clingfilm and stored at 4◦C. Bulk soil
samples were taken after removing stones and plant materials.
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Rumen samples were collected by stomach tubing of animals.
Faecal samples were taken with digital collection from cow anuses
at the same time of rumen content collection. Both types of
animal samples were flash frozen with liquid nitrogen and stored
at−80◦C until further progress.

For both white clover and ryegrass, individual plants were
gently removed from the soil core and split into root and leaf parts
with a sterile scalpel blade. After removing loose soil particles,
the plant samples were then snap froze with liquid nitrogen and
stored at−80◦C until DNA extractions.

DNA Extractions and Amplicon
Sequencing
DNA was extracted from individual sample (300 mg/sample)
with a Macherey-Nagel NucleoSpin 96 Soil kit. The
manufacturer’s protocol was followed but with the following
modifications. Buffer SL1 (700 µL) and enhancer SX (300 µL)
was pre-combined and added to a 1.7ml tube. Grounded sample
was then transferred to the tube and vortexed for 1 min. The
mixture was then centrifuged for 4 min at 11,000 x g. After
removing the supernatant, 150 µL buffer SL3 was added to
the tube. The tube was then incubated at 4◦C for 20 min and
centrifuged for 2 min. The clear supernatant was then processed
following manufacture protocols and eluted twice with 70 µL of
buffer SE each time.

We examined microbiomes using 3 approaches focusing
on specific microbiome subpopulations, namely prokaryotes
(16S rRNA), eukaryotes (18S rRNA), and fungi (ITS rRNA).
Next-generation sequencing data were captured from 7 farm
niches, specifically 2 animal-associated niches [Rumen (R) and
Faecal (F)], 3 below-ground niches [WhiteCloverRoot (WCR),
RyeGrassRoot (RGR), and Bulk Soil (BS)], and 2 above-ground
niches [WhiteCloverLeaf (WCL) and RyeGrassLeaf (RGL)]. For
each of these microbiomes, community responses were compared
across three different soil nitrogen treatments [control or no-
nitrogen (0 N kg/ha/yr), medium-nitrogen (150 N kg/ha/yr), and
high-nitrogen (300 N kg/ha/yr)].

Next generation sequencing was conducted with an
Illumina MiSeq V2 platform at Massey University. The
total community genomic DNA for each sample was sequenced
targeting 16S ribosomal RNA (rRNA), 18S rRNA, and internal
transcribed spacer (ITS) regions with primers following the
Earth Microbiome Project.

The demultiplexed paired end sequence reads were then
quality filtered and merged using dada2 package V1.12 (Callahan
et al., 2016) in R V3.6.1 (R Core Team, 2019) following
the Dada2 tutorial pipelines (16S and 18S, ITS) with default
settings. The merged sequence reads were then denoised, chimera
removed, and dereplicated into Amplicon Sequence Variant
(ASV). Silva v132 (Quast et al., 2013), and UNITE databases
(Nilsson et al., 2019) were used to assign taxonomy to each
ASV. For each amplicon, ASV table, metadata (Supplementary
Table 1), and taxonomy table were converted into a phyloseq
object with phyloseq version 1.28.0 (McMurdie and Holmes,
2013). The raw amplicon (16S, 18s, and ITS) sequencing files
were uploaded to the NCBI SRA database under the accession

number PRJNA702151. For all sample of each dataset (16S, 18S,
and ITS) sequences were rarefied to an even depth, that 10000,
25000, and 10000 reads per sample were randomly selected for
16S, 18S, and ITS datasets, respectively. For 16S phyloseq object,
chloroplasts sequences were removed. Singletons were discarded
prior to from downstream diversity analyses. R scripts of all data
processing were accessible online from GitHub.

Statistical Analyses and Visualisation
Amplicon sequence variant counts for each sample across farm
niches were generated based on rarefied and trimmed (i.e.,
singletons removed) datasets (16S, 18S, and ITS). The alpha-
diversity measurements across farm niches and in response to
nitrogen treatments was calculated by function estimate_richness
using the “Observed” method in R with packages dplyr version
0.8.3 (Wickham et al., 2019), plyr version 1.8.4 (Wickham, 2011),
reshape2 version 1.4.3 (Wickham, 2007), and vegan version
2.5.6 (Jari Oksanen et al., 2019). The violin plots were created
with function plot_richness facet by niche type and ecosystem
type using packages ggplot2 version 1.28.0 (Wickham, 2016),
Biostrings version 2.52.0 (Pagès et al., 2019), forcats version
0.4.0 (Wickham, 2019), ggpubr version 0.2.3 (Kassambara,
2019), lemon version 0.4.3 (Edwards, 2019), phyloseq version
1.28.0 (McMurdie and Holmes, 2013), RColorBrewer version
1.1.2 (Neuwirth, 2014), and scales version 1.0.0 (Wickham,
2018). Kruskal-Wallis tests were used to compare species
richness across farm niches and nitrogen treatments that
statistical significances were masked on the violine plots
with function stat_compare_means of package ggpubr version
0.2.3 (Kassambara, 2019). Microbiome dissimilarities across all
samples were determined using a phyloseq function ordinate
with the Bray-Curtis distance method (i.e., distance = “bray”).
Beta-diveristy of all samples across treatments were visualised
with NMDS plots using function plot_ordination with stat_ellipse
option. Changes in community structure and variance were
tested via functions anosim and adonis, respectively, with vegan
version 2.5.6 (Jari Oksanen et al., 2019). Both functions were
conducted using Bray-Curtis distance matrix as the input data
matrix and N treatment (i.e., no nitrogen, medium nitrogen, and
high nitrogen) as grouping.

