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Abstract

We present the first comparative plastome study of Pleurothallidinae with analyses of struc-

tural and molecular characteristics and identification of the ten most-variable regions to be

incorporated in future phylogenetic studies. We sequenced complete plastomes of eight

species in the subtribe and compared phylogenetic results of these to parallel analyses of

their nuclear ribosomal DNA operon (26S, 18S, and 5.8S plus associated spacers) and par-

tial mitochondrial genome sequences (29–38 genes and partial introns). These plastomes

have the typical quadripartite structure for which gene content is similar to those of other

orchids, with variation only in the composition of the ndh genes. The independent loss of

ndh genes had an impact on which genes border the inverted repeats and thus the size of

the small single-copy region, leading to variation in overall plastome length. Analyses of 68

coding sequences indicated the same pattern of codon usage as in other orchids, and 13

protein-coding genes under positive selection were detected. Also, we identified 62 poly-

morphic microsatellite loci and ten highly variable regions, for which we designed primers.

Phylogenomic analyses showed that the top ten mutational hotspots represent well the phy-

logenetic relationships found with whole plastome sequences. However, strongly supported

incongruence was observed among plastid, nuclear ribosomal DNA operon, and mitochon-

drial DNA trees, indicating possible occurrence of incomplete lineage sorting and/or intro-

gressive hybridization. Despite the incongruence, the mtDNA tree retrieved some clades

found in other analyses. These results, together with performance in recent studies, support

a future role for mitochondrial markers in Pleurothallidinae phylogenetics.
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1. Introduction

Neotropical Pleurothallidinae (Epidendreae, Epidendroideae) are the largest orchid subtribe,

comprising more than 5,000 accepted species in 44 genera [1, 2]. These are mostly epiphytes

and can occupy almost all habitat types from North America (Florida) and the Caribbean

through southern South America (Argentina) [3], although most pleurothallid species have

narrow endemic distributions, and, therefore, many are considered endangered (e.g. [4]).

Previously, circumscriptions of Pleurothallidinae genera were based on morphological

characters, and so was the inference of evolutionary relationships: Luer [5] classified them into

informal groups or “affinities”, relying on anther position and presence/absence of the annulus

(a ring-like abscission zone on leaves). However, the first reclassification of Pleurothallidinae

based on molecular evidence [6] highlighted several problems at generic and infrageneric lev-

els (e.g. the polyphyletic “supergenus” Pleurothallis R.Br.), but some of the taxonomic changes

that followed [7] were contested by Luer [8] due to the lack of morphological correlates, sam-

pling problems, and the relatively low numbers of molecular markers used (i.e. often just

nuclear ribosomal internal transcribed spacer, nrITS, plastid matK gene, and trnL-trnF intron/

intergenic spacer).

This taxonomic controversy inspired more phylogenetic studies in the subtribe, mostly

focused on specific genera and based almost only on nrITS (e.g. [9–17]). These studies initiated

another round of reclassification in Pleurothallidinae [18], in which phylogenetic positions

and generic classification were reassessed, providing a good framework for future studies. Kar-

reman’s proposal [18] recognized nine genera affinities, but due to a large number of species

and infrageneric categories in the subtribe, some relationships remained inconclusive because

the compiled phylogenetic trees did not sample and fully resolve all Pleurothallidinae clades.

Thus, some nomenclatural instability in the subtribe has continued and greatly affects regula-

tions on international trade and conservation efforts that depend on Red Lists and population

genetic studies.

In addition to nrITS, plastid genomes (plastomes) have been a source of good markers for

Orchidaceae at various taxonomic levels [19]. In Pleurothallidinae, the matK gene and trnK
−UUU intron are the main plastid markers used in combination with nrITS, but they are

insufficiently variable to generate well resolved relationships for many genera. More recent

molecular studies in the subtribe have used a wider number of plastid DNA markers (i.e. ycf1
[20], matK, psbD-trnT, rps16-trnQ, trnH-psbA, and trnS-trnG intergenic spacers [21]) in com-

bination with nrITS, which improved tree resolution and support. However, the general utility

of plastid DNA markers for the subtribe is still under-investigated, particularly which are the

most variable and informative.

The advent of next-generation sequencing (NGS) has made plastome sequencing faster and

more accessible [22], and they have become the main source of phylogenetic information for

angiosperms [19, 23]. In Orchidaceae, plastome sequences have been compared among genera

and species to find the most-variable regions, termed mutational hotspots [24–29]. Hence,

comparative analyses of complete plastome sequences of Pleurothallidinae can indicate better

molecular markers, but thus far only three plastomes of the subtribe are publicly available.

Only the overall structure of these plastomes was analyzed and compared so far [30], with no

analysis of which regions were more variable.

With this in view, we performed the first plastome study for Pleurothallidinae to identify

mutational hotspots for use in future phylogenetic and population studies. We sequenced

eight Pleurothallidinae plastomes and included two of those previously published in our analy-

ses. We analyzed genome size and structure, gene content and order, and inverted repeats bor-

ders. We also compared codon usage and frequency and detected protein-coding genes under
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positive selection. In addition, we identified polymorphic microsatellite loci and the ten most-

variable regions, for which we designed primers. Finally, we used a maximum likelihood phy-

logenetic approach to evaluate and compare relationships of pleurothallid genera [18] based

on these plastomes, nuclear ribosomal DNA operons, mitochondrial data, and combined

analyses.

2. Materials and methods

Species sampling

We included eight Pleurothallidinae species from individuals cultivated in the greenhouse of

the Botany Department of Universidade Federal do Paraná (UFPR), Brazil. Fresh leaves were

collected from these individuals for DNA extraction and NGS, and the vouchers were depos-

ited at the UFPR herbarium (UPCB) [31]. We also used the plastome sequence of Anathallis
obovata (Lindl.) Pridgeon & MW.Chase (MH979332), which was previously published by us

[30], and obtained from GenBank the plastome sequence of Masdevallia picturata Rchb.f.

