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Abstract: The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in
carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting
tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β
signalling is strongly context-dependent and is influenced by various factors including cell, tissue
and cancer type. Disruption of this pathway can be caused by various means, including genetic and
environmental factors. A number of human viruses have been shown to modulate TGF-β signalling
during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr
virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of
TGF-β in regulating the EBV life cycle in tumour cells is also discussed.

Keywords: TGF-β signalling; Epstein-Barr virus; nasopharyngeal carcinoma; gastric cancer;
B-cell lymphoma

1. Introduction

The transforming growth factor-beta (TGF-β) superfamily is a group of multifunctional proteins
comprising more than 40 members that are clustered in several subfamilies, which include TGF-β,
activins/inhibins, bone morphogenetic proteins (BMPs), nodal and growth differentiation factors
(GDFs) [1,2]. The prototypic member, TGF-β1, is produced by a diverse range of cell types and
modulates cell proliferation, migration, adhesion, differentiation and survival [2,3]. Consequently,
a malfunctioning TGF-β pathway is central to many diseases including cancer. TGF-β functions
as a tumour suppressor by inhibiting the growth of untransformed epithelial, endothelial and
lymphoid cells [4–6] and resistance to TGF-β is regarded as one of the crucial steps in malignant
progression [2,7]. In the early stages of cancer development, TGF-β signalling functions as a
tumour suppressor by inhibiting cell cycle progression from G1 to S phase and inducing apoptosis,
senescence and differentiation [2,5,8,9]. Conversely, in late stage disease, it acts as a tumour
promoter by inducing epithelial-to-mesenchymal transition (EMT), migration, invasion, metastasis,
angiogenesis and immune suppression [2,9–12]. Frequently, cancer cells become resistant to the tumour
suppressive effects of TGF-β, however functional TGF-β signalling often persists in these cells enabling
TGF-β-induced tumour promoting phenotypes [13–16]. Accumulating evidence has revealed that the
TGF-β signalling pathway is targeted by many oncogenic viruses, including Epstein-Barr virus (EBV),
during the course of tumorigenesis [17].
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EBV was the first human cancer virus to be discovered [18] and the most common viral
infection in humans. Following its discovery in Burkitt lymphoma (BL), EBV has been linked to
the aetiology of multiple human cancers of both lymphoid and epithelial origin, including classical
Hodgkin lymphoma (HL), diffuse large B cell lymphoma (DLBCL), post-transplant lymphoproliferative
disorders (PTLD), nasopharyngeal carcinoma (NPC) and EBV-associated gastric cancer (EBVaGC) [19].
Here, we provide an overview of our current understanding of the dynamic roles that TGF-β plays in
EBV-associated malignancies.

2. TGF-β Signalling

In mammals, there are three TGF-β isoforms (TGF-β1, TGF-β2 and TGF-β3), each encoded by
different genes [20–22]. These isoforms are highly similar and share approximately 70–80% sequence
homology [22–24]. TGF-β1 was the first isoform to be characterized and is the most studied to
date [20,21]. TGF-β1 is synthesized in a latent form as a large precursor protein which binds to and is
stored in the extracellular matrix (ECM) [25]. The precursor protein undergoes proteolytic digestion by
the endopeptidase furin to produce two proteins, namely latency-associated peptide (LAP; 278 amino
acids) and mature TGF-β1 (112 amino acids) [26,27]. Despite the cleavage of the precursor protein,
the LAP remains bound to the mature TGF-β1 making the TGF-β1 biologically inactive [28]. The release
of active TGF-β1 from the ECM can be triggered by several factors, such as changes in the cellular
environment, tissue injury or inflammation [29–31]. Activated TGF ligands mediate signalling through
the TGF-β type I and type II receptors (TGFR-1 and TGFR-2, respectively) that are endowed with
serine/threonine kinase activity [32,33]. Upon binding of an active TGF-β ligand to TGFR-2, TGFR-1
is recruited and phosphorylated by TGFR-2. The activated heterotetramer TGFR-1/TGFR-2 complex
triggers the canonical Smad-dependent, as well as non-canonical Smad-independent signalling
pathways (Figure 1).
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Figure 1. The TGF-β signalling pathway. Binding of an activated TGF-β ligand to TGFR-2 recruits and
activates TGFR-1. This, in turn, phosphorylates Smad2 and/or Smad3 (R-Smads), which then form
complexes with Smad4 (Co-Smad) and translocate into nucleus to regulate the transcription of various
target genes. Smad7 (I-Smad) inhibits the pathway through various mechanisms, including mediating
the degradation of TGFR-1, inhibiting phosphorylation of Smad2/Smad3 or inhibiting the formation
of the Smad2/3-Samd4 complex. In addition to the canonical Smad-dependent signalling, activated
TGF-β receptors can trigger other signalling pathways including ERK-MAPK, p38-MAPK, PI3K-Akt
and JNK.
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2.1. Canonical Smad-Dependent Signalling

