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Abstract: Maize (Zea mays L.) is an essential food crop worldwide, but it is highly susceptible to
salt stress, especially at the seedling stage. In this study, we conducted physiological and compar-
ative transcriptome analyses of seedlings of maize inbred lines An’nong876 paternal (cmh15) and
An’nong876 maternal (CM37) under salt stress. The cmh15 seedlings were more salt-tolerant and
had higher relative water content, lower electrolyte leakage, and lower malondialdehyde levels in
the leaves than CM37. We identified 2559 upregulated and 1770 downregulated genes between
salt-treated CM37 and the controls, and 2757 upregulated and 2634 downregulated genes between
salt-treated cmh15 and the controls by RNA sequencing analysis. Gene ontology functional en-
richment analysis of the differentially expressed genes showed that photosynthesis-related and
oxidation-reduction processes were deeply involved in the responses of cmh15 and CM37 to salt
stress. We also found differences in the hormone signaling pathway transduction and regulation
patterns of transcription factors encoded by the differentially expressed genes in both cmh15 and
CM37 under salt stress. Together, our findings provide insights into the molecular networks that
mediate salt stress tolerance of maize at the seedling stage.

Keywords: maize; An’nong876; salt stress; RNA-seq

1. Introduction

The growing global population has increased the demand for food. Maize (Zea mays L.)
is an important food and industrial crop worldwide, but its susceptibility to salt stress
has limited its yield [1,2]. The high concentration of Na+ in saline-alkali soil can lead
to hypertonic stress, as well as osmotic and ionic toxicity effects [3–5]. For survival and
reproductive success, plants must develop multiple strategies to cope with salt stress [3,4,6].
Many studies on how plants respond to salt stress have been conducted and many advances
have been achieved over the years [5,7].

Plants use various mechanisms to cope with salt stress, including the salt overly
sensitive (SOS) signaling pathway, balance of Na+/K+ by high-affinity K+ transport pro-
teins, reactive oxygen species (ROS) scavenging and plant hormone pathways [3,8,9]. Pei
and coworkers [10] were the first to show how Na+ was perceived in plants by studying
Arabidopsis under salt stress. In the Arabidopsis mutant monocation-induced Ca2+ increases
1 (moca1), they found that salt-induced depolarization of cell surface potential, Ca2+ peak
and wave, and Na+/H+ antiporter activation occurred [10]. In the SOS pathway, the
calcium-binding EF hand family protein SOS3 interacts with the protein kinase SOS2 and
activates it [3,11]. The activated SOS2 can phosphorylate and activate the Na+/H+ inver-
sion transporter SOS1 on the plasma membrane, which removes Na+ from cells and loads
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Na+ into the xylem from where it is transported to the leaves [11,12]. The cation trans-
porter HTK1 is another important Na+ transporter [13]. In plant leaves, HTK1 transports
Na+ into the phloem for recycling back to the roots, and in the roots, HTK1 removes Na+

from xylem [14,15]. Under salt stress, plants produce large amounts of ROS, which have
strong oxidizing ability and cause irreversible loss of cell membranes [16,17]. Superox-
ide dismutase (SOD) is the first line of defense to protect plant from ROS damage [18].
Alongside SOD, ascorbate peroxidase and catalase can remove the oxides and help protect
the cells [18,19].

Plant hormones not only regulate plant growth and development, but they also medi-
ate a variety of stresses [20,21]. Abscisic acid (ABA) is central to plant development and
response to external stress and is involved in the release of Ca2+ and the regulation of
stomatal closure in response to salt stress [22,23]. Plants also accumulate ethylene in re-
sponse to salt stress, indicating that ethylene may have an essential role in the response [20].
Spraying exogenous jasmonic acid (JA) can reduce salt toxicity and blocking JA signal
transmission was shown to reduce the tolerance of plants to salt stress [24–26]. Further-
more, plants can limit their growth and development by reducing gibberellin levels to help
them cope with salt stress [27,28]. The levels of other growth hormones, such as cytokinin
(CK), auxin/indole-3-acetic acid (AUX/IAA) and brassinosteroids, can also be reduced in
response to salt stress [20,29–31].