(KJ566305), totaling ten species from subtribe Pleurothallidinae, representing seven of the

nine generic affinity groups proposed by Karremans [18]. We also downloaded from GenBank

the plastome sequences of two Laeliinae species to serve as the outgroup, according to the

most recent classification of Orchidaceae [2]. Voucher and GenBank accession numbers of all

species sampled are provided in S1 Table.

DNA extraction and NGS

We followed a plastid-enrichment procedure using 2 g of leaf tissue according to Sakaguchi

et al. [32] and then extracted genomic DNA following the Doyle & Doyle [33] protocol, with

reagent scaling to 2 mL microtubes and increasing the incubation time to 2−4 hours at 60˚C.

DNA was purified with DNA Clean and Concentrator kit (Zymo Research, Orange, CA) and

sequenced on an Illumina MiSeq1 using DNA Nextera XT Sample Prep kit (IlluminaTM) and

MiSeq Reagent Kit V2 (IlluminaTM).

Genome assembly

The paired-end reads obtained from Illumina MiSeq sequencing (2 × 250 bp) were trimmed at

0.05 error probability limit and discarded when below 50 bp long with the CLC Genomics

Workbench 8.0 (CLC Bio, Qiagen). Reads were then used in genome assembly with a mixed

guided and de novo approach, performed in both CLC Genomics Workbench and Geneious

Prime 2020.0.5 (Biomatters Ltd.). In the latter, we generated contigs from a de novo assembly

of the reads using the MIRA 4.0 plugin, with the most accurate settings. In CLC Genomics

Workbench, we mapped the reads in the complete genome sequence of Anathallis obovata
(MH979332) using the default configuration and then generated a consensus sequence that

was gapped in low-coverage areas (� 5×). These gaps were manually filled using the contigs,

editing the former consensus sequence into a new one. The reads were mapped into the new

consensus sequence with CLC Genomics Workbench, and the entire map was visually

inspected to check for mismatches and assembly errors, which were manually corrected using

the contigs. Sequencing information for each sample is available in S2 Table.

Genome annotation and graphical representations. Gene, coding sequence (CDS), ribo-

somal DNA (rDNA), and transport RNA (tRNA) annotations were imported from the com-

plete plastome sequence of Anathallis obovata [30] in Geneious Prime. All annotations were

manually verified and edited against those of the Dendrobium officinale Kimura & Migo

(KC771275) and Masdevallia picturata (KJ566305) reference genomes. The IRs were identified
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and annotated using the Find Repeats tool of Geneious Prime and verified through REPuter

online version (http://bibiserv.cebitec.uni-bielefeld.de/reputer). All sequences were submitted

to GenBank through Geneious Prime. The.gb files of Pleurothallidinae plastomes were

uploaded to Organellar Genome DRAW v1.1 [34] to make the genome maps and to IRscope

[35] to produce the graphical representation of IR/LSC and IR/SSC junctions.

Mitochondrial and nuclear sequences. From the sequencing output of the eight species

sequenced here plus that of Anathallis obovata sequenced by us previously [30], we recovered

the complete sequence of the nuclear ribosomal DNA (nrDNA) operon (26S, 18.S, and 5.8S

plus the associated spacers, ITS1 and ITS2) and parts of the mitochondrial genome (S2 Table).

We mapped the raw reads to the nuclear ribosomal DNA sequence of Phalaenopsis japonica
(Rchb.f.) Kocyan & Schuit. (MN221419) and the complete mitochondrial genome of Allium
cepa L. (NC_030100.1) with Geneious Prime, using BBmap, with the highest sensitivity and

Kmer length = 8. Also, in Geneious Prime, we annotated the nrDNA operon based on

Acianthera luteola (Lindl.) Pridgeon & M.W. Chase (KX495754) and using BLAST. For mito-

chondrial DNA (mtDNA), we extracted only regions with coverage depth� 8× as consensus

sequences and imported CDSs, rDNAs, and tRNAs annotations from the reference sequence

(NC_030100.1), which were then verified manually (S3 Table). Consensus sequences without

annotations were excluded from the analyses and GenBank submission.

Sequence alignments

All alignments were made in Geneious Prime. We performed a Mauve alignment of the ten

complete Pleurothallidinae plastomes with the progressiveMauve algorithm [36] to compare

their general structure. For all subsequent analyses, we removed one of IRs from the plastome

sequences to avoid overrepresentation. All alignments were made using MAFFT v.7.450 [37]

with the FFT-NS-2 algorithm.

Codon usage and molecular evolution analyses

Codon usage and molecular evolution analyses were performed in the R software environ-

ment (https://www.r-project.org/). For the codon usage analysis, we extracted all complete

CDS annotations from each of the ten Pleurothallidinae plastomes using Geneious Prime

tools. Relative synonymous codon usage (RSCU) and codon frequencies were calculated for

each CDS set using the SeqinR package [38]. For the molecular evolution analysis, we

extracted and aligned separately all CDSs in common to the ten Pleurothallidinae plastomes

in Geneious Prime. This analysis consisted of the application of Tajima’s D neutrality test

[39], from pegas package [40], in each CDS alignment. All codes and datasets used are avail-

able in S1 File.

Simple sequence repeats (SSRs)

Plastid SSRs were identified for the ten Pleurothallidinae plastomes through MISA-web

online program [41], using the following search minimum parameters: ten repetitions for

mononucleotide motifs, five repetitions for dinucleotide motifs, and three repetitions for tri-,

tetra-, penta-, and hexanucleotide motifs. All SSRs were manually annotated to the

sequences, which were then aligned (S2 File). We designed primers for polymorphic SSRs

present in at least seven plastomes using Geneious Prime, with the following characteristics:

18−27 bp in length, guanine-cytosine (GC) content between 20−80%, melting temperature

(Tm) of 57−63˚C with a maximum variation of 1˚C between primer pairs, and product sizes

between 100−500 bp.
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Sequence variability and indels events

We aligned the ten Pleurothallidinae plastome sequences and then extracted all introns and

intergenic spacers (IGSs) with 150 bp minimum length using Geneious Prime tools. We also

extracted molecular markers that have been commonly used in Orchidaceae phylogenetics,

such as the trnH-psbA intergenic spacer, the matK CDS, and the 3’ portion of ycf1 CDS [19,

42]. All aligned sequences were uploaded to DnaSP v.6 software [43] to obtain the total num-

ber of variable sites and insertions/deletions (indels). These data were used to calculate the

sequence variability (SV) sensu Shaw et al. [44] but considering indels as events instead of sites

to reduce homoplasy in these alignments [45]. Therefore, we used the following Eq (1) to cal-

culate SV, where l = total length in bp, m = total number of mutations, and i = number of

indels events.