Smad proteins were the first identified downstream signalling transducers of TGF-β [34].
The proteins of the SMAD family are the vertebrate homologs of the Drosophila mothers against
decapentaplegic (MAD) protein and the Caenorhabditis elegans small body size (SMA) protein [35,36].
These proteins are divided into three groups based on their functions: receptor-activated Smads
(R-Smad; Smad2 and Smad3), common mediator Smad (Co-Smad; Smad4) and inhibitory Smads
(I-Smads; Smad6 and Smad7) [37–39]. Following TGF-β binding to TGFR-2 and receptor activation,
the Smad anchor for receptor activation (SARA) protein binds TGFR-1 and Smad2 and/or Smad3
simultaneously, resulting in the phosphorylation of the Smad2 and/or Smad3 by TGFR-1 [40–42].
Upon activation, Smad2 and/or Smad3 are released from the receptor complex and SARA,
and oligomerize with Smad4 through their MH2 domains [40,42,43]. The Smad2/Smad4 and/or
Smad3/Smad4 complexes then translocate to the nucleus to either stimulate or repress the transcription
of their target genes, depending on interactions with various transcription factors [44]. A variety of
transcription factor families have been identified that act in concert with Smad proteins, including
p300/CBP, AP1, and Forkhead [45–47].

The two I-Smads, Smad6 and Smad7, tightly control the activation of TGF-β signalling. Compared
to Smad6, Smad7 has been shown to inhibit TGF-β signalling more efficiently through a number of
mechanisms [48,49]. These include inhibition of the phosphorylation of R-Smads by forming a complex
with activated TGFR-1, degradation of the activated TGFR-1 by recruiting ubiquitin E3 ligases, such as
Smurf1/2 or disruption of the formation of functional Smad-DNA complexes in the nucleus [50–53].
Recent evidence also demonstrated that Smad7 might directly oligomerize with R-Smads and inhibit
their activities [54].

2.2. Non-Canonical Smad-Independent Signalling

While the canonical Smad-dependent pathway has been regarded as the major signalling route
of TGF-β, the ligand can also signal through non-canonical Smad-independent pathways, engaging
the ERK-MAPK, p38-MAPK, PI3K-AKT and JNK pathways [1,2]; different mechanisms are utilised to
trigger these signalling pathways. For example, activation of the ERK-MAPK pathway is mediated by
the phosphorylation of TGFR-1, whereas the activation of both TGFR-1 and TGFR-2 are required
for activation of the PI3K-AKT signalling pathway [55–57]. Notably, activation of the canonical
Smad-dependent and the non-canonical Smad-independent signalling pathways is not mutually
exclusive [58,59]. In breast cancer cells lines, for example, both pathways act together to mediate
TGF-β-induced growth arrest [59].

3. Resistance of EBV-Positive Cells to TGF-β-Mediated Cytostasis

In normal epithelial and neuronal cells, TGF-β1 inhibits progression from G1 to S phase of the cell
cycle by inducing the expression of CDK inhibitors, p15 and p21, thereby blocking the phosphorylation
of the Rb protein [60–62]. In addition, the increase in p15 levels induces the release of p27 from CDK4
and/or CDK6 [60]. p21 and the free p27 bind to CDK2, inhibiting formation of cyclin A-CDK2 and/or
cyclin E-CDK2, thereby blocking the progression to S phase [60,62]. Further, TGF-β1 suppresses the
expression of the c-MYC protein, preventing c-MYC from inhibiting the expression of p15, p21 and
p27 [63–65]. This safeguards the induction of the CDK inhibitors and thereby leads to G1 cell cycle
arrest. Additionally, TGF-β1 has been shown to induce both the intrinsic and extrinsic apoptotic
programs in a cell-type dependent manner [2]. In lymphoma cells, TGF-β1 induces the intrinsic
apoptotic pathway by stimulating the expression of several pro-apoptotic Bcl-2 family members (such
as Bmf, Bim and Bax), which in turns suppress the expression of anti-apoptotic proteins (Bcl-XL and
Bcl-2) [66]. The ability of TGF-β1 to induce the extrinsic apoptotic program has been shown in liver and
lung cancer cells, in which expression of death-associated protein kinase (DAPK) and Fas-mediated
apoptosis was increased upon the exogenous addition of TGF-β1, respectively [67,68].
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EBV-positive and -negative B cells exhibit differential responses to TGF-β. EBV-negative B cells
are sensitive to TGF-β-mediated growth inhibition and apoptosis [69–71], whilst these responses
are lost in EBV-positive B cells [72–74]. Similarly, gastric tissue-derived EBV-infected epithelial cell
lines (GT38 and GT39) have been shown to be resistant to TGF-β1-mediated growth inhibition and
apoptosis, as opposed to a TGF-β1-responsive EBV-negative gastric carcinoma cell line HSC-39 [75];
similar observations were also obtained in our laboratory with the EBV-positive NPC cell line, C666-1
(Yap L.F.; Dawson C.W. (University of Malaya, Kuala Lumpur, Malaysia) Personal observation, 2013).
However, the growth of an EBV-negative NPC cell line CNE-2 was not suppressed by exogenous
TGF-β1 [76]. CNE-2 cells were originally derived from a poorly differentiated NPC which was likely
to be EBV-positive [77]. Although CNE-2 cells do not carry EBV genomes in long-term culture, it is
possible that these cells developed resistance towards the cytostatic effect of TGF-β at the initial stage
of EBV infection and retained this characteristic even after they lost the EBV genomes. It is reasonable
to hypothesize that EBV-infected cells can selectively outgrow the neighboring cells (EBV-negative)
which are growth inhibited by TGF-β1 produced by EBV-infected cells through the expression of Zta
(discussed below). Such EBV-infected cells can then clonally expand to drive the transformation process.
Indeed, it was shown that LMP1-transfected BALB/c 3T3 cells exhibited non-transformed phenotypes
in vitro but those that lost sensitivity to TGF-β-mediated growth inhibition formed tumours in severe
combined immunodeficiency (SCID) mice [78], implying that loss of TGF-β responsiveness is a critical
event for the tumorigenicity of EBV-infected cells.