Transcriptome sequencing technologies have been used to analyze gene expression
and identify candidate genes related to specific traits [2,32,33]. For example, by analyzing
the transcriptome of maize under drought conditions, Ka-kumanu et al. [34] found a
large number of drought-induced genes in ovary and basal leaf meristem. Maize hybrid
An’nong876 suitable for planting in the Huang-Huai-Hai region of China is an excellent
new maize variety that has shown strong environment adaptability. Therefore, analyzing
the salt response mechanism of paternal and maternal lines of An’nong876 may enrich
the understanding of the regulatory mechanism of the maize response to salt stress. In
this study, we compared the expression profiles of two maize inbred lines, An’nong876
paternal line (cmh15) and An’nong876 maternal line (CM37), under control and high salt
conditions by RNA sequencing (RNA-seq) and identified differentially expressed salt-stress
responsive genes. Our results provide new perspectives for understanding the salt stress
response mechanism in maize.

2. Results
2.1. Characteristics of Maize Inbred Lines CM37 and cmh15

CM37 and cmh15 seedlings were treated with 300 mM of NaCl and their phenotypic
response to salt stress was evaluated when the third leaf of the seedlings was fully expanded.
Under the controlled conditions, the CM37 and cmh15 seedings grew well, but the average
height of the CM37 plants was higher than that of the cmh15 plants (Figure 1a,f). There
were no differences in the relative water content (RWC), relative electrolyte leakage (REL),
and malondialdehyde (MDA) content physiological indicators between the CM37 and
cmh15 plants (Figure 1c–e). Under the salt stress conditions, the cmh15 plants maintained
higher RWC but have lower REL and MDA contents than the CM37 plants (Figure 1c–e).
Diaminobenzidine (DAB) staining showed that the CM37 leaves were more deeply stained
than the cmh15 leaves (Figure 1b). The plant height, fresh weight, and dry weight were
decreased in the salt-treated CM37 and cmh15 plants compared with controls (Figure 1f–h).

2.2. RNA-seq Analysis and Identification of DEGs

To identify genes responsive to salt stress, we performed RNA-seq and analyzed
the data to obtain the whole genomic expression of CM37 and cmh15. After removing
low quality sequences and the adapter sequence, we obtained an average of 44.7 million
reads with a length of 150 bp from each sample (Table S1). There was a total of 12 samples,
CKM (CM37 control), CKF (cmh15 control), UVM (salt-treated CM37) and UVF (salt-treated
cmh15), with 3 replicates for each group. Among the clean reads, 75.80–78.94% were unique
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and were mapped to the maize B73 reference genome AGPv4 (Table S1). The expression
level of each gene was normalized by the fragment per kilobases per million reads (FPKM)
method. The overall gene expression levels were higher after salt stress compared with their
levels under controlled conditions (Figure 2a). Principal component analysis of cmh15 and
CM37 was performed to examine the relationship and variation among them. The first and
second principal components accounted for 31.3% and 24.6% of the variance, respectively.
The three biological replicates of each group clustered together, which confirmed that
the expression profiles of the replicates were highly correlated (Figure 2b). Genes were
considered to be significantly differentially expressed genes (DEGs) when the fold change
was ≥2 and the adjusted p value was ≤0.05. In the CKM vs. CKF comparison (CKM as
the control), we identified 3704 upregulated and 3132 downregulated genes, and, in the
UVM vs. UVF comparison (UVM as the control), we identified 4372 upregulated and
4628 downregulated genes. In the CKM vs. UVM (CKM as control) and CKF vs. UVF
comparisons (CKF as control), we identified 2559 and 2757 upregulated genes and 1770
and 2634 downregulated genes, respectively (Figure 2c).
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Figure 1. Phenotypic and physiological responses of cmh15 and CM37 seedlings under control and
salt stress conditions. (a) Phenotypic response of cmh15 and CM37 seedlings. Scale bar = 5 cm.
(b) DAB staining of CM37 and cmh15 leaves. (c–e) Relative water content, relative electrolyte leakage,
and malondialdehyde content. (f–h) Plant height, leaf fresh weight, and leaf dry weight. Each bar
represents at least three means ± SE. ** p ≤ 0.01; ns, not significant (calculated by t-test).
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analysis (Figure S1). The qRT-PCR results showed high correlation with the RNA-seq re-
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Figure 2. Differentially expressed genes (DEGs) between cmh15 and CM37 under control and salt
stress conditions. (a) Heatmap showing the clustering of salt-stress responsive genes. (b) Principal
component analysis of cmh15 and CM37 under control and salt treatment conditions. (c) DEGs
detected in the 4 comparisons among the control and salt stress treatment groups.