SV ¼
mþ i

l þmþ i
� 100 ð1Þ

The ten sequences with the highest SV were selected as potential molecular markers for

Pleurothalldinae. We designed primers for these sequences in Geneious Prime with the follow-

ing characteristics: 18−27 bp in length, GC content between 20−80%, 57−63˚C Tm, maximum

variation of 2˚C annealing temperature between primer pairs, and product size between 100

−1,000 bp.

We also extracted the IR, LSC, and SSC regions of each Pleurothallidinae plastome using

Geneious Prime tools and performed multiple and pairwise alignments using Masdevallia pic-
turata as the reference. Back in DnaSP, we computed the number of indels events per region

and each plastome.

Phylogenetic analyses

All phylogenetic analyses were performed with maximum likelihood (ML) using IQ-tree

v.1.6.11 [46], with 1,000 ultra-fast bootstrap replicates and -bnni strategy to reduce the risk of

overestimation [47–49]. The best nucleotide substitution model was set for each dataset under

the AIC criterion using ModelFinder [50], implemented on IQ-tree. The resulting trees were

visualized and edited using Figtree v.1.4.1 (http://tree.bio.ed.ac.uk) and CorelDRAW X8

(https://www.coreldraw.com/). We analyzed and compared the following aligned datasets

including the twelve Epidendreae samples: complete plastome sequences (one IR), plastid

CDSs, plastid non-coding sequences, and top ten plastid mutational hotspots. We also ana-

lyzed, compared, and combined the following datasets including nine Pleurothallidinae sam-

ples (excluding Masdevallia picturata): complete plastome sequences (one IR), mtDNA, and

nrDNA operon. For partitioned datasets, we first defined the best substitution model for each

partition before combining them using Geneious Prime tools. Bootstrap percentages (BP)

above 95 were considered strongly supported [51]. The Epidendreae complete plastome data-

set and the Pleurothallidinae combined dataset are available in S3 File.

3. Results and discussion

The overall characteristics of the plastomes analyzed are summarized in Table 1 and those of

the mitochondrial DNA in Table 2. Pleurothallidinae plastomes varied from 148,246 to

157,905 bp in length, with Acianthera recurva (Lindl.) Pridgeon & M.W. Chase the shortest

and Myoxanthus exasperatus (Lindl.) Luer the longest. GC content varied little (36.9−37.1%).

They all possess the typical quadripartite structure of most angiosperms plastomes: LSC of

83,694−85,605 bp and SSC of 10,573−18,444 bp, interspersed by two IRs of 25,242−27,020 bp

(S1 Fig) [52].
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Gene composition is similar among the Pleurothallidinae plastomes analyzed: 102 genes are

shared, being 68 CDSs, 4 rDNAs, and 30 tRNAs (S4 Table), and a variable set of ndh genes (S2

Fig). Of the 11 ndh genes, only ndhB, ndhD, and ndhH are present in all plastomes, but those

with complete reading frames include only Myoxanthus exasperatus, Octomeria grandiflora
Lindl., Stelis grandiflora Lindl., and S. montserratii (Porsch) Karremans. The Masdevallia pic-
turata and Octomeria grandiflora plastomes are the only ones that have all 11 ndh genes intact,

whereas Acianthera recurva has the fewest of these genes, only five, none with complete CDSs.

Despite the variation observed in ndh gene content, the Mauve alignment showed no inver-

sions or other rearrangements (S3 Fig). Complete losses and pseudogenization of ndh genes

are common in Orchidaceae and have occurred independently [53–58]. These events have

been linked to IR/SSC border instability and IR expansion [54, 57, 58], which we observed for

the IR borders among these Pleurothallidinae plastomes (Fig 1). The IRa/SSC junction (JSA) is

located within the ycf1 gene, producing a partial copy of this gene in IRb, but there are three

types of IRb/SSC junctions (JSB) in Pleurothallidinae that can be classified into types I, II, and

III sensu Luo et al. [25]. Type I occurs in Anathallis obovata, Dryadella lilliputiana (Cogn.)

Luer, and Pabstiella mirabilis and is characterized by the presence of ndhF in the SSC without

overlapping the JSB. Type II was the most common and detected in Anathallis microphyta,

Masdevallia picturata, Myoxanthus exasperatus, Octomeria grandiflora, Stelis grandiflora, and

S. montserratii, in which ndhF overlaps the JSB. Finally, type III, ndhF deletion, was found

only in Acianthera recurva.

We also observed a significant reduction of the ycf1 partial copy in Pabstiella mirabilis due

to a 1,000 bp shift of the gene into the SSC. Size reduction of ycf1 in IRs was highlighted as one

Table 1. General characteristics of Pleurothallidinae plastomes analyzed.

Taxon Length (bp) LSC (bp) SSC (bp) IR (bp) %GC

Acianthera recurva 148,246 84,871 10,573 26,401 37.0

Anathallis microphyta 154,558 84,597 15,993 26,984 37.0

Anathallis obovata 155,515 86,694 17,923 26,949 37.1

Dryadella lilliputiana 156,807 84,943 17,992 26,936 37.1

Masdevallia picturata 156,045 84,948 18,029 26,534 36.9

Myoxanthus exasperatus 157,905 85,605 18,260 27,020 37.1

Octomeria grandiflora 155,284 84,916 17,874 26,247 36.9

Pabstiella mirabilis 150,317 83,699 16,134 25,242 37.1

Stelis grandiflora 157,535 85,205 18,444 26,943 36.9

Stelis montserratii 157,479 85,147 18,366 26,983 36.9

https://doi.org/10.1371/journal.pone.0256126.t001

Table 2. General characteristics of mtDNA dataset for Pleurothallidinae.

