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Purpose: In automated treatment planning, configuration of the underlying algorithm to generate
high-quality plans for all patients of a particular tumor type can be a major challenge. Often, a time-
consuming trial-and-error tuning procedure is required. The purpose of this paper is to automatically
configure an automated treatment planning algorithm for oropharyngeal cancer patients.
Methods: Recently, we proposed a new procedure to automatically configure the reference point
method (RPM), a fast automatic multi-objective treatment planning algorithm. With a well-tuned
configuration, the RPM generates a single Pareto optimal treatment plan with clinically favorable
trade-offs for each patient. The automatic configuration of the RPM requires a set of computed
tomography (CT) scans with corresponding dose distributions for training. Previously, we demon-
strated for prostate cancer planning with 12 objectives that training with only 9 patients resulted in
high-quality configurations. This paper further develops and explores the new automatic RPM con-
figuration procedure for head and neck cancer planning with 22 objectives. Investigations were per-
formed with planning CT scans of 105 previously treated unilateral or bilateral oropharyngeal cancer
patients together with corresponding Pareto optimal treatment plans. These plans were generated
with our clinically applied two-phase e-constraint method (Erasmus-iCycle) for automated multi-ob-
jective treatment planning, ensuring consistent high quality and Pareto optimality of all plans. Clini-
cally relevant, nonconvex criteria, such as dose-volume parameters and NTCPs, were included to
steer the RPM configuration.
Results: Training sets with 20–50 patients were investigated. Even with 20 training plans, high-qual-
ity configurations of the RPM were feasible. Automated plan generation with the automatically con-
figured RPM resulted in Pareto optimal plans with overall similar or better quality than that of the
Pareto optimal database plans.
Conclusions: Automatic configuration of the RPM for automated treatment planning is feasible and
drastically reduces the time and workload required when compared to manual tuning of an automated
treatment planning algorithm. © 2020 The Authors. Medical Physics published by Wiley Periodicals,
Inc. on behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.14073]
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1. INTRODUCTION

Generating high-quality intensity-modulated radiation ther-
apy (IMRT) or volumetric modulated arc therapy (VMAT)
treatment plans for oropharyngeal cancer patients is challeng-
ing. A high dose is to be delivered to the planning target vol-
ume (PTV), which is in close proximity to many critical
surrounding organs-at-risk (OARs) such as salivary glands,
oral cavity, swallowing muscles, larynx, esophagus, spinal
cord, and brainstem.

Several automated treatment planning approaches have
been proposed in the literature.1,2 This paper focuses on auto-
mated multi-objective fluence map optimization to generate a
single Pareto optimal and clinically favorable treatment plan
for each patient. Two algorithms for automated multi-objec-
tive optimization of Pareto optimal plans have been devel-
oped in our center: (a) the two-phase e-constraint (2pec)
method3 which is part of the clinically applied Erasmus-
iCycle optimizer,4 and (b) the fast and fuzzy lexicographic

reference point method5 (LRPM). Previous studies6,7 have
demonstrated that the quality of plans generated with the
2pec method is generally superior to that of manually gener-
ated plans. The main advantages of the LRPM over the 2pec
method are faster plan generation with average relative speed-
up factors of 12 for prostate5 and 22 for head and neck can-
cer,8 and that trade-offs between all planning objectives are
balanced simultaneously (LRPM) instead of pairwise (2pec
method), allowing for large gains for some objectives at the
cost of minor degradations for other objectives.

However, algorithms for automated planning have to be
configured separately for all tumor sites. Interactive (manual)
tuning of the configuration is a time-consuming and work-
load-intensive procedure for both the 2pec method (“wish-
list” creation4,7) and the LRPM.5,8 Recently, we proposed a
new automatic procedure9 to configure the reference point
method10–12 (RPM), a special case of the LRPM.5 The proce-
dure was successfully applied to prostate IMRT,9 and adap-
tive prostate and cervix IMPT.13,14
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This paper further develops and investigates the proposed
automatic RPM configuration for a heterogeneous group of
oropharyngeal cancer patients, with 22 objectives used in
automatic plan generation. In previous work,9 creation and
evaluation of RPM configurations was based on convex plan
criteria. This paper investigates the use of clinically more rel-
evant nonconvex criteria such as dose-volume points or nor-
mal tissue complication probabilities (NTCPs). This allows
for more flexible, intuitive, and clinically relevant automatic
configurations. Dependency of the configuration quality on
the (number of) selected training plans was included in the
investigations.

