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Abstract. Yes‑associated protein (YAP) has been reported 
to serve an important role in gastric cancer cell survival 
and migration. However, the underlying mechanism remains 
unclear. The aim of present study was to identify the under-
lying mechanism through which Yap sustains gastric cancer 
viability and migration. The results of the present study 
demonstrated that YAP expression was upregulated in gastric 
cancer MKN‑28/74 cells compared with normal gastric 
GES‑1 cells. Functional studies revealed that silencing of YAP 
inhibited gastric cancer MKN‑28/74 cell viability and inva-
sion. Mechanistically, YAP may promote gastric cancer cell 
survival and migration/invasion by inhibiting the endoplasmic 
reticulum (ER) stress pathway. In addition, YAP may regu-
late ER stress by activating the ERK signaling pathway. The 
results of the present study suggested that YAP may be a tumor 
promoter in gastric cancer and act through the ERK/ER stress 
pathway; therefore, YAP may have potential implications for 
new approaches to gastric cancer therapy.

Introduction

Gastric cancer is one of the most common malignant tumors 
worldwide with an occurance rate of 10.79% (1). Gastric cancer 
is the fifth leading cause of cancer‑associated mortality in both 
the male and female population worldwide with a mortality 
rate of 8.8%  (2). Despite the continuous development of 
comprehensive diagnosis and treatment technologies in recent 
years, the 5‑year survival rate for patients with advanced gastric 
cancer is still >30% (3‑5). The reasons for this are complex, 
and one of the most important issues is that gastric cancer cells 
are prone to survival and migration/invasion (6‑8). Therefore, 

it is worthwhile to explore the mechanism of gastric cancer 
cell survival and migration/invasion for early intervention, late 
treatment and improvement of treatment outcomes.

Endoplasmic reticulum (ER) is the primary site of protein 
folding, modification and assembly, as well as intracellular Ca2+ 
storage in eukaryotic cells (9,10). Under stressed conditions, 
misfolded or unfolded protein aggregation and imbalances in 
Ca2+ levels in the ER lumen occur, and the cell enters a state 
termed ER stress (11‑13). If the stress persists or the stress 
damage exceeds the ability of cell survival and protection, the 
ER stress‑dependent apoptosis pathway is activated, leading 
to apoptosis (14‑16). Recent studies have suggested that ER 
stress‑mediated cell migration/invasion is closely associated 
with the occurrence and development of gastric cancer (17‑20). 
However, the initiator of ER stress that regulates gastric cancer 
cell survival and migration/invasion remains unknown.

Yes‑associated protein (YAP) is involved in the regulation 
of cell proliferation, organ development and the occurrence of 
tumors (21‑23). Previous studies have demonstrated that YAP 
is abnormally expressed in breast, ovarian and other types 
of cancer, and its expression levels are associated with stage 
and prognosis of patients with tumors (24‑27). Upregulation 
of YAP has been observed in gastric cancer and is associated 
with the clinicopathological characteristics of patients with 
gastric cancer (28,29). In addition, YAP integrates ER stress 
to control liver size and tumorigenesis, suggesting a potential 
connection between YAP and ER stress (29,30). Therefore, 
the present study hypothesized that YAP may reduce gastric 
cancer cell survival and migration through the activation of 
ER stress.

Materials and methods

Cell culture and treatments. The gastric cancer MKN‑28/74 
cells and normal gastric GES‑1 cells were purchased from 
the American Type Culture Collection. The MKN28 cell 
line has been reported as cross‑contaminated with MKN74; 
thus, it is referred to as MKN‑28/74 throughout the present 
study  (31). MKN‑28/74 cells were cultured in RPMI‑1640 
medium (Nacalai Tesque, Inc.) supplemented with 10% fetal 
bovine serum (FBS; HyClone; GE Healthcare Life Sciences) 
at 37˚C in a 5% CO2 humidified incubator; GES‑1 cells were 
cultured in DMEM (HyClone; GE Healthcare Life Sciences) 
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containing 10% FBS (HyClone; GE Healthcare Life Sciences) 
at 37˚C in a 5% CO2 humidified incubator (32). Tunicamycin 
(TM; 100 nM; Sigma‑Aldrich; Merck KGaA) and 4‑phenyl-
butyrate (10 mM; Sigma‑Aldrich; Merck KGaA), the agonist 
and antagonist for ER stress, respectively, were added to the 
medium for 12  h. MKN‑28/74 cell were pre‑treated with 
PD98059 (10 µM) for 24 h at 37˚C.