Taxon Total length (bp) %GC # genes # CDSs # tRNAs # rDNAs

Acianthera recurva 62,237 48.3 38 26 9 3

Anathallis microphyta 32,417 46.5 32 25 4 3

Anathallis obovata 46,959 47.0 33 25 5 3

Dryadella lilliputiana 83,225 47.2 36 25 8 3

Myoxanthus exasperatus 61,363 47.4 37 26 8 3

Octomeria grandiflora 63,381 48.2 33 25 6 2

Pabstiella mirabilis 43,635 48.4 29 25 1 3

Stelis grandiflora 49,861 47.4 34 25 6 3

Stelis montserratii 73,468 47.4 38 26 9 3

https://doi.org/10.1371/journal.pone.0256126.t002
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possible outcome of IRs/SSC junction instability promoted by deletion/retention of ndh genes,

especially ndhF [54]. Pabstiella mirabilis has only 15 bp of ndhF, but other Pleurothallidinae

with this gene missing or pseudogenized did not suffer alterations in ycf1 size at the IRs. Thus,

IR/SSC junction instability appears to have many attributes not exclusively dependent on the

ndh gene content. The specific complement of ndh genes in P. mirabilis could have produced

some IR reduction, but this was too small to alter gene content.

The LSC/IRb junction (JLB) varied among Pleurothallidinae as well. In Octomeria grandi-
flora and Masdevallia picturata, the JLB is situated in the rpl22-rps19 IGS and rps19 gene,

respectively, producing a partial copy of the rps19 gene at IRa in this case (Fig 1). However, in

the other Pleurothallidinae, the JLB is located in the rpl22 gene, producing a partial copy of

this gene in IRa (Fig 1). We believe that retention of complete CDSs of all 11 ndh genes in Mas-
devallia picturata and Octomeria grandiflora may have caused a slight IR expansion, thus gen-

erating the variation observed in JLB position in these two plastomes relative to the others.

Despite this, all ten plastomes have the trnH-GUG and rps19 genes in both IRs, even though

rps19 is truncated in the IRa of Masdevallia picturata, which is the type III JLB, conserved

among monocots [59].

IR expansion/retraction is considered one of the main causes of length variation in angio-

sperm plastomes [60–62]. However, the first study in Dendrobium Sw. showed a major contri-

bution of the LSC to plastome total size variation due to the presence of large number of indels

in this region [27]. This same large LSC contribution was also observed in Pleurothallidinae: of

the 2,417 indel events, 1,899 (78.57%) are in the LSC, 384 (15.89%) in the SSC, and 134

(5.54%) in the IR (S5 Table). Nonetheless, when we analyzed indels events in each plastome,

we found no correlation between the number of LSC indels and genome size (R = −0.52,

p = 0.16), but we observed such a correlation with indels in the IR (R = −0.69, p = 0.04). We

also found a correlation between genome size and LSC size (R = 0.70, p = 0.04), SSC size

(R = 0.93, p< 0.01), and ndh CDSs (R = 0.68, p = 0.05). SSC size, in turn, is sensitive to ndh
gene content (R = 0.66, p = 0.05) and their CDSs (R = 0.77, p = 0.01). Correlation plots are pre-

sented in S4 Fig. These results contradict, in part, the findings of Niu et al. [27] but also show

that plastome size is affected by a combination of factors, for which the relative importance

varies among clades. For Pleurothallidinae plastomes, which have few generic differences,

Fig 1. Inverted repeats (IRs) borders of the ten Pleurothallidinae plastomes analyzed. IRs/SSC junction types sensu Luo et al. [25].

https://doi.org/10.1371/journal.pone.0256126.g001
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indels in the most conservative region, the IR, have a greater impact on length than LSC indels,

despite their predominance in the latter. Also, the sizes of LSC and SSC contribute unequally to

Pleurothallidinae genome size because both varied more than the IR, but SSC size varied the

most: about four times the range observed for LSC and IR (7,871 bp, against 1,906 bp of LSC

and 1,778 bp of IR). In addition, seven of the 11 ndh genes are located in SSC, so it is not sur-

prising that ndh gene composition greatly influences the length of this region and, consequently,

plastome size because it is the main distinctive feature among Pleurothallidinae genomes. This

influence of ndh gene deletion/retention on the SSC size has been widely reported in the litera-

ture [53, 54, 63, 64], but the importance of this region for orchid plastome size variation has

only been observed for Pleurothallidinae and Bulbophyllum Thouars [29] thus far.

Protein-coding genes

We observed that relative codon frequencies are similar among Pleurothallidinae (Fig 2, S6

Table). The most common were AAA (lysine) in Acianthera recurva, Anathallis microphyta,

and Pabstiella mirabilis, GAA (glutamate) in Dryadella lilliputiana, and ATT (isoleucine) in

the remaining species, whereas TGC (cysteine) was the rarest after stop codons. Among amino

acids, leucine was the most frequent, and cysteine the least, similar to that observed in Bulbo-
phyllum plastomes [29]. ATG (methionine) was the main start codon, but there is GTG in

rps19, ACG in ndhD and rps2, CTG in ndhC (just Dryadella lilliputiana), and ATT in matK,

except in Pabstiella mirabilis, which has an alternative start codon [65]. For relative synony-

mous codon usage, we identified a preference for codons that end in A/T (AT3) instead of G/C

(GC3), a bias also observed for other angiosperms, including Bulbophyllum, and likely corre-

lated with the high AT content of plastomes [29, 66–68].

To assess selection in protein-coding genes, we applied Tajima’s D test in the 68 CDSs

shared among Pleurothallidinae. The results indicated that 13 genes are under positive selec-

tion: accD, atpB, petB, psbB, psbT, rbcL, rpl22, rpl32, rpl33, rpoC1, rps18, ycf1, and ycf2 (S7

Table). These genes have point mutations (SNPs), alignment gaps, and size variation. One of

the most informative markers for land plants, ycf1 is the second largest gene in the plastome

and has been suggested as a potential DNA barcode [42]. The accD, rbcL, rpl22, rpl32, rpoC1,

and ycf2 genes also appear to be under positive selection in other Orchidaceae, perhaps related

to their adaptative capacities [29, 68, 69].