2. MATERIALS AND METHODS

2.A. Patient database

Planning CT scans of 105 previously treated unilateral and
bilateral oropharyngeal cancer patients, together with a single
corresponding Pareto optimal treatment plan per scan, were
included in a database. All patients were treated with a simul-
taneously integrated boost technique similar to our clinical
protocol.15 The high dose part of the PTV (PTV high) was
prescribed 70 Gy, and the low dose part of the PTV (PTV
low) was prescribed 54.25 Gy. A fixed coplanar equiangular
23 beam setup was used for each patient to mimic VMAT-
like dose distributions. The treatment was delivered in 35
fractions. In our clinical treatment planning workflow, the
generated fluence map is automatically converted to a VMAT
plan using Monaco (Elekta AB, Sweden). In this study how-
ever, plan comparisons are made with respect to the fluence
maps so that the performance of both multi-objective
methods are objectively compared (no bias due to VMAT
segmentation).

Each Pareto optimal plan in the database was generated
with the 2pec method.3 The applied configuration (wish-list)
for plan generation with 2pec method is presented in Table I.
To achieve clinically acceptable coverage for both PTVs
(V95% � 98%), the logarithmic tumor control probability16

(LTCP) was used as the objective function. For the OARs,
the focus was either on minimizing the mean dose (salivary
glands, swallowing muscles, oral cavity, larynx, esophagus,
and cochleas) or on minimizing the near maximum dose
(spinal cord and brainstem) for which the generalized equiva-
lent uniform dose17 (gEUD) with a high parameter value was
used. Steering on the dose conformality was achieved by
using maximum or near maximum doses to the PTV shells at
0, 5, 15, 30, 40, and 50 mm distance from the PTV. The
entrance dose was controlled using the maximum dose to the
external ring structure, which is the 20 mm ring inside the
body contour. Hot spots were avoided by controlling the max-
imum dose in unspecified tissues.

2.B. Automatic RPM configuration

The automatic RPM configuration procedure9 applied in
this paper is summarized in Fig. 1. For initialization, a

fraction of the patients in the database (Section 2.A) was
randomly selected for training (the remaining test patients
were used to validate the configuration). Then, relevant
data were acquired from the training plans (Section 2.B.1)
to create the final RPM configuration. (Sections 2.B.2 and
2.B.3).

2.B.1. Data acquisition from training patients

The constraints and objectives used for plan generation
with the 2pec method (Table I) were also the basis for plan

TABLE I. Wish-list used for generating the database plans with the 2pec
method. The down-arrows (↓) indicate that the objectives are to be mini-
mized. Prescribed dose was Dhigh ¼ 70 Gy for the planning target volume
(PTV) high, and Dlow ¼ 54:25 Gy for the PTV low

Volume Type Limit (Gy)

Constraints

PTV high Dmax 74.9 (=107% of Dhigh)

PTV high Dmean 70.7 (=101% of Dhigh)

Spinal cord Dmax 42 (=60% of Dhigh)

Brainstem Dmax 49 (=70% of Dhigh)

PTV shell 0 mm Dmax 70 (=100% of Dhigh)

PTV shell 30 mm Dmax 35 (=50% of Dhigh)

Unspecified tissue Dmax 74.9 (=107% of Dhigh)