Exact tests were used to determine differentially abundant
ASVs for each individual niche between nitrogen treated and
untreated microbiomes illustrated with a dot plot. For each
phyloseq dataset (16S, 18S, and ITS), Packages edgeR version
3.26.8 (Robinson et al., 2010), ggplot2 version 1.28.0 (Wickham,
2016), ggpubr version 0.2.3 (Kassambara, 2019), ggrepel version
0.8.1 (Slowikowski, 2019), lemon version 0.4.3 (Edwards, 2019),
and phyloseq version 1.28.0 (McMurdie and Holmes, 2013) were
used. Heatmap and volcano plot were used to supplement Exact
tests. Heatmaps provided the presence and absence information
on responsive ASVs across individual niches between samples.
Volcano plots illustrated the changing direction (positive or
negative) for ASVs responses across niches and between nitrogen
treatments. R packages ggplot2 version 1.28.0 (Wickham, 2016),
ggpubr version 0.2.3 (Kassambara, 2019), lemon version 0.4.3
(Edwards, 2019), and phyloseq version 1.28.0 (McMurdie and
Holmes, 2013) were used.
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Network correlations for each niche under each nitrogen
treatment were constructed with packages igraph version 1.2.4.1
(Csardi and Nepusz, 2006), networkD3 version 0.4 (Allaire et al.,
2017), and tidyr version 1.0.0 (Wickham and Henry, 2019)
to provide insight into the microbial interactions responses
to different nitrogen managements. In each niche, ASVs were
chosen based on two criteria: (1) were present in at least 60%
of samples; and (2) were significantly (p ≤ 0.05) differentially
abundant in response to nitrogen treatments in any niche, or were
the top 200 most abundant across niches. Spearman correlations
were conducted between all chosen ASV pairs in each niches
with package psych version 1.8.12 (Revelle, 2018). ASV pairs
having strong significant correlations (r ≥ 0.8 or r ≤ −0.8,
p ≤ 0.05) were included in the networks. The force-directed
layout algorithm was then used to calculated the network layout.
Nodes were coloured by phylum represent ASVs and edges
were coloured by correlation positiveness represent significant
microbial coefficients.

Niche microbiome metapopulation was investigated by
analysing occupancy-frequency distribution of ASVs in each
niche was made with packages ggplot2 version 1.28.0 (Wickham,
2016), vegan version 2.5.6 (Jari Oksanen et al., 2019), and scales
version 1.0.0 (Wickham, 2018) following previous study (Lindh
et al., 2017). In the current study, the occupancy of an ASV is
defined as the fraction of samples it occupied in each niche. The
frequency denotes the existence number of unique ASVs in a
certain proportion of samples in each niche.

RESULTS

From samples across farm niches, an average of 111588, 102169,
and 98632 raw reads (16S, 18S, and ITS, respectively) per
sample were generated with details listed in Supplementary
Table 1. After quality control, the mean quality scores were
36.67 ± 0.14, 36.89 ± 0.26, and 35.84 ± 0.75 for 16S,
18S, and ITS reads, respectively. An average of 53748, 84857,
and 56414 non-chimeric reads for 16S, 18S, and ITS reads,
respectively, were obtained.

Microbial Richness and Composition
Were Distinct Across Niches, but Shared
Similar Responses to Soil Nitrogen
Treatment
To compare the microbiome richness across niches and nitrogen
treatment, Alpha diversities were calculated and analysed
across niche microbiomes with ASVs (amplicon sequence
variants). For all three amplicons, richness of microbiomes
were distinct across farm niches (p < 0.001, Kruskal-Wallis
rank sum test) (Table 1 and Supplementary Table 2),
but were not significantly differentiated between nitrogen
treatments (Figure 1A, Supplementary Figures 1A–2A, and
Supplementary Table 2). In general, leaf microbiomes were the
least diverse where BS microbiomes richness under no-nitrogen
were the highest across amplicons, with an average of 788, 357,
and 385 observed ASVs from 16S, 18S, and ITS, respectively.

In contrast, phyllosphere microbiomes richness were relatively
low. For instance WCL microbiome richness under no-nitrogen
were low across amplicons, with an average of 36, 20, and 149
observed ASVs from 16S, 18S, and ITS, respectively. Nitrogen
treatment did not alter microbiome richness except for ITS of
below-ground niche WCR (Supplementary Figure 2A), where
microbiome richness was decreased with soil nitrogen treatment
(p = 0.045, Kruskal-Wallis rank sum test).