We compared the DEGs detected in the four comparisons to investigate their roles in
the salt stress response. We found that the overlapping DEGs were of two types, genotype-
specific responsive genes and common salt-stress responsive genes (i.e., common between
genotypes). In the 4 comparisons, we identified 716 (CKM vs. UVM) and 1091 (CKF vs.
UVF) genotype-specific DEGs (Figure 3a). Because the genetic backgrounds of cmh15 and
CM37 differ considerably, we focused on the CKM vs. UVM and CKF vs. UVF comparisons
in all subsequent analyses.
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To verify the reliability of the RNA-seq data, we selected nine DEGs for qRT-PCR
analysis (Figure S1). The qRT-PCR results showed high correlation with the RNA-seq
results (R2 = 0.948), which confirmed the expression results were reliable (Figure 3b).
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2.3. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Functional
Enrichment Analysis of DEGs

The roles of the salt-stress responsive DEGs in the CKM vs. UVM and CKF vs. UVF
comparisons were predicted by gene ontology (GO) enrichment analysis. Terms related to
oxidation-reduction and metabolism were enriched in cmh15 and CM37 under salt stress;
for example, oxidation-reduction process (GO:0055114) was highly enriched (Figure 4a,b).
Terms associated with photosynthesis were also highly enriched in cmh15 and CM37
under salt stress, including photosynthesis (GO:0009765), light harvesting (GO:0009765),
response to red light (GO:0010114), response to blue light (GO:0009637), and photosystem
(GO:0009538) (Figure 4a,b). Terms related to protein translation were also highly enriched,
including translation (GO:0006412) and structural constituent of ribosome (GO:0003735).
Many enriched GO terms were associated with stress response, including response to stress
(GO:0006950) and response to cold (GO:0009409) (Figure 4a,b). The GO terms carbohy-drate
metabolic (GO:0005975), transmembrane transport (GO:0090662), response to far red light
(GO:0010218) and electron transport chain (GO:0022900) were more highly enriched in the
CKF vs. UVF comparison than they were in the CKM vs. UVM comparison.
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Figure 4. Gene ontology (GO) enrichment analysis of the DEGs detected in the CKF vs. UVF (a) and
CKM vs. UVM (b) comparisons. The topmost enriched GO terms under the three main GO categories
are shown.

In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis,
degradation of ketone bodies (ko00072), pyruvate metabolism (ko00620), glycer-ophospholipid
metabolism (ko00564), fatty acid degradation (ko00071), anthocyanin biosynthesis (ko00942),
beta-alanine metabolism (ko00410), and AGE-RAGE signaling pathway (ko04933) were the
top most enriched pathways in cmh15 under salt stress, whereas thiamine metabolism (ko00730),
phenylalanine biosynthesis (ko00400), glycolysis/gluconeogenesis (ko00010), carotenoid biosyn-
thesis (ko00906), and carotenoid biosynthesis (ko00906) were the topmost enriched path-
ways in CM37 under salt stress (Figure 5a,b). Starch and sucrose metabolism (ko00500),
ribosome (ko03008), plant hormone signal transduction (ko04075), photosynthesis (ko00195),
photosynthesis-antenna proteins photosynthesis (ko00196), metabolism pathways (ko01100),
pentose phosphate pathway (ko00030), phenylalanine metabolism (ko00360), flavonoid
biosynthesis (ko00941), isoquinoline alkaloid biosynthesis (ko00950), glyoxylate and di-
carboxylate metabolism (ko00630), fatty acid elongation (ko00062), carbon metabolism
(ko01200), biosynthesis of secondary metabolism (ko00999), anthocyanin biosynthesis
(ko00942), and amino sugar and nucleotide sugar metabolism (ko00520) were enriched in
cmh15 and CM37 (Figure 5a,b).
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2.4. Analysis of DEGs Encoding Transcription Factors