Priority Volume Type Goal Sufficient Parameters

Objectives

1 PTV high ↓LTCP 0.5 0.5 Dp ¼ Dhigh,
a = 0.8

2 PTV low ↓LTCP 0.5 0.5 Dp ¼ Dlow,
a = 0.8

3 Parotid
glands

# Dmean 20 Gy

4 SMGs # Dmean 35 Gy

5 MCS/MCP # Dmean 25 Gy

6 MCM/MCI # Dmean 25 Gy

7 PTV shell
5 mm

# gEUD10 10 Gy

PTV shell
15 mm

# gEUD10 10 Gy

8 Oral cavity/
Larynx

# Dmean 35 Gy

9 esophagus # Dmean 40 Gy

10 Spinal cord/
brainstem

# gEUD12 25 Gy

11 PTV shell
40 mm

# gEUD8 5 Gy

PTV shell
50 mm

# gEUD8 5 Gy

12 External ring
20 mm

# Dmax 27.1 Gy

13 Cochleas # Dmean 35 Gy

Abbreviations: gEUDr = generalized equivalent uniform dose with applied
parameter r; LTCP = logarithmic tumor control probability; MCI = musculus
constrictor inferior; MCM = musculus constrictor medius; MCP = musculus
constrictor cricopharyngeus; MCS = musculus constrictor superior; PTV = plan-
ning target volume; SMG = submandibular gland.
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generation with the RPM. For an RPM configuration, two
22-dimensional (or less if some OARs were not delineated)
vectors were acquired from each training plan.

The first vector contained the values achieved for up to 22
objectives used in the fluence map optimization with the
2pec method (Table I).

The other vector contained, for each objective, a quantity
related to the overall trade-offs made. More specifically, these
were the Lagrange multipliers (one for each objective) result-
ing from the fluence map optimization with the 2pec method.
These Lagrange multipliers can be found as a byproduct of
the optimization.3,9

2.B.2. Automatic configuration procedure

The RPM automatically generates a fluence map by solv-
ing the minimization problem

minimize
x2X

max
i2½n�

h
wifiðxÞ þ ci

i
þ
X
i2½n�

qi
�
wifiðxÞ þ ci

�8<
:

9=
;:

(1)

Here, x is the fluence map, X a constrained set,
f1ðxÞ; . . .; fnðxÞ the objectives, and the w1; c1; q1. . .;wn; cn; qn
define an RPM configuration. The w1; c1; . . .;wn; cn prioritise
the objectives, and q1; . . .; qn quantify desired trade-offs
between objectives. In the automatic procedure, each RPM
configuration is iteratively generated. In the first iteration, the
data acquired from the training database (Section 2.B.1) was
used to generate an initial RPM configuration (technical
details9). With this configuration, a single Pareto optimal
RPM plan can then be automatically generated for each train-
ing patient. Based on the differences observed between train-
ing and RPM-generated plans for target coverage and other
plan parameters, the RPM configuration was then either
accepted or not (see Section 2.B.3). If an RPM configuration
was not accepted, the configuration was updated for the next
iteration and the process was repeated. Updating the configu-
ration is achieved by updating the trade-off parameters
q1; . . .; qn. The general rule is that qi is increased if its corre-
sponding plan parameter scored worse than desired, but is
decreased if the corresponding plan parameter scored better
for the population than desired (details of the heuristic9). If
an RPM configuration was acceptable or if the RPM configu-
ration is still not acceptable after 40 iterations (heuristic), the
iterative process terminated and returned the final RPM con-
figuration.

2.B.3. User-defined preferences for automatic RPM
configuration

Each automatic RPM configuration is steered by a set of
user-defined preferences. There are two types of preferences:
(a) preferences regarding a minimum/maximum allowed
value for a plan parameter in the RPM-generated plans; (b)
preferences regarding differences for a plan parameter
between the training and RPM-generated plans. An example
for the first type is seen in the first row of Table II, which
indicates that the minimum allowed value for V95% of the
PTV low and PTV high is 98% in all RPM-generated plans.
An example of the second type is seen in the second row of
Table II, which indicates that the median value of all differ-
ences (database � RPM) in the parotid gland NTCP (for both
left and right) is at least 0 (in %-point). Instead of the median
value, other percentile values can be used as well. Multiple
measures can be defined per plan parameter. If all measures
are above the desired lower bounds, the RPM configuration
is accepted.