Microsatellites (SSRs)

Simple sequence repeats (SSRs), also known as short tandem sequences or microsatellites, are

1−6 bp repeats common in all genomes [70, 71]. We identified 1,290 SSRs in Pleurothallidinae,

Fig 2. Heatmap of relative synonymous codon usage (RSCU) and codon relative frequency observed for Pleurothallidinae CDSs. The lowest frequency is indicated

by purple and highest yellow. Relative frequencies are proportional to circle sizes.

https://doi.org/10.1371/journal.pone.0256126.g002
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of which 170 (13%) are unique and varied 113−143 per species (S8 Table). They were most

common in the LSC (71%) and IGSs (55.6%) and least abundant in the IR (13.5%) and introns

(16.2%). This distribution is as expected: the LSC is the largest region [22], and IGSs are the

most common and variable plastome category [22, 72]. This is similar to what was found in

Bulbophyllum [29] and Dendrobium [27] plastomes. Mono- and trinucleotide repeats are the

most common and hexanucleotides the rarest, the latter absent in some species (S8 Table). As

for other Orchidaceae [27, 29, 68, 73], A/T repeats predominate, followed by AAG/CTT. Most

trinucleotide microsatellites were found in CDSs and the IR, the latter possessing nearly all of

these. Indeed, tri- and hexanucleotide SSRs were previously reported to be more frequent in

CDSs than any other plastome category [74], undoubtedly due to maintenance of protein func-

tion [74, 75].

Plastid microsatellites are excellent tools for genotyping, genetic mapping, and population

studies [76–78]. Therefore, we designed 54 primers that cover 62 polymorphic SSR loci present

in at least seven Pleurothallidinae (S9 Table). These repeats consist of 17 polyTs (10−19x), nine

polyAs (10−19x), three di- (4−23x), 31 tri- (3−10x), one tetra- (3x), and one pentanucleotide

repeat (3−4x). We hope that providing this set of microsatellite primers will encourage more

population and species delimitation studies in Pleurothallidinae.

Mutation hotspots

We analyzed levels of variation in 104 sequences more than 150 bp long, comprising IGSs,

introns, and two CDSs (S10 Table). The most variable sequences (higher SV) are IGSs that

have low GC content (Fig 3). This inverse relation between SV and %GC was expected and

previously reported in Bulbophyllum and Dendrobium, as AT-rich sequences have higher

mutation rates [27, 29, 68]. Seven of the ten sequences with highest SV found (ndhF-rpl32,

psbB-psbT, psbK-psbI, rpl16-rps3, rpl32-trnL, trnR-atpA, and trnS-trnG) were previously identi-

fied in various other orchid clades [24, 26–29, 64, 68], but we identify here for the first time in

orchids the following: petN-psbM, psbI-trnS, and trnW-trnP.

Most phylogenetic studies in Pleurothallidinae have used nrITS, sometimes combined with

the trnKUUU intron or matK (e.g. [6, 14]). Other markers such as ycf1 and trnH-psbA were

included more recently [20, 21]. These all have SV below 25%, in contrast with 29.63−41.67%

for the ten hotspots (S10 Table). Therefore, we designed subtribe-specific primers for the top

ten to assist future phylogenetic analyses in Pleurothallidinae (S11 Table).

Phylogenomics

The aligned matrix of Epidendreae plastome sequences consisted of 142,507 bp, ~10% of

which are variable and of these 41.47% are potentially parsimony-informative (PIC). As

expected, non-coding regions had more variable characters (13.69%) and proportionally fewer

PICs, whereas protein-coding loci are more conservative (Table 3) [79]. Tree topology based

on plastid hotspots was the same as plastid non-coding DNA (NC-DNA) analysis (Figs 4 and

S5). When comparing ML trees from the plastome datasets, the only disagreement was the

position of Masdevallia picturata, but not with strong support (Fig 4).

Based on our results (Fig 4), Octomeria grandiflora (Octomeria affinity sensu Karremans

[18]) is sister to the rest of the sampled subtribe, followed next by the clade of Acianthera
recurva (Acianthera affinity) and Myoxanthus exasperatus (Restrepia affinity). Then Dryadella
lilliputiana (Specklinia affinity) is sister to the last two clades. The first is composed of Anathal-
lis microphyta and A. obovata (Lepanthes affinity), and the second by Pabstiella mirabilis sister

to Stelis grandiflora and S. montserratii (Pleurothallis affinity). Masdevallia picturata (Masde-
vallia affinity) is sister to the Pleurothallis affinity clade in whole plastome and CDS analyses,
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and sister to the Lepanthes affinity clade in NC-DNA and hotspots analyses, with higher sup-

port in the latter.

Comparing this topology with Karremans’ proposal [18], the positions of the Octomeria,

Restrepia, and Acianthera affinities in this order agree. However, the Masdevallia and Speckli-
nia affinities were not positioned accordingly. The classification of Pleurothallidinae genera

into affinities is a compilation of phylogenetic results based almost exclusively on nrITS data,

so this disagreement may be due to genomic incongruence. In agreement, the nuclear ribo-

somal DNA (nrDNA) operon analysis recovered the Specklinia+Pleurothallis relationship (S6

Fig). The mtDNA analysis, on the other hand, recovered only the Lepanthes and Acianthera+-
Myoxanthus clades, with the former sister of the rest (S6 Fig). It must be noted that such a

sparse sample of genera does not constitute a robust evaluation of Karremans’ ideas of rela-

tionships, and our aim was to describe and compare the large amount of molecular data pre-

sented here.

Plastid molecular markers are widely used in phylogenetic studies of land plants due to

their abundance in cells and easy amplification/sequencing [19, 80, 81]. The nuclear ribosomal

internal transcribed spacers (nrITS) have poorer sequencing success than plastid markers, but

they hold the majority of nrDNA operon molecular variability and have great discriminant

power at the species level for most angiosperms [19, 82]. Hence, plastid markers are often

combined with nrITS, specially in orchid phylogenetic studies (e.g. [6, 14, 21, 25, 83, 84]).