A total of 304 transcription factors (TFs) that belonged to 46 TF families were encoded
by DEGs detected in the CKF vs. UVF comparison, and 375 TFs that belonged to 44 TF
families were encoded by DEGs detected in the CKM vs. UVM comparison (Figure 6a).
The families with the highest numbers of TFs were ERF, MYB, bZIP, bHLH, NAC, and
WRKY (Figure 6a). We found that 132 of the TFs were common in both comparisons; 112
of them showed consistent regulatory trends and the remaining 20 TFs showed opposite
regulatory trends (Figure 6b,c). Among the common TFs, ZmEREB211 and ZmMYB30 have
been reported as stress-related candidate gene [35,36], and ZmDBP4 and ZmWRKY114
were confirmed to be involved in the stress response [37,38]. The number of TFs exhibited
significant differences between CKF vs. UVF and CKM vs. UVM comparisons. For example,
as shown in Figure 6a, the NAC transcription factor family has 19 members in CKM vs.
UVM comparison and 32 members in CKF vs. UVF comparison.

2.5. Analysis of DEGs Associated with Plant Hormone

To identify crucial genes involved in important pathways, differentially expressed
genes of the CKM vs. CKF comparison under controlled conditions were removed from
CKF vs. UVF comparison or CKM vs. UVM comparison. In the KEGG analysis, some
of the DEGs were enriched in IAA, CK, ABA, and JA signaling pathways. A total of
3 DEGs in the CKM vs. UVM comparison, Zm00001d018973 (IAA24), Zm00001d033976
(IAA4), and Zm00001d004578 (SAUR50), and 16 DEGs in the CKF vs. UVF comparison were
associated with the AUX/IAA signaling pathway. Among them, Zm00001d042809 (ATL1),
located upstream of the signal transduction pathway, was downregulated, which suggests
that transmission of the auxin signal may be inhibited at the upstream. Among the other
15 DEGs, there were 6 upregulated and 5 downregulated DEGs that encode AUX/IAA type
proteins, and 2 upregulated and 2 downregulated DEGs that encode SAUR type proteins
(Figure 7a). For DEGs associated with the CK signal pathway, Zm00001d013412 (CRE1)
and Zm00001d037694 (AHP4) were downregulated and Zm00001d011849 (A-AAR4) was
upregulated in the CKM vs. UVM comparison, and one DEG that encoded B-ARR and
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four DEGs that encoded A-ARR were down regulated in the CKF vs. UVF comparison
(Figure 7b). Together, these results show that, under salt stress, the auxin signal transduction
pathway of cmh15 was more affected than that of CM37, and cmh15 was greatly affected in
the downstream of the cytokinin signal transduction pathway, whereas CM37 was affected
to a smaller extent in the upstream.
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FPKM+1 values (b) and fold changes (c) of the 20 TFs that showed opposite regulatory trends in the
two comparisons.