For the automatic RPM configuration applied to prostate
cancer,9 only the convex constraints and objectives as applied
in the wish list were used for defining the user preferences. A
drawback of this approach is that clinically relevant plan qual-
ity criteria may involve nonconvex functions such as dose-
volume points or models for predicting NTCPs. Therefore,
we extended the previous methodology by allowing general
nonconvex functions to be applied in the user preferences.
The user preferences in Table II were applied for creation and
evaluation of all RPM configurations. The applied nonconvex
functions were linked to convex surrogates, which were used
in the plan optimizations (compare with Table I). The first
row in Table II specifies that for both the PTV high and PTV
low, the V95% should be at least 98% in all RPM-generated
plans. The following Lyman NTCP model18 was applied for
predicting xerostomia,

NTCPðDmeanÞ ¼ ð2pÞ�1=2
Z ðDmean�40Þ=16

�1
expð�t2=2Þdt;

(2)

with Dmean being the mean dose in a salivary gland or the oral
cavity. The second row in Table II specifies that the NTCP
values in at least 50% of the RPM-generated plans should be
lower than those in the training plans, and that the NTCP val-
ues in at most 5% of the RPM-generated plans can be 2.5%-
points higher than those in the training plans.

The aim of the user preferences in Table II was to define
an RPM configuration resulting in plans with: (a) sufficient

END
Final RPM

configuration

Optimisation of the
RPM confguration
Iteratively improving
RPM configuration

(sections 2.2.2 
and 2.2.3)

Data acquisition
Objective values and
Lagrange multipliers

training plans
(section 2.2.1)

START
Selection training

patients
(section 2.1)

FIG. 1. Schematic overview of the automatic reference point method configuration procedure. [Color figure can be viewed at wileyonlinelibrary.com]
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target coverage for all patients (V95% � 98%); (b) overall
reduced NTCP values in salivary glands and oral cavity and
reduced mean doses in the swallowing muscles. If needed to
accomplish (a) and (b), moderate deteriorations were allowed
for the spinal cord, brainstem, cochleas, and conformality
measures (PTV shells and external ring). Both the median
and 5th percentile were often used to both control the overall
differences and to mostly avoid large unfavorable outliers for
the RPM.

2.C. Variations in training sets

RPM configurations were established for various training
sets: a variation of k-fold cross-validation was applied to
training sets with 20 (k = 5) plans. Training sets with 35
(k = 3) and 50 (k = 2) plans were also tested. Selection of
patients for the training folds was always random, with each

patient only present in one fold. The quality of an RPM con-
figuration was determined by comparing the RPM-generated
plans with the database plans for the test patients (patients
not used for training) regarding the plan parameters defined
in Table II. To visualize the heterogeneity of the training folds
with 20 plans, the plan parameters for the corresponding
database plans are shown in Fig. 2.

Paired two-sided Wilcoxon signed rank tests were applied
to assess whether or not the differences in plan parameter val-
ues between database and RPM-generated plans for the test
patients were statistically significant (P < 0.05).

3. RESULTS

3.A. Target coverage

All database and RPM-generated plans had clinically
acceptable target coverage, that is, the V95% was at least 98%
for both the PTV high and the PTV low.

Differences in target coverage between the database and
corresponding RPM-generated plans up to 1%-point were
observed. To focus on analyzing differences in other plan
parameters, all dose distributions were first scaled such that
the V95% for either the PTV low or PTV high was 98%.

3.B. OAR sparing and conformality

For the five RPM configurations based on different sets of
20 training patients, the differences observed in plan parame-
ters between database and RPM-generated plans for the test
patients are presented in Fig. 3.

For most plan parameters, the distribution of differences
and the corresponding median difference for the five test
folds were similar. The submandibular glands (SMGs),
oral cavity, esophagus, spinal cord, and brainstem showed
overall better sparing for the RPM-generated plans at the
cost of some deterioration in conformality measures. Dif-
ferences observed in plan parameters between RPM-gener-
ated plans and database plans are in line with Table II,
where preference is given to improve RPM-generated
plans regarding organ sparing by allowing some deteriora-
tion in conformality.

Figure 3 also shows outliers for some plan parameters,
often in favor of the RPM. Since the performance of the
RPM configuration (obtained with training set fold 4, see
Fig. 2) on test fold 4 (see Fig. 3) is according to the user pref-
erences (Table II), particularly for the oral cavity NTCP, this
fold is analyzed more in depth. For test fold 4, the differences
in the most important plan parameters are shown in Fig. 4 for
15 plans with the most extreme outliers (both favorable and
unfavorable for the RPM). As a reference, the last column in
Fig. 4 shows the mean differences for all test fold 4 patients,
clearly showing an overall gain for the RPM.

