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ABSTRACT

Differentially evolved responses to various stress
conditions in plants are controlled by complex reg-
ulatory circuits of transcriptional activators, and re-
pressors, such as transcription factors (TFs). To un-
derstand the general and condition-specific activ-
ities of the TFs and their regulatory relationships
with the target genes (TGs), we have used a ho-
mogeneous stress gene expression dataset gener-
ated on ten natural ecotypes of the model plant Ara-
bidopsis thaliana, during five single and six com-
bined stress conditions. Knowledge-based profiles
of binding sites for 25 stress-responsive TF families
(187 TFs) were generated and tested for their enrich-
ment in the regulatory regions of the associated TGs.
Condition-dependent regulatory sub-networks have
shed light on the differential utilization of the un-
derlying network topology, by stress-specific regu-
lators and multifunctional regulators. The multifunc-
tional regulators maintain the core stress response
processes while the transient regulators confer the
specificity to certain conditions. Clustering patterns
of transcription factor binding sites (TFBS) have re-
flected the combinatorial nature of transcriptional
regulation, and suggested the putative role of the ho-
motypic clusters of TFBS towards maintaining tran-
scriptional robustness against cis-regulatory muta-
tions to facilitate the preservation of stress response
processes. The Gene Ontology enrichment analysis

of the TGs reflected sequential regulation of stress
response mechanisms in plants.

INTRODUCTION

Plants are sessile organisms and continuously face differ-
ent harsh environmental conditions as well as biotic inva-
sions in their natural habitat (1). The activation of the plant
stress responses is a complex, multidimensional process, ac-
quired through large-scale transcriptional and metabolic re-
programming, which needs a sophisticated regulatory sys-
tem (2–4). Gene expression variation responding to the sur-
rounding environment confers phenotypic diversity within
a species that can lead to consecutive adaptation and
genome evolution (5–7). However, the underlying differ-
entiations of transcriptional regulatory networks among
different ecotypes of a given plant species remains largely
unexplored (8,9). During the process of continuous evo-
lution, the greater part of the plant stress regulatory net-
works is believed to have evolved through rigorous dupli-
cation of transcription factors (TFs) and their target genes
(TGs) (10,11). Some core part of the regulatory interac-
tions are conserved to variable degrees among genomes
(12). A significant amount of research has been conducted
(13) to understand plant responses to different single stress
conditions by using various plant models (14,15). Plants
have stress-specific adaptive responses as well as global re-
sponses, which protect the plants from more than one envi-
ronmental stress. There are multiple stress perception and
signalling pathways, some of which are stress-specific, but
others may cross-talk at various steps of stress response pro-
cesses (16). In a natural environment, plants are exposed
to multiple stresses simultaneously, and interaction effect of
multiple stresses at a time is more severe to plants (17–19).

*To whom correspondence should be addressed. Tel: +47 73 598 692; Fax: +47 73 596 100; Email: atle.m.bones@ntnu.no
Correspondence may also be addressed to Pankaj Barah. Tel: +49 151 45186 019; Email: barah.pankaj@gmail.com
Present addresses:
Pankaj Barah, Computational Oncology Group, Division Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Hei-
delberg 69120, Germany.
Mahantesha Naika B. N., Department of Biotechnology and Crop Improvement, University of Horticultural Sciences, Bagalkot, Karnataka 587104, India.
Khader Shameer, Icahn Institute and Dept. of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai 1425 Madison Avenue NY 10029, USA.

C© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com



3148 Nucleic Acids Research, 2016, Vol. 44, No. 7

Very few genome-scale experiments have been conducted
till date, to study the molecular level responses of plants
to a combination of different stresses in multiple ecotypes
(17). All of these experimental studies have reported that
response of plants to combination stresses were unique and
could not be inferred directly from the response of plants to
each of the individual stresses.