Similarly, there were four DEGs associated with the ABA signaling pathway in the
CKM vs. UVM comparison (namely Zm00001d005609 and Zm00001d042695, which en-
coded PP2C type protein and SnRK2.4 type protein, respectively, and Zm00001d044940
(bZIP100) and Zm00001d050018 (bZIP68)) all four genes were upregulated (Figure 7c).
Four DEGs related to ABA signal transduction were also detected in the CKF vs. UVF
comparison; Zm00001d011495 (PP2C15) and Zm00001d047220 (SnRK2.1) were upregulated,
and Zm00001d042779, which encodes an ABF type protein, was highly upregulated and
Zm00001d022550 (bZIP92) was slightly downregulated (Figure 7c). Among the four DEGs
associated with the JA signaling pathway that were detected in the CKM vs. UVM com-
parison, Zm00001d009714, which is upstream of signal transduction, was downregulated.
The other three DEGs encode JAZ type proteins, namely Zm00001d005813 (TIFY15), which
was downregulated, and Zm00001d014253 (TIFY20) and Zm00001d048263 (TIFY28), which
were upregulated. Five DEGs associated with the JA signaling pathway were detected in
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the CKF vs. UVF comparison. Four of them, Zm00001d026477 (ZIM34), Zm00001d028313,
Zm00001d020614 (ZIM28), and Zm00001d050365 (TIFY17), encode JAZ type proteins, the
former two were upregulated and the latter two were downregulated (Figure 7d). The
other DEG Zm00001d030028 which encodes a MYC2 type protein, was downregulated. In
the JA signaling pathway, JAZ and MYC2 interact with other hormone signal components,
which may relate to plants’ tolerance to salt stress [39].
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2.6. Analysis of DEGs Associated with Photosynthesis

In the GO analysis, some of the DEGs were annotated with photosynthesis (GO:0009765),
light harvesting (GO:0009765), and in the KEGG analysis, DEGs were enriched in photo-
synthesis (ko00195) and photosynthesis-antenna proteins (ko00196). In the CKF vs. UVF
and CKM vs. UVM comparisons, 34 and 33 DEGs were associated with photosynthesis,
respectively; 26 of the DEGs were common and all of them were downregulated (Table S2).
The DEGs affect mainly photosynthetic system I (PS I) and photosynthetic system II (PS
II). PS I and PS II absorb photons of different bands for energy transfer, and are important
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in the whole photosynthesis process [40]. The common DEGs were downregulated, but
the downregulation in the CKF vs. UVF comparison was more than it was in the CKM vs.
UVM comparison (Table S2). The specific DEGs in cmh15 were associated with PSI and
PSII (Figure 8, Table S3), whereas the specific DEGs in CM37 were associated mainly with
PS II (Figure 8, Table S4).
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3. Discussion

Salt stress is one of the main abiotic stresses limiting maize yield [41,42]. Different
plants and even different inbred line of the same plant have been shown to adapt to
salt stress in different ways [42,43]. Therefore, analyzing the salt response in different
germplasm of the same plant can increase the understanding of how plants respond to high
salt conditions. We used the CM37 and cmh15 maize inbred lines, which showed different
resistance to salt stress (Figure 1), and investigated the common and specific molecular
mechanisms associated with their response to salt stress by transcriptome analysis.

We identified 5391 and 4329 DEGs before and after salt treatment in cmh15 and
CM37, respectively. The GO enrichment analyses of the DEGs showed that photosynthesis-
related reaction processes were severely affected in cmh15 and CM37 in response to salt
stress, which is consistent with the findings in rice and wheat that showed that salt stress
significantly impacted photosynthesis in these plants [44,45]. We found that most of the
DEGs related to photosynthesis were downregulated, and that the common DEGs were
more downregulated in the CKF vs. UVF comparison than they were in the CKM vs. UVM
comparison (Table S2).
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Plant hormones have important roles in plant growth and development and in the
response to abiotic stresses [20,21]. After exposure to salt stress, endogenous ABA levels in
plants have been shown to increase rapidly, thereby enhancing the regulation of stomatal
opening and closing and increasing the synthesis of osmoregulatory substances [23,46,47].
We found that most of the DEGs associated with ABA were upregulated in CM37 and
cmh15 after salt treatment, suggesting that the ABA signaling pathway has an important
role in the salt stress response. JAZ and MYC2 in the JA signaling pathway, are essential
for the response of plants to salt stress [39], and overexpression of JAZ will improve the
transgenic plants’ tolerance to salt stress [48]. We found that the two DEGs that encode
JAZ type proteins were upregulated in the CKM vs. UVM and CKF vs. UVF comparisons,
which may help the plants cope with salt stress. Zm00001d030028, which encodes the
MYC-type protein MYC7, was downregulated in the CKF vs. UVF comparison, and no
MYC-type DEGs were found in the CKM vs. UVM comparison. In Arabidopsis under salt
stress, AtMYC2 was shown to play an important role in inhibiting the JA signal activator
on the elongation of primary root cells [49]. We found that the numbers of auxin- and CK-
related DEGs varied greatly in cmh15 and CM37. Our data suggest that the auxin and CK
signaling pathways may be more affected in cmh15 than they were in CM37 (Figure 7a,b).
The reduction in growth hormone accumulation and the inhibition of growth hormone
receptor expression to maintain a low growth hormone signaling response state, have been
shown to be important for plants to cope with salt stress [50–52].