In another approach for comparing RPM-generated plans
with database plans, differences in all plan parameter values
were summed for each patient in test fold 4. A histogram of
the summed differences is presented in Fig. 5. The median of

TABLE II. User preferences to create and evaluate an reference point method
(RPM) configuration

Plan parameter Type
Lower
bound

Planning
objective

PTV low/PTV high V95% Minimum 98 PTVs LTCP

Parotids glands NTCP Median 0 Parotid glands
Dmean

5th percentile �2.5

SMGs/oral cavity NTCP Median 0 SMGs/oral
cavity Dmean

5th percentile �4

MCS Dmean Median 0

5th percentile �2

MCP Dmean Median 0

5th percentile �2.5

MCM/MCI Dmean Median 0

5th percentile �3

Larynx/esophagus Dmean Median 0

5th percentile �3

Spinal cord/
brainstem gEUD12

Median �1

5th percentile �3

Cochleas Dmean 1st quartile �5

PTV shell 5 mm gEUD8 Median �0.5

5th percentile �3

PTV shell 15 mm gEUD8 Median �0.75

5th percentile �3.25

PTV shell 40 mm gEUD8 Median �1.25

5th percentile �3.75

PTV shell 50 mm gEUD8 Median �1.5

5th percentile �4

External ring 20 mm Dmax Median �1.5

5th percentile �5

1st quartile = 25th percentile; gEUDr = generalized equivalent uniform dose
with applied parameter r; LTCP = logarithmic tumor control probability;
MCI = musculus constrictor inferior; MCM = musculus constrictor medius;
MCP = musculus constrictor cricopharyngeus; MCS = musculus constrictor
superior; Median = 50th percentile; PTV = planning target volume; SMG = sub-
mandibular gland.
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the summed differences was 13.1, indicating an advantage for
the RPM (P < 0.001). This advantage was seen in 70 out of
85 patients in test fold 4.

In the supplementary material, results are presented for
training with 35 and 50 patients. In general, it was found that
increasing the number of training patients resulted in (a)
slightly more consistent results for the test patients among
the different folds with the same number of training patients,
and (b) reduced severity of the outliers unfavorable for the
RPM.

3.C. Computation times

All computations were performed on a dual Intel Xeon
E5-2690 Linux server using an in-house developed solver

tuned for radiotherapy treatment planning.19 On average,
5.6 min of computation time was required to generate a sin-
gle RPM plan. Total computation times to automatically gen-
erate an RPM configuration ranged between 22.3 and 61.9 h
without any user interaction.

4. DISCUSSION

The purpose of this study was to further develop and
explore a recently introduced automatic configuration proce-
dure for the RPM,9 an algorithm for fast automated multi-ob-
jective treatment planning. The automatic configuration
procedure requires a training set (delineated CT scans with
corresponding treatment plans) as input. This study tested the
automatic configuration for a heterogeneous group of

FIG. 2. Boxplots of the plan parameter values (Table II) for the database plans corresponding to the five different training folds, each with 20 training patients.
Vertical thick lines within the boxes are medians, boxes are between the first and third quartile, whiskers are between the 2.5th and 97.5th percentile, circles are
outliers. [Color figure can be viewed at wileyonlinelibrary.com]
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unilateral and bilateral oropharyngeal cancer patients with
planning based on 22 objectives, and demonstrated that high-
quality configurations were obtained with only 20 training
patients.

In previous work,8 the LRPM was used to automatically
generate clinically favorable treatment plans for fifteen head
and neck cancer patients. In that paper, part of the LRPM
configuration (trade-off configuration) was established manu-
ally. This study improves on that work in several ways. First,
we have shown that clinically favorable treatment plans for
head and neck cancer patients can also be generated with the
RPM (linear reference path) instead of the more complex
LRPM (piecewise linear reference path). Secondly, it was
shown that a single RPM configuration can generate clini-
cally favorable plans for a larger patient database (105

patients instead of 15). Thirdly, in this work, the RPM config-
uration was automatically generated, removing the need for
extensive manual tuning. Finally, a more heterogeneous
patient database was included in this study, demonstrating
flexibility of the RPM for automated treatment planning.