3.1. Contribution of EBV Latent Genes

EBV displays two distinct lifecycles, namely the lytic and latent cycles. The lytic cycle is associated
with viral replication in which new virions are produced while latent cycle is a state of persistent
infection and the absence of productive viral replication [79]. During latent infection, a limited set of
EBV genes is expressed and to date, three latency programmes have been identified. Different types
of malignancies are associated with a distinct latency programme (Table 1). The EBV lytic cycle is
initiated by the expression of the viral immediate-early gene BZLF1 (the gene product is commonly
known as Zta or ZEBRA) [80]. While the lytic cycle can be triggered in vitro by diverse stimuli such as
phorbol ester and sodium butyrate [81], this process is closely associated with the differentiation of
both B cells and epithelial cells in vivo [82–84].

Table 1. Characteristics of Epstein-Barr virus (EBV)-associated cancers.

Malignancy %EBV+ Cases Latency EBV Latent Genes

Endemic Burkitt Lymphoma 100%
I

EBNA1, EBER1, EBER2, BARTs,
miR-BARTs

Sporadic Burkitt Lymphoma 10–85%
HIV-associated Burkitt Lymphoma 30–40%

T/NK cell lymphoma 100%

II
EBNA1, LMP1, LMP2A, EBER1,

EBER2, BARTs, miR-BARTs
Hodgkin’s Lymphoma 80–90%
Hodgkin’s Lymphoma
(Nodular sclerosing) 15–20%

HIV-associated Hodgkin’s Lymphoma <90%

Diffuse large B-cell lymphoma
(Pythorax lymphoma) 100%

II/III
EBNA1, LMP1, LMP2A, EBER1,

EBER2, BARTs, miR-BARTs and/or
EBNA2, 3A, 3B, 3C, LP

Diffuse large B-cell lymphoma
(in Elderly patients) >50%

Diffuse large B-cell lymphoma
(late post-transplant) >50%

HIV-associated diffuse large B-cell
lymphoma 30%
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Table 1. Cont.

Malignancy %EBV+ Cases Latency EBV Latent Genes

Post-transplant B-lymphoproliferative
disorder 100%

III
EBNA 1, 2, 3A, 3B, 3C, LP, LMP1,
LMP2A, LMP2B, EBER1, EBER2,
BARTs, miRNAs-BARTs, BHRF1HIV-associated B-lymphoproliferative

disease 100%

Nasopharyngeal carcinoma 98%
II

EBNA1, LMP1, LMP2A, EBER1,
EBER2, BARTs, miR-BARTs, BARF1EBV-associated gastric cancer 10%

Epstein-Barr nuclear antigens (EBNA), Latent membrane proteins (LMP), Epstein-Barr virus-encoded RNAs (EBERs),
BamH1-A fragment transcripts (BARTs), BamH1 fragment H rightward open reading frame 1 (BHRF1), BamH1
fragment A rightward open reading frame 1 (BARF1). Table adapted from Rickinson [85] and Yap & Lo [86].

It has been shown that the EBV oncoprotein LMP1 was responsible for mediating resistance to
the cytostatic effects of TGF-β1 in BL cells (BL41) by elevating levels of cyclin D2 [73]. A modest
sensitization to TGF-β was observed in EBV-positive lymphoblastoid cell lines (LCLs) following
treatment with LMP1 antisense oligodeoxynucleotides [87], although studies of EBV-converted and
stably transfected BL cell lines have shown that LMP1 was not sufficient or necessary to block the
TGF-β1 response [88]. Using epithelial cells as study models, LMP1 has been shown to abrogate
TGF-β signalling through NF-κB-dependent depletion of transcriptional coactivators required for
Smad-mediated transcription [89,90]. Additional evidence showed that LMP1 induction of Id1 through
suppression of ATF3 (a SMAD-induced transcriptional repressor) attenuated TGF-β-Smad-mediated
transcription and counteracted the cytostatic action of TGF-β1 in epithelial cells [91]. The ability
of LMP1 to suppress Smad-dependent transcription was also demonstrated in SCC12F epithelial
cells [92]. Further, it has been shown that LMP1 can down-regulate the expression of limb-bud and
heart (LBH) resulting in the alleviation of TGF-β1-induced NF-kB signalling inhibition, rendering NPC
cells refractory to TGF-β1-mediated cytostasis [93].