Arabidopsis thaliana genome has ∼2000 TFs (20,21),
however experimentally confirmed regulatory interactions
were available for <100 TFs only (22,23). Significant ef-
forts have been made to develop robust computational algo-
rithms to extract regulatory information hidden in gene ex-
pression data to infer gene regulatory networks, to identify
regulatory modules and condition-specific regulators (23–
25). Such computational approaches to identify regulators
of plant stress response, to infer gene regulatory networks
and regulatory activities from experimental data has been
reviewed in (26,27). Network-based algorithms are proven
to be successful in dealing with underlying complexities of
biological systems (28–30). From networks perspective, the
regulatory interactions between TFs and their TGs can be
presented as a directed, bipartite graph depicting transcrip-
tional activation or repression (31). In general, such regu-
latory networks exhibit a scale-free topology, by the pres-
ence of few highly connected or highly central regulatory
hubs (28). The topology of such transcriptional stress regu-
latory networks in plants can be used for predicting global
and stress-specific transcriptional regulators (11,32). Net-
work Component Analysis (NCA) is an approach, which
has been successfully employed in several species including
A. thaliana, to determine both activities and regulatory in-
fluences for a set of TFs on their TGs in various perspectives
(33).

Most of the existing computationally inferred regulatory
network models in A. thaliana were based on single stress
treatment and from independent experiments (34–36). Inte-
grative analysis of data from independent microarray exper-
iments is challenging in most cases, mainly due to the lack of
common standards regarding how to grow plants, conduct
expression profile experiments, and finally, how to evaluate
the resulting gene expression data (37). As a part of ERA-
NET Plant Genomics MultiStress project, 10 different ac-
cessions of the model plant A. thaliana were subjected to
a set of five individual stresses (Cold, Heat, High-light, Salt
and Flagellin––FLG) and six combinations of these stresses
(Salt + Heat, Cold + High-light, Cold + FLG, Salt + High-
light, Heat + FLG and Heat + High-light) under same ex-
perimental and growth conditions. Flagellin (FLG) mim-
icked biotic stress, and rest of the four single stresses were
abiotic stresses. In the present study, a regulatory network in
A. thaliana has been constructed based on the assumption
that high-dimensional mRNA expression profiles could be
decomposed into low-dimensional regulatory signals driven
through an interacting bipartite network between the reg-
ulating TFs and the regulated TGs (38). NCA was used
to analyse this unique homogenous microarray dataset to
predict the regulatory relationships between differentially
stress-regulated TFs and their corresponding TGs during
eleven stress conditions (five single and six combined stress
conditions). Condition-dependent regulatory sub-networks
were identified, and connectivity among the nodes (genes)

were analysed for identifying highly connected hubs. Pre-
dicted interactions were compared with interactions derived
from independent studies and manually retrieved database
information. Hidden Markov Model (HMM) of known TF
binding sites were identified and generated for 25 prominent
stress-specific TF families from published experimental ev-
idences (14,39). The predicted TF–TG regulatory interac-
tions from gene expression data were tested using STIF al-
gorithm (39) against these knowledge-based HMM profiles
of known stress associated cis-regulatory elements (CREs).
Clustering patterns of transcription factor binding sites
(TFBS) on each of the TGs were analysed to identify clus-
ters of TFBS (24). Gene set enrichment analysis (GSEA)
was carried out to uncover functional association of the reg-
ulated TGs and overlapping interactions.

MATERIALS AND METHODS

Microarray data

The microarray data for this analysis were obtained from
the ERA-NET Plant Genomics, ‘MultiStress’ project (http:
//www.eracaps.org/joint-calls/era-pg-funded-projects/
2006-sub-call/multiple-stress-responses-and-adaptations).
The comprehensive description of the ‘MultiStress’ exper-
iments (207 arrays and 59 unique experiments) has been
presented in (17). The microarray data were deposited
at the Gene Expression Omnibus (GEO) with the record
GSE41935. As a part of the MultiStress project, ten natural
ecotypes of A. thaliana plants (Col-0, An-1, Cvi, Eri,
Kas-1, Kon, Kyo-2, Ler, C24 and Sha) were subjected to
the following stress treatments: Salt, Cold, Heat, High-light
(HL), FLG, Salt + Heat, Cold + High-light, Cold + FLG,
Salt + High-light, Heat + FLG and Heat + High-light.
Combinations of high-light (800 �m photons m−2s−1),
cold (10◦C), heat (38◦C), high salinity (100 mM NaCl)
and foliar spray application of the bacterial elicitor (20
�M flagellin peptide flg22) were set up in environmentally
controlled rooms (17). Arabidopsis NimbleGen 12-plex
arrays were used for transcriptome profiling.