Taxonomic compositions were distinct across niches, but did
not change in response to soil nitrogen treatment (Figure 1B,
Supplementary Figures 1B–2B, and Supplementary Tables 3A–
C). For 16S communities, regardless of nitrogen treatment,
the phyllosphere microbiomes in both RGL and WCL
were dominated by Proteobacteria (82 and 79% on average,
respectively). Similarly in soil and rhizosphere niches (BS,
RGR, and WCR), Proteobacteria dominated at 28, 36, and 47%
on average, respectively. Animal-associated microbiomes R
and F were both dominated by Bacteroidetes and Firmicutes
(Supplementary Table 3A). Trends (i.e., changes across
niches, with no treatment effects) were similar for 18S
and ITS microbiomes (Supplementary Figures 1B–2B and
Supplementary Tables 3B,C) with a couple of exceptions.
For 18S, Phragmoplastophyta dominated in all phyllosphere
and rhizosphere niches, while Cilliophora dominated the
2 animal-associated niches (Supplementary Figure 1 and
Supplementary Table 3B). For ITS, Ascomycota dominated
across all niches except for R, where Neocallimastigomycota
was the most abundant (Supplementary Figure 2 and
Supplementary Table 3C).

Bray-Curtis distances were calculated and plotted with NMDS
ordinations to examine microbiome beta diversities across
niches. Significant differences in community composition were
observed across niche microbiomes (16S: ANOSIM: R = 0.758
and ADONIS: R2 = 0.505. 18S: ANOSIM: R = 0.246 and
ADONIS: R2 = 0.248. ITS: ANOSIM: R = 0.647, ADONIS:
R2 = 0.325, p < 0.01 for all cases), but not in response to
nitrogen treatment (Figure 1C, Supplementary Figures 1C–2C,
and Table 1) except for WCR (16S community) and R (18S
community). For 16S, animal-associated microbiomes were more
distinct compared with other niches (Figure 1C). Samples from
the rhizosphere were clustered primarily by niches, but partial
overlaps were observed between BS, RGR, RGL, WCR, and
WCL microbiomes. Microbiome compositions for 18S and ITS
were also significantly different across niches, but broad overlaps
across niches were found. Nitrogen treatment had minimal
impact on microbiome compositions within each individual
niche except for 16S microbiomes in WCR (ANOSIM p = 0.004,
R = 0.317 and ADONIS p = 0.01, R2 = 0.189), and for 18S
microbiomes in R (ANOSIM p = 0.027, R = 0.043 and ADONIS
p = 0.048, R2 = 0.056).

To compliment the microbiome compositional and structural
change in response to nitrogen treatment, microbiome structural
dynamics were also measured for each amplicon across
niches with frequency and occupancy plots (Figure 2 and
Supplementary Figures 3, 4). Microbiomes occupancy-
frequency distributions across amplicons in both of the
phyllosphere niches showed similar skewed patterns. The
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TABLE 1 | Beta-diversity statistics for 16S, 18S, and ITS microbiomes.

SampleType ANOSIM_Significance ANOSIM_Stat_R ADONIS_Significances R_Square Amplicon type

Faecal 0.81 −0.02281156 0.384 0.01721146 16S

Rumen 0.79 −0.0267907 0.694 0.01489381 16S

P.RyeGrassLeaf 0.74 −0.13076923 0.6 0.09034385 16S

WhiteCloverLeaf 0.089 0.12268519 0.397 0.08323055 16S

BulkSoil 0.948 −0.16 0.399 0.09743818 16S

P.RyeGrassRoot 0.845 −0.08101852 0.509 0.08627943 16S

WhiteCloverRoot 0.004 0.31666667 0.01 0.20113337 16S

Faecal 0.743 −0.018038478 0.23 0.03783233 ITS

Rumen 0.367 0.006750401 0.268 0.04688803 ITS

P.RyeGrassLeaf 0.796 −0.169230769 0.883 0.16767965 ITS

WhiteCloverLeaf 0.82 −0.122685185 0.717 0.14675937 ITS

BulkSoil 0.973 −0.173333333 0.803 0.15159959 ITS

P.RyeGrassRoot 0.926 −0.165509259 0.939 0.13238359 ITS

WhiteCloverRoot 0.493 −0.016666667 0.457 0.19348201 ITS

Faecal 0.321 0.03348174 0.322 0.008048333 18S

Rumen 0.027 0.04298456 0.048 0.056111693 18S

P.RyeGrassLeaf 0.923 0.08604594 0.545 −0.038461538 18S

WhiteCloverLeaf 0.826 0.17984389 0.704 −0.083333333 18S

BulkSoil 0.75 0.15431821 0.917 −0.131666667 18S

P.RyeGrassRoot 0.153 0.27937883 0.057 0.19 18S

WhiteCloverRoot 0.056 0.31870693 0.047 0.216666667 18S

ANOSIM and Adonis (Bray-Curtis dissimilarity matrix) are used for determining nitrogen treatment effects for individual niche. Significant data are showing in bold.

number of shared ASV declined with increasing number
of samples within niche, followed by an increase in species
occupying all or most sites, illustrating a core-satellite pattern
(Hanski, 1982; Lindh et al., 2017). Compared to the phyllosphere
microbiomes, rhizosphere microbiomes showed variations in
distribution dynamics across amplicons. Core-satellite patterns
were found in ITS and 18S communities, but not in 16S,
suggesting variations in community assembly mechanisms and
selective pressure across sub-populations and niches.