Other EBV-encoded proteins have also been shown to repress TGF-β signalling and this could
facilitate the evasion of TGF-β-mediated cytostatic effects during EBV infection. In BL Ramous cells
and gastric carcinoma cells (HSC-39), LMP2A has been shown to inhibit TGF-β1-induced apoptosis
through the PI3K/AKT pathway [94]. A negative feedback loop between EBNA1 and TGF-β was
also postulated, in which expression of EBNA1 in a nasopharyngeal adenocarcinoma cell line, AdAH,
has been shown to repress TGF-β1-induced transcription by increasing Smad2 protein turnover [95],
an effect that may overcome the ability of TGF-β to repress the Q promoter (Qp), which is responsible
for EBNA1 expression in NPC [96]. The strategic inhibition of B-cell apoptosis is central to EBV biology.
In germinal centres, only those B-cells that express the highest-affinity immunoglobulins are rescued
from stringent pro-apoptotic pathways that signal through TGF-β, FAS and B-cell receptors [97–99].
The ability of EBNA1 to disable TGF-β signalling was also demonstrated in HL cells, where EBNA1
increased Smad2 protein degradation which subsequently inhibited transcription of the TGF-β target
gene, PTPRK tumour suppressor, contributing to the growth and survival of HL cells [100]. In B-cells
exhibiting a group III latency program, EBNA2 antagonized the apoptotic effects of TGF-β1, partly by
repressing the pro-apoptotic “sensitizer” protein, BIK, resulting in B-cell survival [101,102]. Further,
BARF1 was found to promote gastric cancer cell proliferation through a mechanism involving the
downregulation of Smad4 via an increase in NF-κB-dependent miR-146a [103]. Taken together, it is
apparent that TGF-β signalling is disrupted by EBV-encoded latent genes by a variety of mechanisms
leading to malignant transformation.

3.2. Dysregulation of TGF-β Receptors

In order to evade the tumour suppressive effects of TGF-β1, cancer cells often develop genetic
abnormalities within key molecules of the TGF-β signalling pathway, particularly the TGF-β receptors,
TGFBR1 and TGFBR2. However, the contribution of alterations in TGF-β receptor expression to the loss of
responsiveness towards TGF-β1-mediated growth inhibition in EBV-positive cells is inconclusive. While
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some studies showed that the levels of TGFBR1 and TGFBR2 did not correlate with resistance [73,75,78],
others reported that the lack of responsiveness appeared to correlate with a down-regulation of TGFBR2
expression [88,104]. These observations suggest that multiple mechanisms regulate the growth inhibitory
response to TGF-β in EBV-positive cells. Nonetheless, alterations in the expression of TGF-β receptors
have been shown in EBV-associated cancers in vivo. The down-regulation of TGF-β receptors in cancer
cells can be caused by multiple mechanisms. For example, the expression of TGFBR2 can be reduced by
mutation, promoter hypermethylation or miRNA regulation. It is noteworthy that TGFR-2 expression
has been suggested as a positive prognostic marker in DLBCL patients [105]. Further, the mRNA
and/or protein levels of TGFBR1 and TGFBR2 were found to be significantly reduced in primary NPC
tissues compared with non-cancerous controls, and their decreased expression correlated with poor
survival [106–109]. However, a recent report described contradictory results in which TGFR-1 was found
to be up-regulated in primary NPC tissues [110]. We previously had reported the expression of TGFR-2 in
oral cancer by immunohistochemical analysis [111] and accurate staining results could only be achieved
by applying stringent methodologies and assessment. The discrepancy between studies could be due to
differences in antibody specificities. It is worth noting that TGFBR2 is located at chromosome 3p, a region
with the most frequent loss of heterozygosity in NPC [112,113], implying that TGFBR2 might be a tumour
suppressor gene that is altered in the early stages of NPC pathogenesis. Using advanced next-generation
sequencing technology, several studies have reported genetic abnormalities of key molecules within
the TGF-β pathway, including the TGF-β receptors, in EBV-associated cancers (Table 2). Although the
frequency of the genetic alterations appears to be low, further studies are warranted to confirm the results
and investigate the functional significance of these alterations. It is important to recognize, however,
that these results do not take into account possible transcriptional alterations of the receptors and/or
signalling molecules.

The involvement of cellular miRNAs in the disruption of TGF-β signalling has also been reported.
For example, miR-93 and miR-19a, paralogues of the oncogenic miR-17-92 cluster, were shown
to promote NPC aggressiveness by down-regulating TGFR-2 [108,109]. Several studies on global
miRNA profiling in NPC have identified a number of differentially expressed miRNAs that target
the TGF-β pathway [114–116], but the exact targets within the pathway are yet to be identified.
Notably, a susceptibility gene TNFRSF19 in NPC, was shown to render NPC cells resistant to
TGF-β-mediated cell cycle arrest [117]. TNFRSF19 was highly expressed in NPC and binds specifically
to the kinase domain of TGFR-1, thereby blocking Smad2/3 association with TGFR-1 and subsequent
signal transduction.
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Table 2. Genetic alterations of TGF-β pathway components in EBV-associated cancers identified by next-generation sequencing.

Cancer Total Number of Cases EBV Status Genes Alterations Number of Cases with Alterations References

NPC 56 primary tumours Positive SMAD3 Missense mutation 1 (primary tumour) [118]

NPC
• 51 primary tumours
• 8 recurrent tumours
• 3 local metastatic tumours

Positive

TGF-β1 Missense mutation 1 (primary tumour)

[119]TGF-β2 Missense mutation 1 (primary tumour)

TGFBR2 Missense mutation 1 (primary tumour)

NPC

• 78 primary tumours
• 11 local

recurrent tumours
• 22 distant

metastatic tumours

Positive

TGF-β1 Missense mutation 1 (primary tumour)

[120]

TGF-β1 Nonsense mutation 1 (local recurrent tumour)

TGF-β1 Silent mutation 1 (primary tumour)
TGF-β2 Frame shift deletion 1 (local recurrent tumour)

TGF-β2 Inversion 1 (primary tumour)