Transfection. To evaluate the functional role of YAP, small 
interfering (si)RNA was used to knockdown its expres-
sion. siYAP (5'‑GCG​ACA​TTC​AGG​GUG​ACU​AUU​‑3') and 
non‑targeting sequences (siCtrl; 5'‑UUC​UCC​GAA​CGU​GUC​
ACG​U‑3') were purchased from GenePharma Co., Ltd. (33). 
A total of 20  nM siYAP or siCtrl was used to transfect 
MKN‑28/74 cells (2x106  cells/well) with Lipofectamine® 
2000 (Thermo Fisher Scientific, Inc.) for 48 h in 6‑well plates, 
and the transfection efficiency was determined by western 
blotting.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from the MKN‑28/74 cells using an 
RNeasy kit (Beyotime Institute of Biotechnology) and reverse 
transcribed using One‑step RT‑PCR kit (cat. no., AE311‑02; 

Beijing Transgen Biotech Co., Ltd.) at  37˚C for 30  min 
according to the manufacturer's protocol  (34). qPCR was 
performed using the SYBR Green RT‑PCR kit (Takara Bio, 
Inc.) according to the manufacturer's protocol. The thermo-
cycling conditions were as follows: 95˚C for 5 min; followed 
by 40 cycles of 95˚C for 40 sec, 60˚C for 30 sec and 72˚C 
for 30 sec. GAPDH was selected as an internal control. The 
following primers were used for PCR: YAP forward, 5'‑AAG​
GCT​TGA​CCC​TCG​TTT‑3' and reverse, 5'‑CTG​CTG​CTG​
CTG​GTT​TGA‑3'; and GAPDH forward, 5'‑GTC​AAC​GGA​
TTT​GGT​CG​TAT​TG‑3' and reverse, 5'‑CAT​GGG​TGG​AAT​
CAT​ATT​GGA​A‑3'. Fold‑changes in mRNA expression were 
calculated using the 2‑ΔΔCq method (35).

Western blotting. The MKN28/74 cells (5x106) was homog-
enized and sonicated in a lysis buffer (Beyotime Institute of 
Biotechnology). Protein concentrations were detected using 
a BCA Protein Quantification kit, according to the manu-
facturer's protocol. The proteins (50 µg) were separated by 
10% SDS‑PAGE and then transferred onto polyvinylidene 
difluoride membranes. The membrane was blocked with 5% 
non‑fat dry milk for 1 h at room temperature and incubated 
with specific primary antibodies overnight at  4˚C. The 

Figure 1. YAP affects viability and apoptosis in gastric cancer MKN‑28/74 cells. (A and B) The protein level of YAP was measured in gastric cancer 
MKN‑28/74 cell and normal gastric GES‑1 cells. (C‑E) siYAP transfection efficiency was confirmed by (C) reverse transcription‑quantitative PCR and 
(D and E) immunofluorescence assays. (F) MTT assay was used to measure MKN‑28/74 cell viability following YAP knockdown. (G and H) Western blotting 
was used to detect the expression of caspase‑3 and cleaved caspase‑3. (I and J) TUNEL staining was performed to determine the effect of YAP on apoptosis 
in MKN‑28/74 cells. *P<0.05 vs. GES‑1 or Ctrl. #P<0.05 vs. MKN-28/74. YAP, yes‑associated protein; siYAP, small interfering RNA targeting YAP; siCtrl, 
control small interfering RNA; cle, cleaved; Ctrl, untransfected control.
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primary antibodies used were as follows: YAP (1:1,000; Cell 
Signaling Technology, Inc.; cat. no. 14074), pro‑caspase‑3 
(1:1,000; Abcam; cat. no. ab13847), cleaved caspase‑3 (1:1,000; 
Abcam; cat. no. ab49822), glucose‑regulated protein 78 kDa 
(GRP78; 1:1,000; Abcam; cat. no. ab21685), GADPH (1:1,000; 
Abcam; cat. no. ab8245), pro‑caspase‑12 (1:1,000; Abcam; 
cat. no. ab8117), cleaved caspase‑12 (1:1,000; Cell Signaling 
Technology, Inc.; cat. no. 2202), C/EBP homologous protein 
(CHOP; 1:1,000; Abcam; cat. no. ab11419), ERK (1:1,000; Cell 
Signaling Technology, Inc.; cat. no. 4695), phosphorylated (p‑)
ERK (1:1,000; Cell Signaling Technology, Inc.; cat. no. 4370). 
The blots were detected with an enhanced chemiluminescence 
substrate kit (Thermo Fisher Scientific, Inc.), according to 
the manufacturer's protocol. The bands were scanned and 
quantified by ImageJ version 1.47 software (National Institutes 
of Health) (36).