Nitrogen Treatment Affected Amplicon
Sequence Variant Abundance, but Only
for Certain Taxa in Animal Associated
Niches
To identify changes in ASV abundance in response to nitrogen
treatment, an Exact test was performed for each niche between
two nitrogen treatment pairs: no-nitrogen verses medium-
nitrogen, or no-nitrogen vs. high-nitrogen. For each niche,
responsive ASVs (Exact test with logFC ≥ 2 or logFC ≤ −2,
and BH adjusted p < 0.05) (defined as N-responsive ASVs)
were identified. Scattered plots were used to illustrate abundance
changes of N-responsive ASV across niches (Figure 3 and
Supplementary Figures 5, 6). Volcano plots (Supplementary
Figures 7–9) and heatmaps (Supplementary Figures 10–12)
were used to provide complementary details on fold changes of
N-responsive ASVs across niches and nitrogen treatments.

All N-responsive ASVs were linked with animal-associated
niches (Figure 3 and Supplementary Figures 5, 6),
but their presences were detected in other niches

(Supplementary Figures 10–12). In 16S communities for
example, 126 ASV were originally identified as N-responsive
in animal-associated niches (Supplementary Table 4A and
Figure 3), but none in other niches. Interestingly, over one
third (47 out of 124) of N-responsive 16S ASVs were classified
under the genus Prevotella. Moreover, all of the N-responsive
Prevotella ASVs had positive foldchanges under medium- or
high-nitrogen (Supplementary Table 4A). Similarly in 18S and
ITS communities, the majority of N-responsive ASVs of (18S:
1692 out of 1694, ITS: 139 out of 140) were only responsive
in animal-associated niches (Supplementary Figures 8, 9 and
Supplementary Tables 4B,C). Surprisingly, no ASV from
BS niche was N-responsive across amplicons. In addition,
close to a third of 18S N-responsive ASVs (495 out of 1694)
were unclassified, suggesting a lack of reference sequences for
N-responsive 18S sequences.

Nitrogen Treatment Drastically Reduced
Microbial Network Connectivity in Soil
but the Knock-On Effects on Other
Niches Were Random
To investigate microbiome network changes in response
to nitrogen treatment across niches, network analyses
were performed for each niche individually with a pool of
unique ASVs. The ASV pool was formed by a conjunction
of N-responsive ASVs and the 200 most abundant ASVs
(Supplementary Table 5) from each niche. Pairwise Spearman
correlations were conducted between selected ASVs (i.e.,
ASVs found in ASV pool) to calculate their correlations. Only
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FIGURE 1 | 16S Microbiome diversities and composition comparisons across farm niches under three levels of nitrogen treatments (0, 150, and 300 N/ha/yr).
(A) Microbiome richness based on number of observed ASVs are shaped by nitrogen treatments. Open circle #, plus symbol + and closed triangle N represent 0,
150, and 300 N/ha/yr nitrogen managements, respectively. Statistical significances shown in figure were calculated with Kruskal-Wallis test, where ns represents not
significant (adjusted p-value > 0.05). (B) Relative abundance of microbiome taxa across farm niches coloured at Phylum level. (C) NMDS plot using Bray-Curtis
distance coloured by niches and shaped by treatment levels. ANOSIM statistic R: 0.7534, significance: 0.001; ADONIS R2: 0.52944, significance: 0.001.

strong correlations (r ≥ 0.8 or r≤ −0.8, p ≤ 0.05, defined as
connections) were included in the networks (Supplementary
Table 6). Networks in each niche were formed by all connections
found with each nitrogen treatment, each network connection
was formed by two ASVs (i.e., nodes) and a line (i.e., edge)
in between. Overall, microbiome networks were responsive to

nitrogen treatment across niches, but responses were inconsistent
between niches and across amplicons.

Nitrogen treatment drastically reduced or eliminated
network connections in BS across amplicons (Figure 4,
Supplementary Figures 13–14, and Supplementary Table 7).
On average, BS networks had 4.94, 9.43, and 16.21 edges per
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FIGURE 2 | Microbiome frequency and occupancy plot (16S). Different number of populations occupying different number of samples at each niche are illustrated
where X-axis illustrates number of sample sites panelled by each individual niche and Y-axis illustrates accumulated number of present ASV in certain number of
samples. For example, example in panel Rumen, occupancy of 1 and frequency of 2,299 indicate there are 2,299 unique ASVs only present in a single sample out of
all rumen samples, where there are two unique ASVs found in 50 rumen samples.

node in 16S, 18S, and ITS, respectively, under no-nitrogen. BS
network connections were drastically reduced for ITS under
medium- and high-nitrogen (2.86 and 3.03 edges per node,
respectively), and were eradicated for 16S and 18S under
medium- and high-nitrogen.