Whereas the user preferences for creating and evaluating
RPM configurations in previous work9 were based exclu-
sively on the convex planning objectives used in fluence map
optimization, this paper describes how nonconvex criteria,
such as dose-volume parameters or NTCPs (e.g., see
Table II), can be included by coupling them to correlated con-
vex objectives. This made the automatic configuration more
intuitive and clinically relevant, while the fluence map opti-
mization problem remained convex guaranteeing optimality
of the plan generated.

RPM
favourable

Database
favourable

Parotid glands
NTCP (%-point)

SMGs NTCP
(%-point)

Oral cavity
NTCP (%-point)

MCS Dmean
(Gy)

MCP Dmean
(Gy)

MCM Dmean
(Gy)

MCI Dmean
(Gy)

Larynx Dmean
(Gy)

Oesophagus 
Dmean (Gy)

Plan parameter differences (Gy or %-point)

Spinal cord
gEUD12 (Gy)

Brainstem
gEUD12 (Gy)

Cochleas
Dmean (Gy)

PTV shell 5 mm
gEUD8 (Gy)

PTV shell 15 mm
gEUD8 (Gy)

PTV shell 40 mm
gEUD8 (Gy)

PTV shell 50 mm
gEUD8 (Gy)
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20 mm Dmax (Gy)
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FIG. 3. Boxplots of the differences in plan parameter values (Table II) between database plans and reference point method (RPM)-generated plans for the five
test folds corresponding to the five different RPM configurations with 20 training patients. Positive values are favorable for the RPM. Vertical thick lines within
the boxes are medians, boxes are between the first and third quartile, whiskers are between the 2.5th and 97.5th percentile, circles are outliers, arrows indicate
large outliers. Statistically significant differences (P < 0.05) in favor of database plans ( ) or RPM plans ( ). [Color figure can be viewed at wileyonlinelibra
ry.com]
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Automatic RPM configurations were based on user prefer-
ences regarding population-based differences between data-
base and RPM-generated plans (e.g., Table II). In practice,
the lower bounds defined for the statistical population-based
user preferences can be derived iteratively. For example, the

first step can be to only define a median for each criterion,
then perform a full configuration run, and then add or adjust
the measures and lower bounds for criteria that showed unde-
sired trade-offs. In this way, the user iteratively gets a better
understanding about which of the plan parameters are
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FIG. 4. Differences in most important plan parameter values between database plans and reference point method (RPM)-generated plans for the 15 most extreme
outliers in test fold 4 (training with 20 patients), both favorable and unfavorable for the RPM. Positive values are favorable for the RPM. The last column shows
the average results for all test patients. [Color figure can be viewed at wileyonlinelibrary.com]
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difficult to improve, and which are less difficult to improve.
This procedure can then be repeated until a configuration is
obtained that results in desirable trade-offs between all crite-
ria. Tuning the entries in Table II is easier for the user than
tuning the RPM parameters directly, since the user is familiar
with interpreting the plan parameters but not with the RPM
parameters. Even with expert knowledge of the RPM, auto-
matic configuration has shown to be superior5,9 for prostate
planning. Note that for any configuration, Pareto optimality
of all RPM-generated plans is guaranteed.11

Compared to the automatic RPM configuration for auto-
matic prostate planning,9 we observed more variation in dif-
ferences between database and RPM-generated plans among
the training folds (Fig. 3 and Figs. S1 and S2) For example,
for the different training sets of 20 patients (Fig. 3), slightly
different trade-offs were observed among the different test
folds: folds 1 and 2 showed better sparing of SMGs and oral
cavity than folds 3 and 5 at the cost of degradations in the
conformality measures. For training based on a larger train-
ing set of 50 patients (Fig. S2), the median differences were
more consistent among the different test folds. However, dif-
ferences in outliers were still present: fold 1 showed better
sparing of SMGs and oral cavity than fold 2. This is likely
due to the heterogeneous patient database (Section 2.A). As
can be seen in Fig. S2, the distribution of differences in plan
parameter values for the test patients in fold 2 were slightly
worse than desired (Table II) for the SMGs and oral cavity
NTCP values. The recommendation for a heterogeneous
group of patients is to generate various configurations, one
for each different training fold, also with variation in training
set sizes, in order to investigate variation in configuration
quality related to the patient heterogeneity. Each of these con-
figurations could include an iterative fine-tuning of the user
preferences (see above and Table II). A single (large) test fold
could ideally be the basis for all configurations (requiring
many patients). Ideally, there is also a large evaluation fold
with patients not used for |commentAUTHOR: Please check
the sentence \x93patients not used for training \x85\x94 for

sense and clarity.training nor testing for final configuration
selection and quality assessment.