TGFBR1 Missense mutation 1 (primary tumour)
1 (local recurrent tumour)

TGFBR2 Inter chromosomal
translocation 1 (primary tumour)

SMAD3 Silent mutation 1 (local recurrent tumour)

SMAD4 Missense mutation 1 (primary tumour)

SMAD4 Nonsense mutation 1 (primary tumour)

SMAD7 Missense mutation 1 (local recurrent tumour)

EBVaGC
134 primary tumours

• Positive: n = 34
• Negative: n = 100 TGFBR1

Nonsynonymous
mutation

• 9 (EBV-positive)
• 8 (EBV-negative) [121]

AGS cell line Before and after EBV
infection Missense mutation EBV-infected AGS cells

EBVaGC 22 primary tumours Positive SMAD4 Missense mutation 2 [122]

HL 7 cell lines

• Positive: L591
• Negative: SUPHD1,

L540, L428, L1236,
KMH2, DEV

SMAD9 Missense mutation 1 (KMH2) [123]

HL 5 cell lines
Negative (HDML2, KMH2,

UH01, L540, L428)

TGF-β1 Amplification 2 (L540, L428)

[124]TGF-β2 Amplification 3 (KMH2, L540, L428)
Deletion 1 (UH01)

TGFBR2 Amplification 3 (KMH2, L540, L428)
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Table 2. Cont.

Cancer Total Number of Cases EBV Status Genes Alterations Number of Cases with Alterations References

TGFBR3 Amplification 2 (KMH2, L428)

SMAD1
Amplification 3 (KMH2, L540, L428)

Deletion 2 (HDML2, UH01)

SMAD5 Amplification 3 (KMH2, L540, L428)

DLBCL • 73 primary tumours
• 21 DLBCL cell lines

Unreported

TGF-β1 Missense mutation 1 (primary tumours)

[125]
TGF-β1 Intronic mutation 1 (primary tumours)

TGFBR2 Intronic mutation 2 (primary tumours)

TGFBR3 Intronic mutation 2 (primary tumours)

SMAD9 Intronic mutation 1 (primary tumours)

DLBCL
51 primary tumours &
immunochemotherapy-treated
tumours

Unreported TGF-β1 CNA 3 (treated tumours) [126]

DLBCL 6 refractory & 7 responsive
tumours to R-Chop

Negative TGFBR2 Missense mutation 1 (refractory tumour) [127]

DLBCL

• 47 relapsed/
refractory tumours

• 65 primary tumours
Unreported TGFBR2 Missense mutation 6 (relapsed/refractory tumours) [128]

DLBCL

• 295 activated B-cell like
DLBCL (ABC)

• 164 germinal-center B-cell
like DLBCL (GCB)

• 115 unclassified DLBCL

Unreported

TGF-β1 Missense mutation 5 (4 ABC, 1 GCB)

[129]

Truncated mutation 2 (ABC)

TGF-β2 Truncated mutation 2 (1 ABC, 1 GCB)

TGF-β3 Missense mutation 1 (ABC)

TGFBR1 Missense mutation 1 (GCB)

TGFBR2 Missense mutation 2 (1 ABC, 1 GCB)
Truncated mutation 2 (1 GCB, 1 unclassified)

TGFBR3 Missense mutation 2 (1 ABC, 1 unclassified)
Truncated mutation 1 (GCB)

SMAD1 Missense mutation 1 (ABC)
Truncated mutation 1 (GCB)

SMAD2 Missense mutation 3 (1 ABC, 1 GCB, 1 unclassified)

SMAD4 Missense mutation 3 (2 ABC, 1 unclassified)
Truncated mutation 1 (ABC)

SMAD5 Missense mutation 5 (4 ABC, 1 GCB)

SMAD6 Missense mutation 1 (GCB)

SMAD7 Missense mutation 2 (1 ABC, 1 GCB)

SMAD9 Truncated mutation 1 (ABC)
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4. Tumour Promoting Roles of TGF-β

TGF-β1 exerts its tumour promoting effects by inducing EMT, migration, invasion, metastasis,
angiogenesis and immune suppression [2,9]. High levels of TGF-β1 are commonly detected in many
types of solid tumour and positively correlate with disease stage [130–133]. TGF-β1 can be produced
by tumour cells or by stromal cells in the tumour microenvironment, including macrophages and
platelets [134,135]. As tumours progress, many cancer cells develop genetic abnormalities within the
pathway to escape the tumour suppressive effects of TGF-β signalling and, therefore, the excessive
production of TGF-β1 drives tumour progression [2,7]. Although it is suggested that the tumour
promoting effects of TGF-β1 are mainly mediated through the non-canonical Smad-independent
signalling pathway [136–139], there is evidence to show that the canonical Smad-dependent signalling
pathway can also be responsible for mediating some of these effects [1–3].