Statistical analysis

The published microarray dataset (GEO record GSE41935)
was re-processed using the Robust Multi-array Average
method implemented in the oligo package (40) in R pro-
gramming language (41). For the current analysis, data
from all of the 10 ecotypes were merged stress wise in an
order to increase sample size and to minimize multiple test-
ing errors (42). Stress-specific differentially regulated genes
were identified by the Students t-test between control geno-
type and treatment effect (P < 0.01) using the normalized
expression values (43). All the normalized stress gene ex-
pression data were compared to their respective controls.
The resulting differential expression values were used to
generate eleven lists of stress-regulated genes by consider-
ing the top 500 significant entries from each of the stress
conditions. The unified genelist comprised of 3429 genes
were used for further network-based analysis (Supplemen-
tary Table S1).

http://www.eracaps.org/joint-calls/era-pg-funded-projects/2006-sub-call/multiple-stress-responses-and-adaptations
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Finding Arabidopsis transcription factors (TFs)

A list of 1926 Arabidopsis TFs was compiled from DATF:
a database of Arabidopsis TFs (20), PlantTFDB: the plant
TF database (44) and ‘The Arabidopsis Information Re-
source’ (TAIR) (45). Eleven stress-wise lists of TFs differ-
entially expressed during the stress conditions were gener-
ated by comparing the individual list of eleven differentially
stress-regulated gene lists from each of the stress conditions
against the compiled list of 1926 TFs (Supplementary Table
S2). The overlap of the differentially regulated TFs among
eleven different stress conditions were determined and visu-
alized using Sungear tool (46).

TF binding motifs and sequence logos

The list of differentially regulated gene-list contained 294
TFs, out of which 187 were grouped into 39 TF fam-
ilies based on manual searches in the DATF database
(20). The TFBS motifs for these families were generated
from STIFDB2 (47), AGRIS (48) and published literature
(49,50). We considered only the experimentally confirmed
TFBS motifs. The relevant references have been included
with respective PubMed IDs in (Supplementary Table S3).
The sequence logos for the consensus TFBS were prepared
using WebLogo tool (51) and provided in (Supplementary
Figure S1).

Initial bipartite network reconstruction

Top 500 stress-regulated genes were chosen from each of
the 11 stress experiments and performed on 10 A. thaliana
ecotypes were united to a list of 3429 differentially stress-
regulated genes. Among them, 294 were TFs and 3135 were
TGs. A bipartite gene network was constructed using Pear-
son correlation coefficient as a measure (PCC threshold
≥0.70). This network contained 10 534 bipartite relations
between 240 TFs and 1638 TGs. The constructed network
is bipartite because they consist of two layers of nodes: TFs
and TGs, with the links directed from the TFs to the TGs.
This network was later fed into the ‘NCA’ algorithm to
calculate differential activity profiles of the stress-regulated
TFs.

Network component analysis (NCA)

NCA is a computational method for reconstructing the hid-
den regulatory signals or the transcription factor activities
(TFAs) from gene expression data with known connectivity
information regarding matrix decomposition (33).

NCA decomposition can be represented as:

[E] = [C][T] (1)

Where, [E] is an expression matrix, [C] represents connectiv-
ity matrix and [T] corresponds to TFA matrix. Based on the
formula (1), the decomposition of [E] into [C] and [T] can
be achieved by minimizing the following objective function:

min ‖ [E] − [C][T] ‖2 (2)

s.t. C ∈ Z0

In order to assure uniqueness of the solution of the Equa-
tion (2) up to a scaling factor, NCA criteria must be satisfied
which includes:

(i) The connectivity matrix [C] must have full-column
rank.

(ii) When a node in the regulatory layer is removed along
with all of the output nodes connected to it, the result-
ing network must be characterized by a connectivity
matrix that still has full column rank.

(iii) T matrix must have full row rank.

The algorithm for NCA analysis is implemented in
MATLAB by Liao et al. (33), and available online
for download (http://www.seas.ucla.edu/∼liaoj/downloads.
html). With NCA as reconstruction method, we predicted
significant TFs and their connectivity strength on TGs and
TFAs.

Simulated random network as control

The topological properties of the inferred regulatory net-
work was compared with a random network created using
Erdös-Rényi (ER) model (52). We used the G (n, M) for-
mulation of ER model, where G was the random network,
n was the total number of nodes and M was the number of
connection among the nodes. In the simulated random net-
work n and M were kept constant as in our NCA inferred
regulatory network. The degree of a node (k) was calcu-
lated based on the total number of nearest neighbors. Ran-
dom network generation and topological calculations were
performed using igraph package in R (53).