Immunofluorescence staining. Following transfection treat-
ment, the MKN28/74 cell (0.5x106  cells/well) were fixed 
with 3.7% paraformaldehyde for 10 min at room temperature 
and subsequently blocked with 5% bovine serum albumin 
(Sigma‑Aldrich; Merck KGaA) in PBS for 1  h at room 
temperature. Cells were incubated with primary antibodies for 
4 h at room temperature. The primary antibodies used were 
YAP (1:500; Cell Signaling Technology, Inc.; cat. no. 14074) 

and CHOP (1:500; Abcam; cat. no. ab11419). DAPI (5 mg/ml; 
Sigma‑Aldrich; Merck KGaA) was used to stain the nuclei at 
room temperature for 3 min. A total of 5 randomly selected 
fields of view were used per smaple and images were captured 
with a laser confocal microscope (magnification, x600; TcS 
SP5; Leica Microsystems, Inc.).

Cell invasion and migration. Following transfection treatment, 
cell invasion was analyzed using a Transwell chamber assay as 
previously described (37). Briefly, cells (1x106 cells/well) were 
suspended in RPMI‑1640 medium containing 10% FBS and 
seeded into the upper chambers.

Cell migration was analyzed using a wound‑healing assay 
and cells were cultured with RPMI‑1640 medium in 12‑well 
plates. Once cells reached >80% confluency, a sterile pipette 
tip was used to evenly scratch the 12‑well plate. Following 
cell attachment, a straight line was gently scratched in the 
cell layer with a 200 µl pipette tip, and the cells were washed 
with PBS (pH 7.4) three times. The relative wound closure was 
imaged under a light microscope (magnification, x100; Leica 
Microsystems, Inc.) at 0 and 24 h. The wound was measured 
using ImageJ 1.74v software (National Institutes of Health).

MTT assay and terminal deoxynucleotidyl transferase‑medi‑
ated dUTP nick end labeling (TUNEL). The MKN‑28/74 
cells were seeded into 96‑well plates at 8x103 cells/well and 
incubated overnight. Following transfection treatment, MTT 
(5 mg/ml) was added to each well and incubated for 4 h. The 
insoluble formazan was collected and dissolved in dimethyl-
sulfoxide, and the optical density value was measured with a 
scanning spectrophotometer at a wavelength of 570 nm.

The TUNEL assay was used for the detection of apoptosis. 
A one‑step TUNEL kit (Beyotime Institute of Biotechnology) 
was used for TUNEL staining. The MKN‑28/74  cells 
(1x106  cells) were incubated with f luorescein‑dUTP 
(Invitrogen; Thermo Fisher Scientific, Inc.) to stain the apop-
totic cell nuclei and with DAPI (5 mg/ml) to stain all cell nuclei 
at room temperature for 3 min. Images were captured with 
a laser confocal microscope (magnification, x600; TcS SP5; 
Leica Microsystems, Inc.). The number of TUNEL‑positive 
cells was calculated by counting at least five random fields of 
view as the ratio of the experimental samples to the control 
samples (untransfected cells).

Statistical analysis. All analyses were performed with SPSS 
20.0 software (IBM Corp.). Experiments were repeated three 
times and data are presented as the means ± standard error of 
the mean. Statistical analyses were performed using one‑way 
analysis of variance with the Bonferroni test for post hoc 
comparisons. P<0.05 was considered to indicate a statistically 
significant difference.

Results

YAP is upregulated in gastric cancer MKN‑28/74 cells and 
promotes cell survival. The expression levels of YAP were 
detected by western blotting in MKN‑28/74 gastric cancer 
cells and GES‑1 normal gastric cells. The results demonstrated 
that YAP was significantly upregulated in gastric cancer 
MKN‑28/74 cells compared with GES‑1 cells (Fig. 1A and B). 