Nitrogen treatment had knock-on effects on other
microbiome networks, but resulted in random changes
across niches and amplicons (Figure 4 and Supplementary
Figures 13, 14). For 16S, faecal networks under medium-
nitrogen (108 nodes and 149 edges) were the most dense
compared to networks under no- or high-nitrogen (no-nitrogen:
22 nodes and 20 edges; high-nitrogen: 76 nodes and 59 edges,
Figure 4 and Supplementary Table 7). Similar trends were noted
in the other 16S animal-associated networks, but not for other
amplicons (Supplementary Figures 13, 14 and Supplementary
Table 7). Rhizosphere networks responded to nitrogen treatment

differently between niches and amplicons. Network connections
of WCR in both 16S (18 nodes and 24 edges) and ITS (94
nodes and 700 edges) under high-nitrogen were the most dense
compared to that under no- or medium-nitrogen (Figure 4,
Supplementary Figure 14, and Supplementary Table 7). In
contrast, RGR networks only showed notable changes in 18S,
where networks (39 nodes and 55 edges) under medium-nitrogen
were the most dense (Supplementary Figure 13). Phyllosphere
microbiome networks across amplicons showed no response to
nitrogen treatment.

DISCUSSION

Despite the growing interest of agricultural microbiomes and
their responses to different agricultural management systems,
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FIGURE 3 | Dot plot of N-responsive ASV across niches. 16S ASVs with more than twofold change in abundance responsive to nitrogen treatments. Each
differentially abundant ASV is shown as a dot coloured by phylum. Dot sizes illustrate the absolute fold change. The X-axis represents the niche type, namely faecal
and rumen. The Y-axis represents the taxonomy classification of individual N-responsive ASV.

the focus has been usually within specific niches, such as soil
(Andrew et al., 2012; Mendes et al., 2015), rumen (Noel et al.,
2019; Welty et al., 2019), or rhizosphere (Zhu et al., 2016;
Huang et al., 2019). However, microbial interactions also play
a critical role in many ecosystem process, especially nutrient

cycling (Allison and Martiny, 2008), that may have carry over
effects into other niches. Focusing only on the managed niche
limits the ability to understand the consequences of management
decisions and disturbances to other nearby niches. Therefore, the
current study focused on microbiomes of soil under nitrogen
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FIGURE 4 | Microbiome networks (16S) across niche and N treatments. Pair-wise Spearman correlation is calculated for each ASV pair. Only strong significant
correlations with r > 0.8 were kept and separated to present animal-associated (black), above-ground (green) and below-ground (brown) niches. Each dot represent
an ASV, coloured by phylum. Purple edges represent negative correlation, olive yellow edges represent positive correlation.

treatment, as well as microbiomes in the nearby niches, to
investigate potential relationships between niche microbiomes.

Nitrogen Fertilisation Had No Impact on
Microbial Diversity and Composition
Microbiome diversity and community composition had no
response to nitrogen treatment in the soil niche itself or in any
other niche within the same farm. This is consistent with previous
studies (Eo and Park, 2016; Banerjee et al., 2019; Zhao et al.,
2019), but not with many others (Ramirez et al., 2012; Zeng et al.,
2016; Wang et al., 2018). Zhou et al. (2016) suggested that long
term nitrogen fertilisation significantly decrease fungal diversity
and alter fungal compositions in soil, but our results suggested
much weaker effects. The disagreement could be caused by the
heterogeneity of soil microbiomes between different research

sites. Unlike rumen or gut microbiomes, which were relatively
more defined, soil microbiomes varied both spatially and
temporally (Ettema and Wardle, 2002; Martiny et al., 2011;
Pasternak et al., 2013). Besides, certain organisms could be more
sensitive to nitrogen treatments than others. Zhao et al. (2019)
suggested that the overall fungal community composition and
diversity were not affected by nitrogen treatments, but around
10% of taxa were sensitive to nitrogen treatment. Furthermore,
only a small number of soil samples were taken in the current
study. This potentially reduced the statistical power to detect
significant distinctions between microbiomes under different
nitrogen treatments.

Plant associated (phyllosphere and rhizosphere) microbial
community compositions and diversities were not responsive to
nitrogen treatments except 16S microbiomes in WCR. Ledgard
et al. (2001) suggested that nitrogen additions (400 kg/ha/yr)
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reduced the productivity of nitrogen fixation in white clovers.
The symbiosis between white clover root and Rhizobium are
fundamental for nitrogen fixation (Kneip et al., 2007), and
nitrogen fertilisation can make this capability redundant, thus
leading to compositional changes in root communities, such as
a lower proportion of nitrogen fixers.