Cross-validation of the predicted interactions

To evaluate the predicted TF–TG interactions, we have
compiled a set of TFs, which had reported regulatory re-
lationships in the protein interactome database (54) and the
A. thaliana TF–TG interaction database (AtTFDB) (48).
We have performed manual searches for predicted inter-
actions in the AthaMap (55) and AraNet (56) databases.
AthaMap provides a genome-wide map of potential TF and
small RNA binding sites in A. thaliana. Data in AthaMap
is based on published TF binding specificities, available
as alignment matrices or experimentally determined single
binding sites. AraNet is a probabilistic functional gene net-
work of A. thaliana, constructed by the integration of 24
types of ‘omics’ data from multiple organisms, with each
data type weighted according to how well it links genes that
are known to function together in A. thaliana. As an inde-
pendent comparison, we have also used the gene regulatory
TF–TG network, reported in Vermeirssen et al., to compare
with our predicted network (57).

Identification and cross-validation of transcription factor
binding sites using HMM-based profile search using STIF al-
gorithm

TFBSs of consensus nucleotide regions were taken from
earlier studies (14,39,47). In addition, we have collected
data regarding additional TFBSs, as described in a section

http://www.seas.ucla.edu/~liaoj/downloads.html
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above. Detailed methodology regarding searching for TFBS
and generating HMM libraries are as described earlier (39).
It has been reported in a recent study that overall, 89%
of all upstream binding sites in A. thaliana were within 2
kb of the transcription start site (TSS), and highly signifi-
cant matches of 73% were in 1-kb promoter (58). Therefore,
TG sequences for 1-kb upstream from the TSS with their
5′ UTR were extracted by the data mining tool Biomart-
Ensembl Plants (59) using TAIR version 10 (45). The STIF
algorithm performed a sensitive sequence search that took
the TFBS data as an HMM model and searched in both the
forward and reverse direction of a target sequence to find
potential binding sites. STIF program generated the output
data with the start and end of the predicted binding site po-
sitions, chromosomal location, the orientation of the strand
on forward or reverse, Z-score and normalization score. We
have considered predicted TFBS at the Z-score threshold of
1.5 and above for further analysis.

Gene set enrichment analysis (GSEA)

The Biological Networks Gene Ontology (BiNGO) tool
(60), an open-source Java based tool was used to determine
significantly over-represented Gene Ontology (GO) terms
associated with differentially regulated gene lists. The cal-
culated P-values were Bonferroni corrected for minimiz-
ing multiple testing errors. Gene annotations were acquired
from TAIR database (v10) (45) using biomaRt (59) data
mining tool.

RESULTS

Our analytics approach followed the schematic presented
in Figure 1. The NCA method requires two inputs: a set of
gene expression profiles and an initial network of TFs and
TGs. In this study, we utilized a unique A. thaliana gene
expression dataset comprising of 207 arrays during eleven
different stress conditions performed on ten ecotypes orig-
inated from different geographical locations. For maintain-
ing the homogeneity, we have selected top 500 significantly
stress-regulated genes from each stress condition and the fi-
nal united list contained 3429 transcripts from all stress con-
ditions (Supplementary Table S1).

Arabidopsis ecotypes have different transcriptome signatures
while responding to eleven stress conditions

After the statistical analysis of the microarray data, we have
observed significant variation among the 10 ecotypes while
responding to 11 different stresses (here we consider the
combination of two stresses as an independent stress). For
example, cold treatment differentially regulated (P ≤ 0.01)
1950 genes in the southern ecotypes Cvi, while it regulated
only 138 transcripts in the Col ecotype, known to be cold
tolerant (61). Similar results were obtained for all other sin-
gle and double stresses (summarized in Table 1). Intraspe-
cific natural variation or within-species phenotypic vari-
ation, caused by spontaneously arising favourable muta-
tions facilitate the evolutionary process, which contribute
towards the local adaptation of the plant (62,63). Environ-
mental stress is a key factor in determining the genome reg-
ulation, adaptive evolution and geographical distribution

of any living organism including plants (64). A few spec-
ulations have been made elsewhere, regarding the contribu-
tion of cis-regulatory evolution in genetic variations during
stress-responsive gene expression signatures that facilitate
the adaptation to local climate (65–67). We wanted to ex-
plore the diverse activities of stress-regulated TFs and their
connected TGs in A. thaliana during 11 stress conditions.