Highly supported discordance between plastid and nuclear trees is uncommon in Orchidaceae

but has been detected in Epidendroideae [55], especially in Catasetinae [85] and here in

Fig 3. Graph of sequence variability (SV) and %GC for 104 Pleurothallidinae plastid sequences. The ten most-

variable sequences are highlighted.

https://doi.org/10.1371/journal.pone.0256126.g003

Table 3. Number of sequences, length, nucleotide variation, and best substitution model for each dataset and partitions.

Dataset # sequences Length (bp) Variable characters PIC Best model (AIC)

Whole plastomes 12 142,507 14,003 (09.82%) 5,807 (41.47%) GTR+F+R2

9 139,059 11,045 (07.94%) 3,330 (30.15%) GTR+F+R2

Coding sequences 12 58,979 3,672 (06.22%) 1,596 (43.46%) GTR+F+R2

Non-coding sequences 12 76,868 10,526 (13.69%) 3,971 (37.72%) TIM+F+R2

Hotspots 12 6,656 1,676 (25.18%) 717 (42.78%) Partitioned

ndhF-rpl32 12 1,146 370 (32.28%) 135 (36.48%) TVM+F+G4

petN-psbM 12 1,042 231 (22.17%) 102 (44.15%) TIM+F+G4

psbB-psbT 12 611 170 (27.82%) 66 (38.82%) K3Pu+F+G4

psbI-trnSGCU 12 165 45 (27.27%) 21 (46.67%) GTR+F

psbK-psbI 12 617 127 (20.58%) 54 (42.52%) TVM+F+G4

rpl16-rps3 12 199 48 (24.12%) 25 (52.08%) TVM+F+I

rpl32-trnLUAG 12 988 260 (26.31%) 116 (44.61%) TVM+F+R2

trnRUCU-atpA 12 231 59 (25.54%) 25 (42.37%) K3Pu+F+G4

trnSGCU-trnGUCC 12 1,456 319 (21.91%) 147 (46.08%) K3Pu+F+G4

trnWCCA-trnPUGG 12 201 47 (23.38%) 26 (55.32%) K3Pu+F+R3

mtDNA 9 94,117 6,048 (06.43%) 899 (14.86%) TVM+F+I

nrDNA operon 9 5,865 335 (05.71%) 152 (45.37%) GTR+F+R2

Combined� 9 239,041 17,506 (07.32%) 4,381 (25.68%) Partitioned

PIC = parsimony-informative characters.

�Plastome + mtDNA + nrDNA operon.

https://doi.org/10.1371/journal.pone.0256126.t003
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Fig 4. Maximum likelihood trees based on complete plastomes (one IR), plastid hotspots, and combined analyses (plastomes (one IR)

+ mtDNA + nrDNA operon). Numbers on branches are the bootstrap percentages; a tree with proportional branch lengths is on the left of each

tree, which bars represent 0.02 nucleotide substitutions per site.

https://doi.org/10.1371/journal.pone.0256126.g004
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Pleurothallidinae. Such cytonuclear discordance can be due to divergence in evolutionary his-

tory between nuclear and plastid genomes and is usually attributed to introgression, incom-

plete lineage sorting, and hybridization [85–88]. Determining the causes of the observed

cytoplasmic discordance is beyond our scope due to limited sampling, but these newly

sequenced plastomes are a good starting point for future investigations on this subject in the

Pleurothallidinae.

Mitochondrial molecular markers were not considered as potential plant DNA barcodes

due to their low substitution rates [19, 89, 90]. Complete mitochondrial genome sequences are

also difficult to assemble in plants because their overall structure is not as conserved as those

of plastomes and contains horizontally inherited nuclear and plastid sequences [91]. Still,

some mitochondrial markers have been analyzed in the past for use in orchid analyses [92],

such as nad1 and cox1 introns [93, 94], but their low variability compared to plastid markers

discouraged their use. More recently, several mitochondrial CDSs were included in a phyloge-

nomic study in the family [95], which produced a highly supported tree with some incongru-

ence with the plastid analysis. Our mtDNA analysis included mostly CDSs and partial introns

and also produced a well-supported tree, but it significantly diverged from the plastid and

nuclear results (S6 Fig). It is noteworthy that there is no orchid complete mitochondrial

genome available, so we recovered the mtDNA from raw reads based on a reference sequence

that is phylogenetically distant from Pleurothallidinae. In addition, sequencing for each species

varied in read number, length, and quality, which directly impacted mtDNA length and con-

tent (Table 2). We believe that these two main factors generated high sequence heterogeneity

among species that might have influenced the results, so they must be interpreted with care.

Despite the odd topology, the mtDNA tree retrieved the Lepanthes affinity and Acianthera
+Myoxanthus clades found in other analyses. Also, a high-throughput analysis for the

Lepanthes horrida Rchb.f. species complex revealed that some mitochondrial markers were

among the ten best performing markers [96], supporting a future role in Pleurothallidinae

phylogenetics.

When the three datasets were combined (plastome, nrDNA operon, and mtDNA), we got

the same topology as the plastome analysis with higher bootstrap percentages (Fig 4). In fact,

applying standard methods to concatenated multigene data often improves tree resolution and

support in phylogenetic estimates (e.g. as seen in Pleurothallidinae [21, 96]). Simulation-based

studies have shown that phylogenetic accuracy increases as more genes are included to the

dataset [97, 98]. With this in view, we hope that the molecular markers highlighted here as

plastid hotspots will be used in future phylogenetic studies in Pleurothallidinae in conjunction

with nrITS, mtDNA, and, if possible, with morphological and ecological data as well, so that

more robust phylogenetic trees are produced.