Our results showed that soil nitrogen treatment did not affect
microbiome richness and compositions in animal-associated
niches. It was unlikely that animal-associated microbiomes
were experiencing direct changes of nitrogen availability. In
contrast, the soil nitrogen treatment would most likely influence
ruminants by changing the plant materials grazed on the pasture
(Henderson et al., 2015). Applications of nitrogen fertiliser was
proven to favour pasture growth while the production of clover
was unfavourable (Moir et al., 2003), leading to a higher ryegrass:
white clover ratio. This vegetation change would then lead to
changes in nutrient intake to a higher fibre and less protein diet
for ruminants (Rattray and Joyce, 1974). Bowen et al. (2018)
and Smith et al. (2020) showed that changes in sward types (i.e.,
ryegrass only vs. combined ryegrass and white clover) altered
the rumen microbiome composition in dairy cows. In contrast,
O’Callaghan et al. (2018) suggested that changes in feedings
between ryegrass only and mixture of ryegrass and white clover
had no impact on rumen microbiome composition, but altered
the rumen metabolome. Unlike the previous microbiome studies
on sward type alterations (i.e., with or without white clover)
(Bowen et al., 2018; Smith et al., 2020), we did not expect to
see a huge change in ryegrass and white clover ratio between
control and fertilised ground [i.e., about 5–10% reduction in
white clover on fertilised ground (Moir et al., 2003)]. This small
change in vegetation might not lead to a detectable change in
animal microbiomes.

N-Responsive Amplicon Sequence
Variants Were Observed in Animal
Associated Niches, but Not in Other
Niches
Many N-responsive ASVs were present across niches
(Supplementary Figures 10–12), but most of N-responsive
ASVs only had strong correlations in animal-associated niches
across amplicons, and few N-responsive ASVs in phyllosphere
or rhizosphere niches (Supplementary Figures 5, 6). Zancarini
et al. (2012) suggested that soil nitrogen treatments only
affected rhizosphere microbiomes with certain host plant
genotypes (Zancarini et al., 2012). Therefore, our results
could mean that white clover and rye grass rhizosphere
microbiomes were insensitive to soil nitrogen treatments. Beattie
and Lindow (1999) stated that phyllosphere microorganisms
were generally oligotrophs which can tolerate low-nutrient
conditions or formed symbiosis with host plant to obtain
more nutrients. When obtaining nutrient from soil, physical
movement of nutrients, most likely from host roots to
leaf surface, was inevitable for phyllosphere microbiomes.
Hence, phyllosphere microbiomes might not experience much
knock-on effects caused by soil nitrogen treatments due to
physical barriers.

Among 16S N-responsive ASVs, over one-third (47 out
of 126) were classified as Prevotella spp., all of which
were enriched under medium- or high-nitrogen compared to
no-nitrogen, suggesting that Prevotella spp. were potentially
benefited from soil nitrogen treatment, or vegetation change
(i.e., 5 – 10% reduction of white clover). Compared to white
clover, ryegrass contained less protein and more soluble and
structural carbohydrates (Rattray and Joyce, 1974). Prevotella
was known to be an abundant and essential group of catabolic
generalists in the rumen (Hungate, 2013; Emerson and Weimer,
2017), due to the ability of degrading a variety of carbohydrate
substrates, including hemicellulose, xylan, and pectin (Dodd,
2010). Therefore, the enrichment of N-responsive Prevotella
spp. was most likely due to increases in carbohydrates,
or in other words higher ryegrass intake by cows. Unlike
Prevotella spp., patterns were random for other N-responsive
taxa. This suggested that the organisms under the same taxa
groups could respond to the same disturbance differently.
For example, Trichostomatia is a common group of rumen
protozoa fermenters involved in degrading non-structural
polysaccharides and soluble sugar (Wright, 2015). This aligned
with our results as 696 out of 1199 N-responsive ASVs
were Trichostomatia ASVs. Furthermore, because the range of
carbohydrates metabolised was genus-dependent (Wright, 2015),
it was unsurprising to see inconsistent change in N-responsive
Trichostomatia ASVs.

Microbiome Networks Were Responsive
to Nitrogen Treatments but With No
Consistent Pattern
Our results showed that for 16S and 18S communities, network
connections in soil were completely eradicated under medium-
and high-nitrogen, whereas ITS networks complexity and
connectivity were drastically reduced but still detectable. Our
findings aligned with a previous study showing agricultural
fertilisation associated with decreases in microbial network
complexity (Banerjee et al., 2019). The dramatic reduction in
network linkages in response to nitrogen could be due to the
redundancy of nitrogen-fixation functions. When nitrogen was
limited in soil, microorganisms formed networks to transform
inaccessible nitrogen into an accessible form for non-nitrogen
fixers, supporting community growth (Kuypers et al., 2018).
Under medium- or high-nitrogen, potentially non-nitrogen fixers
would no longer require nitrogen fixation from nearby nitrogen
fixers, leading to an alteration of microbiome networks. Instead,
alternative nitrification pathways, such as aerobic ammonia
oxidation, could potentially be induced and consequently led to
population and activity increases of ammonia-oxidizing microbes
(Di et al., 2009; Dai et al., 2013). However, further investigations
on the transcriptome are required to corroborate the conjecture.