Figure 2. YAP inhibition is associated with cell migration and invasion. 
(A) Knockdown of YAP significantly reduced wound closure rates in gastric 
cancer MKN‑28/74 cells compared with those in the Ctrl group. (B) Relative 
migration distance. (C)  Knockdown of YAP reduced the numbers of 
migrated gastric cancer MKN‑28/74 cells compared with those in the Ctrl 
group. (D) Transwell chamber assay. *P<0.05 vs. Ctrl. YAP, yes‑associated 
protein; siYAP, small interfering RNA targeting YAP; siCtrl, control small 
interfering RNA; Ctrl, untransfected control.
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To confirm the role of YAP in the progression gastric cancer, 
siYAP was transfected into MKN‑28/74 cells to knockdown 
the expression of YAP. The transfection efficiency was detected 
by western blotting (Fig. 1A and B), RT‑qPCR (Fig. 1C) and 
immunofluorescence (Fig. 1D and E). The results demonstrated 
that siYAP, but not siCtrl, significantly inhibited the expres-
sion of YAP in gastric cancer MKN‑28/74 cells compared 
with untransfected cells. The effect of YAP on MKN‑28/74 
cell viability was investigated. The results of the MTT assay 
demonstrated that YAP knockdown significantly reduced the 
viability of MKN‑28/74 cells (Fig. 1F). In addition, the inhibi-
tion of YAP expression increased the expression of cleaved 
caspase‑3 (Fig. 1G and H) and the number of TUNEL‑positive 
cells (Fig. 1I and J) in gastric cancer MKN‑28/74 cells. These 
results suggested that YAP was upregulated in gastric cancer 
MKN‑28/74 cells and promoted cell survival by inhibiting 
apoptosis.

YAP is associated with MKN‑28/74 cell migration and inva‑
sion. The role of YAP in MKN‑28/74 cell migration and 
invasion was further investigated. Knockdown of YAP signifi-
cantly reduced wound closure rates in the wound‑healing 
assay (Fig. 2A and B). In addition, compared with the control 

group, knockdown of YAP reduced the invasive ability of 
gastric cancer MKN‑28/74 cells (Fig. 2C and D). These results 
suggested that YAP promoted MKN‑28/74 cell migration and 
invasion.

YAP promotes MKN‑28/74 cell survival and migration/inva‑
sion through the inhibition of ER stress. ER stress serves a 
critical role in the progression of cancer (38,39). To deter-
mine the underlying mechanism by which YAP may regulate 
gastric cancer MKN‑28/74 cell survival and metastasis, the 
present study focused on ER stress. TM, the activator of ER 
stress, was used to induce ER stress in MKN‑28/74 cells trans-
fected with siCtrl. 4‑phenylbutyrate (4‑PBA), the inhibitor of 
ER stress, was used to inhibit ER stress in YAP‑knockdown 
MKN‑28/74 cells. Western blotting (Fig. 3A‑C) and immu-
nofluorescence (Fig. 3D and E) were used to determine the 
changes in ER stress markers. Compared with the siCtrl 
group, knockdown of YAP contributed to the upregulation 
of GRP78, CHOP and cleaved caspase‑12; similar results 
were observed following TM treatment in the siCtrl group. 
However, the upregulation of ER stress markers was partially 
reversed by 4‑PBA (Fig. 3A‑E). These results suggested that 
YAP knockdown was associated with ER stress. In addition, 

Figure 3. YAP promotes MKN‑28/74 cell survival and migration through the inhibition of ER stress. (A) Protein levels of (B) GRP‑78 and (C) Cle.caspase12 
were evaluated via western blotting. (D) Knockdown of YAP also reduced expression of CHOP. (E) Expression of CHOP was measured by immunofluo-
rescence assay. (F) Caspase3 activity assay and (G) TUNEL staining were performed to determine the effects of ER stress on MKN‑28/74 cell apoptosis. 
(H) TUNEL staining. (I) Wound‑healing assay. (J) ER stress reduced the wound closure rates in gastric cancer MKN‑28/74 cells. (K and L) Transwell assay 
was used to detect the invasive ability of MKN‑28/74 cells. *P<0.05 vs. siCtrl; #P<0.05 vs. siYAP. YAP, yes‑associated protein; siYAP, small interfering RNA 
targeting YAP; siCtrl, control small interfering RNA; Ctrl, control; ER, endoplasmic reticulum.
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ER stress activation was associated with apoptosis activa-
tion (Fig. 3F‑H) and the inhibition of migration/invasion 
(Fig. 3I‑L). By contrast, inhibiting ER stress with 4‑PBA in 
YAP‑knockdown cells promoted cell survival and invasion. 
These results indicated that YAP promoted gastric cancer 
MKN‑28/74 cell survival and migration/invasion through the 
regulation of ER stress.