4. Conclusions

The eight new plastomes of Pleurothallidinae sequenced here greatly increased orchid subtri-

bal representation in GenBank. Their overall structure and codon usage are conserved, and

gene content is similar, with variation only in the ndh gene composition. Protein-coding genes

under positive selection were detected, and a complete set of primers were provided for micro-

satellites and the top ten most-variable markers, thus increasing molecular resources available

to future evolutionary research in the subtribe at various scales, from genes to species. In par-

ticular, the top ten markers are more variable than any plastid markers previously used in

Pleurothallidinae phylogenetics, and their tree topology is similar to that obtained with whole

plastomes, reinforcing their potential as suitable molecular markers for the subtribe. However,

strongly supported incongruence among plastid, nuclear ribosomal DNA, and mtDNA
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topologies suggests putative divergence in the evolutionary histories of these genomes, a topic

that needs future investigation. The well-supported mitochondrial tree, together with the per-

formance in recent studies, suggests that the inclusion of mitochondrial markers in phyloge-

netic studies of Pleurothallidinae could be useful. The combined analysis of the three genomes,

in addition to improving the support, could be expected to circumvent partly the problems

associated with individual analyses.

Supporting information

S1 Fig. Genetic maps of the Pleurothallidinae plastomes sequenced. Genes are represented

by rectangles, for which functions are identified by colors as shown in the legend. Genes placed

inside the circle are transcribed clockwise, and those outside the circle are transcribed

counter-clockwise. The gray inner circle is the GC content graph. Images of the sequenced

species were taken by Eric C. Smidt except Marcelo Rodrigues for Myoxanthus exasperatus.
(TIF)

S2 Fig. Graph of ndh gene content of the ten Pleurothallidinae plastomes analyzed. White

squares = complete gene losses, light-grey squares = truncated reading frames (pseudogenes),

and dark-grey squares = complete CDSs.

(TIF)

S3 Fig. Mauve alignment of the ten Pleurothallidinae plastomes analyzed.

(TIF)

S4 Fig. Correlation plots.

(TIF)

S5 Fig. Maximum likelihood trees based on Epidendrae plastid CDS and non-coding DNA

(NC-DNA). Numbers on branches are the bootstrap percentages; a tree with proportional branch

lengths is on the left of each tree, which bars represent 0.02 nucleotide substitutions per site.

(TIF)

S6 Fig. Maximum likelihood trees based on Pleurothallidinae plastomes (one IR), nuclear

ribosomal DNA operon, and mitochondrial DNA. Numbers on branches refer to bootstrap

percentages; a tree with proportional branch lengths is on the left of each tree, which bars rep-

resent 0.02 nucleotide substitutions per site.

(TIF)

S1 Table. Taxonomic information, voucher, and GenBank accession numbers of all

sequences used. Accessions in boldface are sequences generated in this study. All vouchers

provided are deposited at UPCB herbarium.

(PDF)

S2 Table. NGS information of the eight plastomes sequenced and the mtDNA and nuclear

ribosomal DNA recovered. �See Mauad et al. [30].

(PDF)

S3 Table. Gene content of the mitochondrial DNA recovered from raw reads. �Genes with

introns.

(PDF)

S4 Table. Gene content of the Pleurothallidinae genomes analyzed. aGenes with introns,
bduplicated genes (in IRs), cpartially duplicated genes, �pseudogenes.
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S5 Table. Number of insertion/deletion events by genomic region in each Pleurothallidinae

plastome. The plastome of Madevallia picturata was the reference for all indels.
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S6 Table. Relative frequency (RF) and relative synonymous codon usage (RSCU) of all 64

codons and their respective amino-acids (AA) in each Pleurothallidinae plastome ana-

lyzed. Species names were abbreviated as follows: ACIRE = Acianthera recurva, ANAMI =

Anathallis microphyta, ANAOB = A. obovata, DRYLI = Dryadella lilliputiana, MASPI = Mas-
devallia infracta, MYOEX = Myoxanthus exasperatus, OCTGR = Octomeria grandiflora,

PABMI = Pabstiella mirabilis, STEGR = Stelis grandiflora, and STEMO = Stelis montserratii.
(PDF)

S7 Table. Results of Tajima’s neutrality test (D) for the 68 CDSs common to the 10 Pleur-

othallidinae plastomes analyzed. D > 0 = purifying selection, and D < 0 = positive selection.

Significant results (p� 0.05) were highlighted in bold. �Tajima’s D test was not computed due

to the lack of variable sites.

(PDF)

S8 Table. Characterization, distribution, and frequency of microsatellites (SSRs) in the

Pleurothallidinae plastomes analyzed.

(PDF)

S9 Table. List of the 62 polymorphic microsatellites present in at least seven Pleurothallidi-

nae plastomes, including anticipated size, primers, melting temperatures, and location.

SSR type in brackets with repetition frequency following. Loci amplified by the same primer

separated by semicolons. Slanting bars (/) indicate polymorphism in repeat units.

Tm = primer melting temperature.

(PDF)

S10 Table. Nucleotide sequences of Pleurothallidinae with more than 150 bp in the align-

ment sorted by sequence variability (SV), including their location in the plastome, length,

and guanine-cytosine content (GC). In total, 104 sequences were analyzed, comprising inter-

genic spacers (IGS), introns, and popular molecular markers for Orchidaceae such as the

trnH-psbA IGS, the matK CDS, and the 3’ portion of ycf1 CDSs. IGS = inter-genic spacer,

CDS = protein-coding sequence.

(PDF)

S11 Table. Primers for the ten most variable regions for Pleurothallidinae. SV = sequence

variability, Tm = primer melting temperature. �Primers previously published but with mis-

matches in Pleurothallidinae. For these cases, subtribe-specific primers for the same regions

are provided.

(PDF)
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14. Karremans AP, Bakker FT, Pupulin F, Solano-Gómez R, Smulders MJM. Phylogenetics of Stelis and

closely related genera (Orchidaceae: Pleurothallidinae). Plant Syst Evol. 2013a; 299: 151–176. https://

doi.org/10.1007/s00606-012-0712-7

15. Karremans AP, Pupulin F, Gravendeel B. Taxonomy, molecular phylogenetics, reproductive isolation,

and niche differentiation of the Specklinia endotrachys species complex (Orchidaceae: Pleurothallidi-

nae). Lankesteriana. 2013b; 13(1–2): 132–133. https://doi.org/10.15517/lank.v0i0.11556

16. Karremans AP, Albertazzi FJ, Bakker FT, Bogarı́n D, Eurlings MCM, Pridgeon AM, et al. Phylogenetic

reassessment of Specklinia and its allied genera in the Pleurothallidinae. Phytotaxa. 2016; 272(1): 1–

36. https://doi.org/10.11646/phytotaxa.272.1.1

17. Wilson M, Frank GS, Jost L, Pridgeon AM, Vieira-Uribe S, Karremans A.P. Phylogenetic analysis of

Andinia (Pleurothallidinae; Orchidaceae) and a systematic re-circumscription of the genus. Phytotaxa.