4.1. High Levels of TGF-β in EBV-Associated Cancers

Several early studies showed that TGF-β1 and TGF-β2 were produced by Hodgkin’s
Reed-Sternberg (H-RS) cells in vitro and in vivo [140–143]. It was subsequently shown that HL cells
produced TGF-β, which contributes to the shift from a Th1-biased towards a Th2-biased T-cell infiltrate
characteristics of HL [144]. EBV and its lytic gene product (Zta) have been shown to induce TGF-β1
production and secretion in BL and HeLa cells [145,146]. In patients with NPC, the levels of both the
total and active TGF-β1 in serum samples have been reported to be elevated compared to those from
healthy individuals with levels positively correlating with disease staging [147]. In support of these
observations, our previous study has confirmed that TGF-β1 was up-regulated in EBV-positive NPC
tissues compared to non-malignant nasopharyngeal mucosa [148]. There is also evidence to show that
EBNA1 and LMP1 induced the expression and secretion of TGF-β1 in epithelial cells in vitro [92,149].
Interestingly, a relatively high intracellular expression of TGF-β1 protein was detected following
miR-93-mediated down-regulation of TGFBR2 in NPC cells [108]. In gastric cancer, high levels of
TGF-β1 and TGF-β3 expression were detected in tissue samples of gastric carcinoma compared to
gastric mucosa, although the status of EBV in these cancer samples examined was unreported [150].
Further, both gastric tissue-derived EBV-infected epithelial cell lines, GT38 and GT39, spontaneously
produce biologically active TGF-β1 [75]. These data are consistent with the more recent report that
TGF-β1 levels were elevated in EBVaGC [151]. Notably, several mutations on TGF-β1 and TGF-β2
have been detected in EBV-associated cancers (Table 2), pointing to a possible role of EBV in regulating
the expression of TGF-β ligands. Further investigations are warranted to examine whether these are
gain-of-function mutations that might result in increased levels of TGF-β ligands.

4.2. Contribution of TGF-β Signalling to the Aggressive Phenotypes of EBV-Associated Cancers

Several lines of evidence have shown that TGF-β signalling promotes aggressive phenotypes of
EBV-associated epithelial cancers. TGF-β signalling is a major inducer of EMT in cancer cells [152].
EMT is morphologically characterized by changes from an epithelial cell phenotype to a spindle
fibroblast-like appearance and functionally characterized by decreased cell adhesion and increase cell
migration. Accordingly, TGF-β signalling-associated induction of EMT is considered an important
step in the progression of tumour metastasis. Alterations in EMT markers (increased Vimentin and
decreased E-cadherin) were detected in clinical NPC samples [153,154], indicating that NPC cells
undergo EMT in vivo. Although EBNA1 has been shown to suppress TGF-β-mediated transcription
in AdAH and HL cells [95,100], in NPC cells, EBNA1 appeared to up-regulate the expression of
TGF-β1 protein leading to a reduction in expression of miR-200a and miR-200b which in turn,
up-regulated their target genes ZEB1 and ZEB2, well known mediators of EMT [149]. Recent reports
have repeatedly described the underlying mechanisms of the EMT process induced by TGF-β signalling
in NPC, and a number of effectors have been identified. There is evidence to demonstrate that
components of lipid rafts, flotillin-1 and -2 (Flot1 and Flot2), were highly expressed in primary
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NPC tissues [155,156] and that this contributed to the TGF-β1 induction of EMT in NPC. Flot1 was
shown to stimulate the expression and secretion of TGF-β1, facilitate the activation of TGF-β/Smad3
signalling to effectuate EMT in NPC cells [155]. Whereas Zhao and colleagues showed that Flot2 was
required for TGF-β1-induced EMT in NPC cells through activation of Src [156]. Further, the ability of
high-mobility group AT-hook 2 (HMGA2) to induce EMT in NPC cells was attributed to the activation
of TGF-β/Smad3 signalling pathway [157]. TGF-β1 was also shown to induce EMT in NPC cells by
enhancing the expression of formin-like 3 (FMNL3) and Y-box binding protein-1 (YBX1) [153,154].
More recently, it was found that TGF-β1 induced NPC cell growth and migration by down-regulating
miRNA-124 which inhibited TGF-β1-mediated responses by targeting the pro-oncogenic lncRNA
MALAT1 primarily via the ERK/MAPK pathway [158]. In addition, LMP1-mediated activin/ TGF-β
signalling through the JNK/SAPK pathway was also involved in the induction of the extracellular
matrix protein, fibronectin, a process that may contribute to tumour invasiveness in NPC [92].

In addition to promoting aggressive phenotypes of cancer cells, an emerging role for TGF-β
signalling in cancer drug resistance has also been proposed [159,160]. Very recently, it was reported
that overexpression of miR-449b in NPC down-regulated TGF-β-induced (TGFβI), a target gene of
TGF-β pathway, leading to increased pro-TGF-β1 activation and cisplatin resistance [161]. The effect
of TGF-β in inducing aggressive phenotypes in EBVaGC is currently unexplored and further studies
are warranted.