Overall, the RPM-generated plans showed a better OAR
sparing at the cost of some decreased conformality. In Fig. 5,
differences in OAR criteria values were added for each test
plan and displayed in a histogram. The median improvement
of 13.1 units is in favor of the RPM (P < 0.001). Technically,
the maximum gain for this measure can be achieved by gener-
ating plans using the weighted sum method with equal
weights.20 However, the RPM also ensures that the differ-
ences in criteria values corresponding to OARs with high
clinical priorities are within an acceptable range for each
patient, which can be observed in Fig. 3.

A similar approach to automatic configuration of the RPM
is knowledge-based planning21 (KBP). Both approaches rely
on a set of training plans from previously treated patients.
The main difference is that the training plans lead to explicit
specification of the RPM parameters in the automatic config-
uration approach, while they are applied to create a model in
the KBP approach. This model is trained, using machine
learning techniques such as deep-learning,22 support vector
regression23 or generative adversarial networks,24 to predict
the DVHs or spatial dose distribution prediction. The pre-
dicted DVHs or dose distribution are then the basis for plan
optimization.25–27 Both the automatic configuration and the
KBP approach report promising results.

The RPM automatically generates a Pareto optimal flu-
ence map plan and can thus not be directly delivered as the
treatment device parameters are still unspecified. A recently
developed automated segmentation algorithm28 shows seg-
mented plans are dosimetrically similar to the fluence map
plans. The plan comparisons presented in this paper should
therefore be an accurate representation of the plan compar-
isons after segmentation.

In this paper, the objectives and constraints in Table I were
used as a starting point for all automatic plan generations. A
next step can be to eliminate the requirement to explicitly
specify these objectives and constraints, which could possibly
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FIG. 5. Histogram of the summed differences of plan parameter values (database — reference point method) for all 85 patients in test fold 4 (training with 20
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be achieved with inverse multi-objective optimization tech-
niques.29 This is a topic for further research.

5. CONCLUSIONS

A fully automated procedure for flexible and intuitive con-
figuration of the reference point method (RPM), an algorithm
for fast automated multi-objective plan generation, was tested
for a heterogeneous group of oropharyngeal cancer patients.
For each patient, the automatic RPM configuration allowed
for fast automatic generation of a Pareto optimal plan with
clinically favorable trade-offs, even for configurations based
on only 20 training patients. As requested, the configurations
generally resulted in lower OAR doses than those in the data-
base plans at the cost of slightly reduced conformality. The
RPM also resulted in favorable outliers for doses in highly
prioritized OARs. Automatic RPM configuration has great
potential in replacing traditional time-consuming and labor-
intensive treatment planning workflows relying on manual
configuration.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Figure S1. Boxplots of the differences in plan parameter val-
ues (Table II) between database plans and RPM generated
plans for the three test folds corresponding to the three differ-
ent RPM configurations with 35 training patients. Positive
values are favourable for the RPM. Vertical thick lines within
the boxes are medians, boxes are between the first and third
quartile, whiskers are between the 2.5th and 97.5th percentile,
circles are outliers, arrows indicate large outliers. Statistically
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significant differences (P < 0.05) in favour of database plans
( ) or RPM plans ( ).

Figure S2. Boxplots of the differences in plan parameter val-
ues (Table II) between database plans and RPM generated
plans for the two test folds corresponding to the two different
RPM configurations with 50 training patients. Positive values

are favourable for the RPM. Vertical thick lines within the
boxes are medians, boxes are between the first and third quar-
tile, whiskers are between the 2.5th and 97.5th percentile, cir-
cles are outliers, arrows indicate large outliers. Statistically
significant differences (P < 0.05) in favour of database plans
( ) or RPM plans ( ).
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