Stress-regulated transcription factors

The differentially stress-regulated gene lists contained many
Arabidopsis TFs. Initially, we have created a list of total 1926
Arabidopsis TFs, as reported in TAIR (45), GO (68), DATF
(20) and PlnTFDB (69). By comparing the list of differen-
tially regulated genes in our data and the compiled refer-
ence list of Arabidopsis TFs, we identified 294 Arabidopsis
TFs to be present among the differentially stress-regulated
transcripts in our dataset (see Supplementary Table S2).
Most of the TFs were differentially regulated in single con-
ditions while very few TFs were regulated in multiple stress
conditions. It was primarily observed from manual biocu-
ration that the multi functional stress-regulated TFs were
mostly related to circadian pathways controlling various
physiological and developmental processes coupled with
environmental stimuli (70,71). For example, At5g57660
(CONSTANS-like 5), known to be a core regulator in-
volved photoperiodic flowering pathway was regulated in
seven stress conditions (Figure 2) (72). A recent study has
reported that flowering time variation in A. thaliana was
associated with cis-regulatory variation in CONSTANS
(73). This work establishes a link between regulatory mu-
tations and evolutionary changes in plants at the species
level (74). Two other TFs, namely At5g24470 (PSEUDO-
RESPONSE REGULATOR, PRR5) and At5g47640 (NU-
CLEAR FACTOR Y SUBUNIT B2, NF-YB2) (75) were
regulated in six stress conditions. Out of them, PRR5
is known to form a negative feedback loop within
the Arabidopsis circadian clock (76). Five TFs, namely
At1g25440 (B-BOX DOMAIN PROTEIN 15, BBX15),
At1g71030 (MYB-LIKE 2, MYBL2) (77), At3g15540
(INDOLE-3-ACETIC ACID INDUCIBLE 19, IAA19)
(78), At5g25190 (ETHYLENE AND SALT INDUCIBLE
3, ESE3) and At5g44260 (TANDEM CCCH ZINC FIN-
GER PROTEIN 5, TZF5) were overlapped among five
stress conditions. Eight TFs, At1g13260 (RELATED
TO ABI3/VP1, RAV1)(79), At2g46790 (TOC1-LIKE
PROTEIN 1, TL1)(80), At3g47500 (CYCLING DOF
FACTOR 3, CDF3) (81), At3g54810 (GATA TRAN-
SCRIPTION FACTOR 8, GATA8) (82), At3g59060
(PHYTOCHROME-INTERACTING FACTOR, PIL6)
(83), At4g01250 (WRKY22) (84), At4g25480 (DEHY-
DRATION RESPONSE ELEMENT B1A, DREB1A) (85)
and At5g02810 (PSEUDO-RESPONSE REGULATOR 7,
PRR7) (86) were regulated in four stress conditions. Among
other TFs, 19 were overlapped in three stress conditions and
58 were overlapped in two stress conditions. In total, 147
TFs were regulated only in single stress conditions (Figure
2 and Supplementary Table S2). Functional associations of
some of these TFs in stress-related processes have been dis-
cussed in later sections.
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Figure 1. Methodology flow chart. (A) Top 500 stress-regulated genes were chosen from each of the eleven stress experiments performed on 10 Arabidopsis
thaliana natural ecotypes. The united lists of stress-regulated genes contained 3429 genes, out of which 294 were TFs. A gene co-expression network
was constructed using Pearson correlation coefficient (PCC ≥ 0.70), which contained 10 534 bipartite relations between 240 TFs and 1638 target genes
(TGs). This network was later fed into the Network Component Analysis (NCA) algorithm, which then calculated the activity profiles of 194 stress-
regulated TFs. Regulatory signal strength based filtering criteria (r≥0.75) was applied, which retained 5380 interactions between 182 TFs and 1199 TGs.
Eleven regulatory sub-networks were extracted. Predicted connections were compared with independent interactions obtained from STIF analysis, AGRIS,
AthaMap, AraNet and independent literature. (B) Flowchart of STIF algorithm, which was used for predicting transcription factor (TF) binding sites using
HMM-based profile search. Total 187 stress-regulated TFs were classified into 39 TF Families and corresponding HMM profiles were generated. STIF
algorithm predicted 10 474 interactions between 25 TF families and 1021 TGs at the Z-score threshold of 1.5. (adapted and modified with permission from
(39))
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Table 1. Number of differentially regulated genes (P-value ≤ 0.01) in 10 ecotypes during 11 different stress conditions