2017; 295(2): 101–131. https://doi.org/10.11646/phytotaxa.295.2.1

18. Karremans AP. Genera pleurothallidinarum: An updated phylogenetic overview of Pleurothallidinae.

Lankesteriana. 2016; 16(2): 219–241. https://doi.org/10.15517/lank.v16i2.26008

19. Vu THT, Le TL, Nguyen TK, Tran DD, Tran HD. Review on molecular markers for identification of

orchids. Vietnam J Sci Technol. 2017; 59(2): 62–75. https://doi.org/10.31276/VJSTE.59(2).62
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88. Fehrer J, Gemeinholzer B, Chrtek J, Bräutigam S. Incongruent plastid and nuclear DNA phylogenies

reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae).

Mol Phylogenet Evol. 2007; 42: 347–361. https://doi.org/10.1016/j.ympev.2006.07.004 PMID:

16949310

89. Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial,

chloroplast and nuclear DNA. Proc Natl Acad Sci USA. 1987; 84: 9054–9058. https://doi.org/10.1073/

pnas.84.24.9054 PMID: 3480529

90. Drouin G, Daoud H, Xia J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast

and nuclear genomes of seed plants. Mol Phyl Evol. 2008; 49(3): 827–31. https://doi.org/10.1016/j.

ympev.2008.09.009 PMID: 18838124

91. Cho Y, Qiu YL, Kuhlman P, Palmer JD. Explosive invasion of plant mitochondria by a group I intron.

Proc Natl Acad Sci USA. 1998; 95(24): 14244–14249. https://doi.org/10.1073/pnas.95.24.14244

PMID: 9826685

PLOS ONE Pleurothallidinae phylogenomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0256126 August 27, 2021 20 / 21

https://doi.org/10.1046/j.1365-294x.2002.01643.x
https://doi.org/10.1046/j.1365-294x.2002.01643.x
http://www.ncbi.nlm.nih.gov/pubmed/12453231
https://doi.org/10.1093/oxfordjournals.molbev.a040157
https://doi.org/10.1093/oxfordjournals.molbev.a040157
http://www.ncbi.nlm.nih.gov/pubmed/7968490
https://doi.org/10.3389/fpls.2016.00306
http://www.ncbi.nlm.nih.gov/pubmed/27014326
https://doi.org/10.1038/ng822
http://www.ncbi.nlm.nih.gov/pubmed/11799393
https://doi.org/10.1101/gr.10.1.72
http://www.ncbi.nlm.nih.gov/pubmed/10645952
https://doi.org/10.1016/s0169-5347%2800%2902097-8
https://doi.org/10.1016/s0169-5347%2800%2902097-8
http://www.ncbi.nlm.nih.gov/pubmed/11179578
https://doi.org/10.1038/nrg1348
http://www.ncbi.nlm.nih.gov/pubmed/15153996
https://doi.org/10.1146/annurev-genet-072610-155046
https://doi.org/10.1146/annurev-genet-072610-155046
http://www.ncbi.nlm.nih.gov/pubmed/20809801
https://doi.org/10.3732/ajb.94.3.275
http://www.ncbi.nlm.nih.gov/pubmed/21636401
https://doi.org/10.1073/pnas.0709936105
https://doi.org/10.1073/pnas.0709936105
http://www.ncbi.nlm.nih.gov/pubmed/18258745
https://doi.org/10.1073/pnas.1104551108
https://doi.org/10.1073/pnas.1104551108
http://www.ncbi.nlm.nih.gov/pubmed/22100737
https://doi.org/10.1002/tax.604009
https://doi.org/10.11646/phytotaxa.392.1.1
https://doi.org/10.1093/sysbio/syv070
https://doi.org/10.1093/sysbio/syv070
http://www.ncbi.nlm.nih.gov/pubmed/26430060
https://doi.org/10.1111/j.0014-3820.2003.tb00585.x
http://www.ncbi.nlm.nih.gov/pubmed/14503619
https://doi.org/10.1016/j.ympev.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16949310
https://doi.org/10.1073/pnas.84.24.9054
https://doi.org/10.1073/pnas.84.24.9054
http://www.ncbi.nlm.nih.gov/pubmed/3480529
https://doi.org/10.1016/j.ympev.2008.09.009
https://doi.org/10.1016/j.ympev.2008.09.009
http://www.ncbi.nlm.nih.gov/pubmed/18838124
https://doi.org/10.1073/pnas.95.24.14244
http://www.ncbi.nlm.nih.gov/pubmed/9826685
https://doi.org/10.1371/journal.pone.0256126


92. Freudenstein JV, Senyo DM, Chase MW. Mitochondrial DNA and relationships in the Orchidaceae. In:

Wilson KL, Morrison DA, editors. Monocots: systematics and evolution. Collingwood: CSIRO Publish-

ing; 2000. p. 421–429.

93. Freudenstein JV, Chase M. Analysis of mitochondrial nad1b-c intron sequences in Orchidaceae: utility

and coding of length-change characters. Syst Bot. 2001; 26: 643–657. https://doi.org/10.1043/0363-

6445-26.3.643

94. Inda LA, Pimentel M, Chase MW. Contribution of mitochondrial cox1 intron sequences to the phyloge-

netics of tribe Orchideae (Orchidaceae). Does the distribution and sequence of this intron in orchids tell

us something about its evolution? Taxon. 2010; 59: 1053–1064. https://doi.org/10.2307/20773976

95. Li YX, Li ZH, Schuiteman A, Chase MW, Li JW, Huang WC, et al. Phylogenomics of Orchidaceae

based on plastid and mitochondrial genomes. Mol Phyl Evol. 2019; 139: 106540. https://doi.org/10.

1016/j.ympev.2019.106540 PMID: 31252068
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