YAP regulates ER stress via the ERK pathway. Finally, experi-
ments were performed to determine how YAP inhibited ER 
stress. The ERK pathway has been reported to be involved in 
YAP‑associated functions and ER stress inhibition (40,41). 
PD98059, an inhibitor of the ERK pathway, was used to inhibit 
the ERK pathway in MKN‑28/74 cells transfected with siCtrl. 
The activation of the ERK pathway was assessed by western 
blotting. Compared with the control group, YAP knock-
down inhibited ERK phosphorylation, similar to PD98059 
treatment (Fig. 4A). The inhibition of the ERK pathway by 
siYAP promoted the activation of ER stress as indicated by 
the upregulation of CHOP and reduced cell invasion (Fig. 4). 
These results suggested that the ERK pathway may contribute 
to the YAP‑induced ER stress inhibition.

Discussion

Previous studies have demonstrated that YAP is essential for 
gastric cancer cell survival and migration/invasion (42‑44). 
However, the underlying mechanism remains unclear. The 
present study proposes a novel underlying mechanism 

by which YAP regulates gastric cancer MKN‑28/74 cell 
survival and metastasis. The results of the present study 
demonstrated that: i) YAP was upregulated in gastric cancer 
MKN‑28/74 cells compared with normal gastric GES‑1 cells; 
ii) YAP promoted gastric cancer MKN‑28/74 cell survival 
and migration/invasion by inhibiting ER stress; iii) YAP may 
regulate ER stress by activating the ERK pathway. The present 
study provides a new target for the treatment of gastric cancer 
that may affect cancer cell survival and metastasis. A limita-
tion of the present study was that only one gastric cancer cell 
line was used. Additional cell lines will be used in our future 
study, to confirm the results.

In eukaryotic cells, the ER is responsible for protein 
synthesis and calcium storage; perturbations in the ER func-
tion, a process termed ER stress, have been reported to be 
involved in cancer initiation, growth and metastasis in the 
majority of solid tumors  (45,46). However, the role of ER 
stress in tumorigenesis and development is still controversial. 
Previous studies have demonstrated that ER stress is a tumor 
suppressor, and the activation of ER stress inhibits gastric 
cancer cell survival and migration  (19,47,48). However, a 
number of studies have suggested that ER stress can promote 
tumor development (49,50). Induction of ER stress protects 
gastric cancer cell apoptosis during cisplatin and doxorubicin 
treatment via the p38 MAPK pathway (51).

Recent studies have identified an association between 
YAP and ER stress. The activated Hippo‑YAP signaling 
pathway promoted neuron survival in the TNFα‑induced 
microenvironment by inhibiting ER stress (52). In addition, 
downregulation of YAP evoked ER stress and contributed 
to myocyte death in isoproterenol‑induced myocardial 
infarction (53). The results of the present study are consis-
tent with previous studies. However, the exact mechanism 
by which YAP controls ER stress remains unknown. The 
results of the present study suggested that YAP may inhibit 
ER stress via the ERK pathway. Thus, these results provide 
valuable information on the role of YAP and ER stress in 
tumorigenesis.

In the present study, the critical role of YAP in the 
progression of gastric cancer was identified. A recent study 
demonstrated that YAP regulates gastric cancer survival and 
migration through SIRT1/Mfn2/mitophagy (42). The results 
of the present study demonstrated that YAP may function 
via the ERK/ER stress pathway in gastric cancer survival 
and metastasis. To the best of our knowledge, this is the first 
identification of YAP functions involved in ER stress and the 
ERK pathway in the development of gastric cancer. However, 
in vivo experiments and clinical data are required to support 
these results.

In conclusion, the results of the present study identified 
the important role of YAP in gastric cancer cell migration 
and survival. YAP promoted gastric cancer MKN‑28/74 
cell survival and migration/invasion via the ERK/ER stress 
pathway. These results suggested that the YAP/ERK/ER stress 
pathway may be a potential target for the treatment of gastric 
cancer.
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