5. Induction of EBV Lytic Reactivation by TGF-β

EBV is able to induce its lytic cycle by switching on the expression of BZLF1 gene which encodes
protein Zta [80]. TGF-β was initially shown to induce the viral productive cycle in marmoset B
lymphocytes immortalized with EBV [162]. It was subsequently shown that TGF-β induces latent EBV
to enter into lytic cycle (as shown by EA expression) in two BL cell lines P3HR-1 and Akata [145,163].
These observations were later confirmed in a series of BL cell lines (Mutu-I, Raji and B95-8) in which
TGF-β1 induced BZLF1/Zta expression by an indirect mechanism which required the ERK 1/2
MAPK kinase pathway; Smad signalling alone was not sufficient to mediate TGF-β1 induction of
Zta [164]. It was further shown in additional BL cells (Mutu-I, Kem-I and Sav-I) that the PI3K/AKT
pathway, acting downstream of ERK 1/2, enabled Smad3 to be acetylated by direct interaction with
the co-activator CREB-binding protein to stimulate TGF-β1-induced Zta expression [165]. Different
mechanisms of TGF-β1-mediated activation of BZLF1 gene have also been reported. In BL cell lines,
Rael and P3HR-1, BZLF1 gene expression appeared to be activated by TGF-β through its mediator
Smad proteins [166]. A Smad4-binding element (later termed SBE1) located within the BZLF1 Z
promoter (Zp) was identified and both SBE1 and AP-1 motifs were required for TGF-β to activate
the expression of BZLF1 through the complex of Smad3/Smad4 associated with the c-Jun/c-Fos
proteins of the AP-1 complex [166]. However, this mechanism accounted for only 20–30% of the
total TGF-β-mediated activation of transcription from Zp. Subsequently, Iempridee and colleagues
identified an additional four SBEs (termed SBE2-5) and showed that TGF-β induced EBV lytic
reactivation via the canonical Smad pathway by alleviating ZEB-mediated repression of Zp through
multiple SBEs acting in concert [167]. In epithelial cells, TGF-β1 partially induced EBV reactivation in
gastric cancer cells GT38 and GT39, as shown by the expression of BZLF1/Zta and early antigen-D,
possibly primarily through junB pathway [75]. These studies have collectively demonstrated that
TGF-β induces lytic reactivation in latently EBV-infected cells by stimulating the expression of BZLF1
gene/Zta protein through both canonical and non-canonical pathways.

In addition to the BZLF1 Zp, the EBNA1 Qp is also a direct target of the TGF-β signaling
pathway. EBNA1 is a DNA-binding protein that binds to the ori-P region of the EBV genome
and allows the viral genome to be present as an episome in infected cells [168]. Transcription of
the EBNA1 gene in BL and NPC cells is initiated from the Qp [169]. Qp expression is subject to
regulation by a number of mechanisms and interestingly, in BL cells, it has been shown that TGF-β
transcriptionally repressed EBNA1 Qp through cooperativity of a Smad3/Smad4 complex and the
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transcriptional repressor TGIF at the SBE site within Qp [96]. It has also been shown that the Zta
protein interfered with JAK/STAT activation of Qp [170] and induced TGF-β production in HeLa
cells [146]. Thus, the autocrine/paracrine function of TGF-β is generated by up-regulation of Zta,
which then activates the transcription of TGF-β, thereby forming a positive feedback loop to initiate
the EBV lytic cycle. In parallel, both TGF-β and Zta repressed Qp to disrupt EBV latency.

6. Concluding Remarks

Since its discovery in 1964, EBV has been implicated in the aetiology of several tumours of
both lymphoid and epithelial origin. Although the mechanisms of EBV infection in lymphoid
and epithelial cells are different, it is well-recognised that the virus drives cancer development by
de-regulating a diverse range of signalling pathways that regulate essential cellular processes [19].
It is perhaps not surprising that EBV acts as a modulator of the TGF-β signalling pathway, a key
network that controls various vital processes, such as proliferation, differentiation, apoptosis and
migration. Like many other tumours, EBV-associated cancers produce high levels of TGF-β and do not
respond to the cytostatic effects of TGF-β, but yet often sustain a functional TGF-β core machinery to
promote more aggressive malignant phenotypes. EBV utilises different mechanisms to manipulate the
“double-edged sword” nature of TGF-β signalling to fine-tune the TGF-β response at various levels
(Figure 2). A balance between latent and lytic infection is crucial for EBV oncogenesis. In latently
infected cells, EBV-encoded proteins (EBNA1, LMP1, LMP2A and BARF1) suppress TGF-β-mediated
transcription, rendering cells refractory to TGF-β cytostatic effects. When lytic cycle is needed for the
spreading of the virus, TGF-β disrupts the latency by stimulating the expression of BZLF1/Zta via both
Smad-dependent and Smad-independent pathways which in turn, promotes the production of TGF-β
and inhibits the transcription of EBNA1. Intriguingly, it has been shown that the EBV infection rate of
epithelial cells can be enhanced by exogenous TGF-β1 and TGF-β1 derived from the epithelial cells
facilitated viral transmission by inducing lytic cycle in the donor B-cells in co-culture systems [171,172].
These observations imply that TGF-β signalling might play a critical role in regulating persistent EBV
infection, particularly in epithelial cells. Several lines of evidence have shown that the expression
of TGFBR2 is down-regulated in NPC and TGF-β/Smad signalling is defective [76,106–108,173] and
mutations in SMAD genes have been reported (Table 2). It is currently unclear whether these defects
in the canonical pathway would be adequate to result in the loss of BZLF1/Zta expression, thereby
facilitate the maintenance of EBV genomes in the nasopharyngeal epithelial cells. This is also relevant
to the ability of TGF-β in the induction of differentiation of epithelial cells [174,175]. EBV infection is
intimately associated with a number of undifferentiated carcinomas [86], implying that undifferentiated
properties of epithelial cells are likely to be a prerequisite for stable EBV latent infection. It has been
shown that differentiation of epithelial and B cells triggered EBV lytic reactivation in the latently
infected cells [176]. In line with this concept, defects in TGF-β signalling might impair cellular
differentiation which results in the suppression of lytic cycle, thereby facilitating latent infection in
epithelial cells. Interestingly, it has been shown that in patients with EBVaGC, TGF-β1 levels were
significantly associated with the expression of EBV lytic genes in the absence of Helicobacter pylori
(H. pylori) infection [151]. These data imply that H. pylori infection prevents EBV lytic induction by
suppressing TGF-β1 expression in EBVaGC patients, observations that warrant further investigation.
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Figure 2. Modulation of TGF-β signalling by EBV. EBV infection or EBV-encoded latent proteins
(LMP1 and EBNA1) can stimulate the expression and secretion of TGF-β1 in epithelial cells. However,
cancer cells often do not respond to the cytostatic effects of TGF-β, partly through the repression
of signal transduction by the EBV-encoded proteins (EBNA1, LMP1, LMP2A and BARF1) through
various mechanisms. The cancer cells often sustain a functional TGF-β core machinery and the
excessive production of TGF-β drives aggressive malignant phenotypes. TGF-β signalling also appears
to be crucial in regulating the balance between latent and lytic cycles in EBV-infected cells. TGF-β
facilitates lytic reactivation in EBV-infected cells by stimulating the expression of BZLF1/Zta via both
Smad-dependent and Smad-independent pathways. Zta induces the production of TGF-β1 which in
turn, together with Zta, suppress the transcription of EBNA1 from Qp to disrupt EBV latency.