Other than reduction of soil network connectivity, ITS
community networks were unresponsive to nitrogen treatment
across niches, suggesting that fungal communities were less
sensitive to nitrogen treatments compared to prokaryotes and
other eukaryotes in general. However, since the current study was
only based on amplicon sequencing, the presence of ‘relic fungal
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DNA’, such as dormant fungal spores, was potentially interfere
with detection of relevant fungi and confound the results.

CONCLUSION

Our results showed that urea-based nitrogen fertilisation of soils
did not affect microbiome diversity or composition in soil and
neighbouring niches, but does affect microbiome networks and
potential interactions. Soil microbiome networks from all three
amplicons were drastically reduced under medium- and high-
nitrogen. Microbiome networks across neighbouring niches, such
as rumen and faecal, were also responsive to nitrogen treatments
despite no direct management. However, changes of microbiome
networks were varied between niches, suggesting differentiations
in reconstruction mechanisms between microbiomes across
niches. The present study showed that treating one single niche
in a farm could lead to knock-on effects on neighbouring
microbiomes. This study would be of value to further evaluate
the effects of treatments or disturbances in agricultural land and
potentially in other various ecosystems.

LIMITATIONS

One limitation of the current study was the low statistical
power in non-animal niches due to a small sample size.
Other than rumen (n = 52) and faecal (n = 62) samples, no
other niche had more than 12 samples (i.e., WhiteCloverLeaf:
n = 12, WhiteCloverRoot: n = 11, P.RyeGrassLeaf : n = 9,
P.RyeGrassRoot : n = 12, BulkSoil : n = 11), making the statistical
tests less reliable. Another limitation was the potential existence
of “relic DNA” in soil (Carini et al., 2016), especially for fungal
communities. Depending on the organisms, Carini et al. (2016)
suggested that “relic DNA” could persist in soil for weeks to
years depending on the type of dead organisms. Unlike most
prokaryotes or plants, fungal spores were known to be long-
lived (Ziemer et al., 2002), and widely dispersed (Hallenberg and
Kúffer, 2001). This complicated our results, as we could not be
certain all the ITS sequences detected in the study were from live
local fungal species. Therefore, further RNA work is necessary to
resolve the potential confounding factor caused by potential “relic
DNA.”
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Supplementary Figure 1 | 18S Microbiome diversities and composition
comparisons across farm niches under three levels of nitrogen treatments (0, 150,
and 300 N/ha/yr). (A) Microbiome richness based on number of observed ASVs
are shaped by nitrogen treatments. Open circle #, plus symbol +, and closed
triangleN represent 0, 150, and 300 N/ha/yr nitrogen managements, respectively.
Statistical significances shown in figure were calculated with Kruskal-Wallis test.
(B) Relative abundance of microbiome taxa across farm niches coloured at
Phylum level. (C) NMDS plot using Bray-Curtis distance coloured by niches and
shaped by treatment levels (ANOSIM: p < 0.01, R = 0.246 and ADONIS:
p < 0.01, R2 = 0.248).

Supplementary Figure 2 | ITS Microbiome diversities and composition
comparisons across farm niches under three levels of nitrogen treatments (0, 150,
and 300 N/ha/yr). (A) Microbiome richness based on number of observed ASVs
are shaped by nitrogen treatments. Open circle #, plus symbol +, and closed
triangleN represent 0, 150, and 300 N/ha/yr nitrogen managements, respectively.
Statistical significances shown in figure were calculated with Kruskal-Wallis test.
(B) Relative abundance of microbiome taxa across farm niches coloured at
Phylum level. (C) NMDS plot using Bray-Curtis distance coloured by niches and
shaped by treatment levels (ANOSIM: p < 0.01, R = 0.647, ADONIS: p < 0.01,
R2 = 0.325).

Supplementary Figure 3 | Microbiome frequency and occupancy plot (18S),
illustrating the different number of populations occupying different number of
samples at each niche. X-axis illustrates number of sample sites panelled by each
individual niche. Y-axis illustrates accumulated number of present ASV in certain
number of samples.

Supplementary Figure 4 | Microbiome frequency and occupancy plot (ITS),
illustrating the different number of populations occupying different number of
samples at each niche. X-axis illustrates number of sample sites panelled by each
individual niche. Y-axis illustrates accumulated number of present ASV in certain
number of samples.
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Supplementary Figure 5 | Dot plot of N-responsive ASV across niches. 18S
ASVs with more than eightfold change in abundance responsive to nitrogen
treatments. Each differentially abundant ASV is shown as a dot coloured by
phylum. Dot sizes illustrate the absolute fold change. The X-axis represents the
niche type, namely faecal and rumen. The Y-axis represents the taxonomy
classification of individual N-responsive ASV.