↓Stress/Ecotypes→ Ler Col C24 Eri Kyo-2 Cvi Sha An-1 Kond Kas-1

Heat 321 95 107 384 469 775 237 659 280 790
High-light 648 276 535 243 446 266 636 679 312 854
Salt 139 97 523 126 399 486 230 983 828 1396
Cold 470 138 1332 1025 702 1950 510 550 784 901
FLG 2863 586
Heat + FLG + Silwet 558 399
Salt + Heat 311 205 811 548 461 462 454
Cold + High-light 412 156
Salt + High-light 234 233
Cold + FLG + Silwet 249 950
Cold + Silwet 186 181
Heat + High-light 498 194
Cold + FLG + Silwet 249 950

Number of differentially regulated genes (P ≤ 0.01) in 10 ecotypes during eleven different stress exposures. The transcriptomic profiling was conducted at
single time point. Combined stress experiments and flagellin (FLG) experiments were performed only on Col and Ler ecotypes, except for the ‘salt + heat’
combined stress experiments, which were carried out in seven ecotypes. Silwet detergent was used for all the FLG treatments. All stress treatments were
compared with their respective controls, except the treatments including FLG ( Heat + FLG and Cold + FLG), which were compared with control and
silwet samples.

Figure 2. Overlapping statistics of stress-regulated TFs. Number of stress
specific differentially regulated TFs are shown inside each circle along the
periphery of the hendecagon. The small circles in the diagram represent
overlapping TFs among different stress conditions. The arrow marks on
the inner circles point towards the stress conditions in which they are sig-
nificantly regulated. The size of the inner circles represents the number of
TFs. The filled inner circle represents CONTSTANS-LIKE 5, which was
significantly regulated in seven conditions. (Also see Supplementary Table
S2).

Initial co-expression based network

To derive the TF activity profiles from gene expression data,
an initial input network had to be constructed. Due to the
limited availability of experimentally determined large-scale
regulatory interactions in the model plant A. thaliana, we
opted for an ab initio method to compile the initial bipartite
network using our microarray data (17). In the list of dif-
ferentially stress-regulated genes, we identified 294 TFs and
3135 TGs. We predicted the correlation between each pair
of TF and TGs expression levels and retained an interaction
if the correlation coefficient was significant (r> 0.7)(36,87–
88). The network was represented in matrix form containing
the regulatory information of each TF on their TGs. This
analysis resulted in a network of 10 534 interactions with
240 TFs and 1638 TGs (Supplementary Table S4 and Fig-

ure S3A). There were 8450 positive interactions (activation)
and 2084 negative interactions (repression).

Analysis of the connectivity patterns of the nodes in the
transcriptional regulatory networks revealed that some TFs
are involved in multiple sub-networks, suggesting a hierar-
chical structure whereby specific TFs might play major syn-
ergistic roles in the greater regulatory network, and function
as multifunctional hubs. A subset of highly connected TFs
in the global network are presented in Table 2. To obtain
more information about these genes, we opted for biocu-
ration method (89). Most of these highly connected genes
mentioned above were also reported in published literature
to be involved in important regulatory functions associated
with representative GO categories, such as stress response,
defence response, cellular development, regulation of sec-
ondary metabolism, etc. Evaluation of the regulatory sub-
networks retained several of these regulatory hubs that con-
trol many aspects of cellular metabolism associated with
plant stress responses. The biological relevance of some of
these stress regulators has been described briefly in later sec-
tions (stress wise regulatory sub-networks).

Comparison of the inferred co-regulatory network and a ran-
dom control network

Biological networks are known to be scale-free in nature,
which means the very little number of nodes has higher de-
grees, and maximum nodes have a lower degree (90,91). The
inferred TF–TG network has exhibited a power law degree
distribution, showing its scale-free nature (Figure 3B). In a
random network, the degrees of the nodes follow a Poisson
distribution (28), which indicated that most nodes had ap-
proximately the similar number of links, roughly equal to
the network’s average degree (Figure 3C).