While most of the studies on the TGF-β pathway to date have focused on the roles of canonical
Smad2/3/4-dependent signalling, emerging evidence has revealed the contribution of non-canonical
Smad1/5/9 signalling dysregulation to lymphomagenesis. In DLBCL, oncogenic miR-155 inhibited
Smad5 expression and rendered cells resistant to the growth inhibitory effects of both TGF-β1 and
BMPs, via a defective p21 induction and decreased formation of the RB/E2F1 complex [177,178].
More recently, Stelling and colleagues identified TGF-β/TGFR-2/Smad1 axis as the upstream regulator
in suppressing the expression of sphingosine-1-phosphate (S1P) receptor 2 (S1PR2), a bona fide tumour
suppressor in DLBCL, to provide a significant proliferative advantage to DLBCL cells in vitro and
in vivo [179]. Interestingly, we have previously reported that EBV infection contributed to aberrant
S1P signalling in NPC [180] and also have data showing that BMP signalling is de-regulated in NPC
(manuscript in preparation). It will be intriguing to unravel the contribution of EBV infection to
the non-canonical Smad TGF-β signalling in the development of EBV-associated cancers. A better
understanding of these mechanisms may also provide an explanation for the seemingly contradicting
roles of EBV-encoded latent proteins in regulating the TGF-β pathway. EBNA1 and LMP1 have been
shown to stimulate the production of TGF-β, and yet, they disrupted the signal transduction rendering
the cells refractory to the TGF-β-mediated cytostasis. It is now clear that the high TGF-β production
promotes aggressive phenotypes through the EMT induction arm; however, the contribution of EBV
to this process is not well-explored. Additional mechanistic studies are warranted to elucidate how
EBV fine-tunes the response to TGF-β and utilises this pathway to achieve malignant transformation.
Further, it has been shown that TGF-β-induced EMT can drive tumour cells towards a more stem
cell-like phenotype [181,182]. Significantly, a decrease in the number of stem cells was observed after
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treatment with TGFBR1 inhibitors in gliobastoma [183]. This would be an important research area to
be explored in EBV-associated cancers, particularly as EBV latent proteins (LMP1 and LMP2A) have
been shown to contribute to the induction and maintenance of cancer stem-like cell (CSC) population
in NPC [184,185].

Many drugs that target TGF-β signalling have been developed for the treatment of a number of
diseases [186]. Some of which have reached clinical trials, including a phase I trial for EBV-positive
lymphoma using recombinant cytotoxic-T-lymphocytes with a virus encoding a dominant negative
TGFBR2 [187]; however, the results have not been posted for this trial. The main goal of utilising
anti-TGF-β therapies in cancer is to reduce excessive levels of TGF-β ligands. However, there are
clearly concerns and issues with this approach, such as that TGF-β inhibitors are not cytotoxic and
might disrupt the stem cells niche resulting in releasing cancer stem cells from dormancy [186]. TGF-β
action is highly context-dependent and influenced by multiple factors, such as interactions with other
signalling pathways, disease stage and innate genetic background among individuals. EBV infection
is likely to add another level of complexity to anti-TGF-β therapies in EBV-associated cancers. It is
also noteworthy that the function of TGF-β signalling in the tumour immune microenvironment
(TIME) is important in this regard. TGF-β signalling is a crucial mediator not only of changes to
the tumour cell phenotype but also of changes in the stromal environment [7]. This is particularly
relevant to the development of EBV-based immunotherapies. It has recently been shown that a
transcriptional signature of TGF-β pathway activation was associated with low levels of stromal
tumour-infiltrating lymphocytes (TILs) and poor prognosis in NPC patients [188]. The TIME in both
NPC and HL may influence the response to immunotherapeutic interventions and it might be important
to determine the level of TGF-β expression in these tumours as a prognostic indicator of response
to such therapies. Therefore, a more complete understanding of the multifaceted function of TGF-β
signalling in EBV-associated cancers is required to determine if this pathway can be manipulated
therapeutically for the management of patients with these diseases.
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