Supplementary Figure 6 | Dot plot of N-responsive ASV across niches. ITS
ASVs with more than twofold change in abundance responsive to nitrogen
treatments. Each differentially abundant ASV is shown as a dot coloured by
phylum. Dot sizes illustrate the absolute fold change. The X-axis represents the
niche type, namely faecal and rumen. The Y-axis represents the taxonomy
classification of individual N-responsive ASV.

Supplementary Figure 7 | Volcano plot (16S) showing details on ASVs with more
than twofold change in abundance responsive to nitrogen treatments across
niches and N treatments. Each N-responsive ASV is shown as a dot coloured by
phylum. Positive or negative responses in log fold change for each N-responsive
ASV is illustrated by the X-axis. The Y-axis represents the -log10 adjusted p-value
(p < −0.05 across all ASVs showed in the figure).

Supplementary Figure 8 | Volcano plot (18S) showing details on ASVs with more
than twofold change in abundance responsive to nitrogen treatments across
niches and N treatments. Each N-responsive ASV is shown as a dot coloured by
phylum. Positive or negative responses in log fold change for each N-responsive
ASV is illustrated by the X-axis. The Y-axis represents the −log10 adjusted
p-value (p < −0.05 across all ASVs showed in the figure). NA means the ASV is
N-responsive but unclassified at phylum level.

Supplementary Figure 9 | Volcano plot (ITS) showing details on ASVs with more
than twofold change in abundance responsive to nitrogen treatments across
niches and N treatments. Each N-responsive ASV is shown as a dot coloured by
phylum. Positive or negative responses in log fold change for each N-responsive
ASV is illustrated by the X-axis. The Y-axis represents the −log10 adjusted
p-value (p < −0.05 for all ASVs in the figure). NA means the ASV is N-responsive
but unclassified at phylum level.

Supplementary Figure 10 | Presence-absence heatmap (16S) showing the
existence of N-responsive ASVs across multiple niches. The X-axis represents the
N-treatment for all samples (there are multiple samples under the same treatment).
The Y-axis represents the taxonomy classification of individual N-responsive ASV.

Supplementary Figure 11 | Presence-absence heatmap (18S) showing the
existence of N-responsive ASVs across multiple niches. The X-axis represents the
N-treatment for all samples (there are multiple samples under the same treatment).
The Y-axis represents the taxonomy classification of individual N-responsive ASV.

Supplementary Figure 12 | Presence-absence heatmap (ITS) showing the
existence of N-responsive ASVs across multiple niches. The X-axis represents the
N-treatment for all samples (there are multiple samples under the same treatment).
The Y-axis represents the taxonomy classification of individual N-responsive ASV.

Supplementary Figure 13 | Microbiome networks (18S) across niche and N
treatments. Pair-wise Spearman correlation is calculated for each ASV pair. Only
strong significant correlations with r > 0.8 were kept. Each dot represent an ASV,
coloured by phylum. Purple edges represent negative correlation, olive yellow
edges represent positive correlation.

Supplementary Figure 14 | Microbiome networks (ITS) across niche and N
treatments. Pair-wise Spearman correlation is calculated for each ASV pair. Only
strong significant correlations with r > 0.8 were kept. Each dot represent an ASV,
coloured by phylum. Purple edges represent negative correlation, olive yellow
edges represent positive correlation.

Supplementary Table 1 | Sample metadata table.

Supplementary Table 2 | For each amplicon type (16S, 18S, and ITS
microbiomes), statistical summary on number of observed ASVs for each niche
type across treatments. The mean, median and standard deviation values are
rounded to one decimal place.

Supplementary Table 3 | Relative abundance table summarised at Phylum level.
Minor phylum (relative abundance < 0.01) are not showing in the table. (A)
Phylum relative abundance at for 16S. (B) Phylum relative abundance at for 18S.
(C) Phylum relative abundance at for ITS.

Supplementary Table 4 | Exact tests results for all N-responsive ASV. For each
N-responsive ASV, taxonomy classification, Log fold change (LogFC), log counts
per million (logCPM), p-value, adjusted p-value (FDR), data comparisons between
which two nitrogen treatments, and niche type are showed in different columns.
Adjusted p-values are used for determining significance of ASV responses to
nitrogen treatments.

Supplementary Table 5 | ASV table (absolute abundance) showing all chosen
N-responsive ASVs for network analyses across niches. (A) Abundance table of
chosen ASV for 16S. (B) Abundance table of chosen ASV for 18S. (C) Abundance
table of chosen ASV for ITS.

Supplementary Table 6 | Network analyses results on Spearman rank correlation
coefficient test across niches and nitrogen treatments. Analyses results for each
amplicon is displayed in individual spreadsheet (A: 16S, B: 18S, and C: ITS).

Supplementary Table 7 | Summary of network details across amplicons, niches,
and nitrogen treatments. Number of nodes and edges, average number of edges
per nodes, and the standard deviations are provided in the table.
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