TFs are known to play important roles in plants’ response to salt stress. We found that
there more DEGs that encode WRKY, NAC, MYB-related, ERF, G2-Like, GARS, and HD-ZIP
TF families in cmh15 than there were in CM37 under salt stress (Figure 7). WRKY TFs had
been confirmed to play an important role in the response to salt stress. In maize, ZmWRKY17
and ZmWRKY114 are negative regulators that reduce the tolerance of trans-genic crops
to salt stress [38,53]. In our study, ZmWRKY114 was upregulated in CM37 and downreg-
ulated in cmh15, which is consistent with its known function. Plant CCCH zinc finger
proteins play important roles in plants’ response to abiotic stress. The AT2G40140 (AtSZF2)
Arabidopsis mutant showed increased expression of salt-stress responsive genes under high
salt stress, indicating that AtSZF2 negatively regulates the tolerance of Arabidopsis to salt
stress [54]. Zm00001d010956, a homolog of AtSZF2 in maize, was upregulated in CM37 and
downregulated in cmh15.

The genotype-specific DEGs in the CKM vs. UVM and CMF vs. UVF comparisons
were annotated with GO terms and KEGG pathways (Figure S2). We found that the DEGs
involved in mitogen-activated protein kinase (MAPK) cascade pathway were enriched
in CKF vs. UVF comparison. In Arabidopsis and rice, the MAPK signaling pathway
has an important role in the plant response to salt stress [55,56]. In addition, the DEGs
involved in fatty-acidrelated pathways were also significantly enriched in CKF vs. UVF
comparison. In rice, increasing the fatty acid content could enhance the activity of Na+/H+

transport proteins and thus enhances the tolerance of rice to salt stress [57]. We concluded
that the differences of the enriched pathways may be related to the salt-response of the
two inbred lines.

On the basis of our findings and those reported in the previous studies, we constructed
a model to illustrate the differences between cmh15 and CM37 that may be closely related
to their growth and response to salt stress. This model may provide a basis for future
studies into the salt stress mechanisms and for breeding salt-tolerance germplasm in maize
(Figure 9).
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4. Materials and Methods
4.1. Plant Growth and Salt Treatment

The seeds of the CM37 and cmh15 inbred lines were provided by Professor Qing Ma.
The seeds were selected and planted in a greenhouse with a 28 ◦C/23 ◦C 16-h light/8-h
dark cycle. When the seedlings reached the three-leaf stage, they were irrigated with
300 mM of NaCl every 2 days for 1 week. The seedlings in the control group were irrigated
normally. After one week of treatment, the third leaf of each sample was collected in liquid
nitrogen and stored at −80 ◦C for RNA-seq.

4.2. Determination of RWC, REL MDA and Protocol of DAB Staining

The RWC and REL of the control and salt-treated seedlings were measured as de-
scribed previously [58]. MDA content was measured using the MDA assay kit according
to the manufacturer’s instructions (Jiancheng Bioengineering Institute, Nanjing, China).
Hydrogen peroxide accumulation was measured by DAB staining (Jiancheng Bioengineer-
ing Institute) according to the manufacturer’s protocol. Plant height, fresh weight, and dry
weight of the control and salt-treated CM37 and cmh15 plants were measured.

4.3. Extraction of RNA and Construction of cDNA Library

Total RNA of each sample was extracted using a TRIzol Reagent Mini Kit (Qiagen
ChinaCo., Ltd, Shanghai, China). The extracted RNA was quantified using an Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and qualified by NanoDrop
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(Invitrogen, San Diego, CA, USA). Total RNA (1 µg) with RNA integrity number values > 7
was used for cDNA library construction. Poly(A) mRNA was isolated using the NEBNext®

Poly(A) mRNA Magnetic Isolation Module (NEB, Lpswich, MA, USA). The cDNA libraries
were prepared using a NEBNext® Ultra™ RNA Library Prep Kit for Illumina® according
to the manufacturer’s instructions (New England Biolabs Inc.). Multiplexed libraries with
different indices were sequenced on an Illumina HiSeq platform (Illumina, San Diego, CA,
USA) according to the manufacturer’s instructions.

4.4. Sequence Assembly and Data Analysis

The raw reads were filtered to obtain high-quality clean reads by removing adapter
sequences, sequences that contained poly(N), and short sequences < 75 bp. HISAT2 (v2.0.1)
was used to aligning the clean reads to the maize B73 reference genome (RefGen_v4) [59].
The expression levels of the genes in the paired-end clean data were estimated using HTSeq
(v0.6.1) [60]. The gene expression level was normalized by the FPKM method [61]. The DE-
Seq2 Bioconductor package was used for differential expression analysis [62]. Genes with
fold change ≥ 2 and adjusted p value ≤ 0.05 were considered to be differentially expressed.

4.5. Validation of RNA-seq Data by qRT-PCR

We selected nine DEGs for validation by qRT-PCR. Single-stranded cDNA was ob-
tained using Evo MMLV RT Premix for qRT-PCR (Accurate Biotechnology Co., Ltd., Chang-
sha, China) according to manufacturer’s protocol. Gene special primers were designed
using Pri-mer3Plus (http://www.primer3plus.com/, accessed on 10 January 2021). Fast-
Start Essential DNA Green Master (Roche, Basel, Switzerland) was used for the PCRs.
The reaction system and procedure are described in a previous paper [63]. The maize
GAPDH gene (accession number: NM_001111943.1) was used as the internal control for
normalization, and three technical replicates of each cDNA sample were analyzed. The
primer sequences for qRT-PCR are listed in Table S5. The 2−∆∆CT method was used to
calculate the relative expression level of each gene [64].

4.6. GO and KEGG Enrichment Analysis

The GO enrichment analysis was performed using GOSeq (v1.34.1). The KEGG enrich-
ment analysis was performed using KEGG web service (http://www.kegg.jp/, accessed
on 20 November 2020). GO terms and KEGG pathways with adjusted p values ≤ 0.05 were
considered as significantly enriched.

4.7. Statistical Analysis

The SPSS Statistics 19.0 was used to analyze the data of each group.

5. Conclusions

We analyzed the RNA-seq to provide a global view of differences in the transcriptomes
of maize inbred lines cmh15 and CM37 under normal and salt-stress conditions. A total
of 5391 and 4329 DEGs were identified in the 2 inbred lines with and without salt stress,
respectively. Analysis of the DEGs showed that salt stress severely affected photosynthesis
and oxidation-reduction processes in the plants. We found that the regulatory role of TFs
and phytohormone signaling pathways were very important in the response of cmh15 and
CM37 to salt stress. Our results show that there were similarities and differences in the
responses of cmh15 and CM37 to salt stress, and the findings will provide new perspectives
on the salt mechanisms of maize.
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Abbreviations

ABA abscisic acid
ABF ABA-responsive element binding factor
AUX auxin
CK cytokinin
CKF control group of cmh15
CKM control group of CM37
DAB diaminobenzidine
DEG differential expressed gene
GO gene Ontology
HKT1 high affinity potassium transporter1
JA jasmonic acid
KEGG Kyoto Encyclopedia of Genes and Genomes
MAPK mitogen-activated protein kinase
MDA malondialdehyde
PCA principal component analysis
POD peroxidase
qRT-PCR quantitative real-time polymerase chain reaction
REL relative electrolyte leakage
RNA-seq RNA sequencing
ROS reactive oxygen species
RWC relative water content
SA salicylic acid
SOD superoxide dismutase
SOS salt overly sensitive;
UVF salt treatment group of cmh15
UVM salt treatment of CM37
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