Transcription factor activities under eleven stress conditions

Considering the PCC as control strength for NCA, we
constructed a matrix of regulatory relationships between
the stress-regulated TFs and their corresponding TGs (92).
Based on the assumption defined by NCA algorithm (33),
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Figure 3. Topology of the predicted bipartite regulatory network visualized using Cytoscape software version 3.2.1 (169). (A) A topological overview of
the predicted bipartite regulatory network between each pair of TF and TGs using PCC (r> 0.7). TFs are represented as triangles and TGs are represented
as ellipses. This network is composed of 10 534 interactions (8450 positive interactions and 2084 negative interactions) between 240 TFs and 1638 TGs.
The network topology has been simplified for presentation purpose. Detailed TF–TG interactions are provided in Supplementary Table S4. (B) The degree
distribution of the nodes in the predicted regulatory network showed a power-law. (C) The degree distribution of the control network showed a Poisson
distribution. (D) The topology of the regulatory sub-network during FLG stress condition. The TFs are represented as triangles and TGs are represented
as ellipses. The size of the triangle reflects the number of connecting TGs to the corresponding TF. Previously reported key biotic stress regulators, such as
WRKY22, MYB117, GNL, HSFA1A, MYB124, etc. are prominently visible as highly connected hubs in this network topology.
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Table 2. List of few highly connected stress regulators in the global TF–TG network

At-IDs Alias Annotations

At4g01250 WRKY22 WRKY FAMILY TRANSCRIPTION FACTOR 22 (84)
At3g24500 MBF1C MULTIPROTEIN BRIDGING FACTOR 1C (153)
At5g66620 DAR6 DA1-RELATED PROTEIN 6
At1g72210 bHLH096 BASIC HELIX-LOOP-HELIX (BHLH) DNA-BINDING SUPERFAMILY PROTEIN 96
At3g12130 KH DOMAIN-CONTAINING PROTEIN/ ZINC FINGER (CCCH TYPE) FAMILY PROTEIN
At4g18170 WRKY28 WRKY DNA-BINDING PROTEIN 28 (154)
At1g17380 JAZ5 JASMONATE-ZIM-DOMAIN PROTEIN 5 (155)
At1g32640 ZBF1 BASIC HELIX-LOOP-HELIX (BHLH) DNA-BINDING FAMILY PROTEIN (156,157)
At1g26780 MYB117 MYB DOMAIN PROTEIN 117 (158)
At1g71030 MYBL2 MYB-LIKE 2 (77)
At1g52150 HB-15 HOMEOBOX-LEUCINE ZIPPER FAMILY PROTEIN (159)
At4g17490 ERF6 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 6 (160)
At4g26150 CGA1 CYTOKININ-RESPONSIVE GATA FACTOR 1 (161)
At4g23550 WRKY29 WRKY FAMILY TRANSCRIPTION FACTOR 29 (162)
At2g28550 RAP2.7 RELATED TO AP2.7 (163)
At3g48160 DEL1 DP-E2F-LIKE 1 (164)
At5g16600 MYB43 MYB DOMAIN PROTEIN 43 (165)
At1g80840 WRKY40 WRKY DNA-BINDING PROTEIN 40
At2g33810 SPL3 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3
At5g47640 NF-YB2 NUCLEAR FACTOR Y, SUBUNIT B2
At1g54160 NFA5 NUCLEAR FACTOR Y, SUBUNIT A5
At3g50060 MYB77 MYB DOMAIN PROTEIN 77 (166)
At3g19360 ZINC FINGER (CCCH-TYPE) FAMILY PROTEIN
At3g59060 PIL6 PHYTOCHROME INTERACTING FACTOR 3-LIKE 6 (83)
At3g03750 SDG20 SET DOMAIN PROTEIN 20
At5g50820 NAC097 NAC DOMAIN CONTAINING PROTEIN 97
At3g07670 RUBISCO METHYLTRANSFERASE FAMILY PROTEIN
At5g67030 ABA1/ZEP ABA DEFICIENT 1/ZEAXANTHIN EPOXIDASE (167)
At4g25990 CIL CHLOROPLAST IMPORT APPARATUS CIA2-LIK
At4g17750 HSF1 HEAT SHOCK FACTOR 1
At5g63160 BT1 BTB AND TAZ DOMAIN PROTEIN 1 (168)

we predicted the differential activity profiles for 194 TFs
and their regulation strength to TGs (Supplementary Table
S5). All the 194 TFs exhibited differential activity profiles
across 11 stress conditions (Figure 4). Global TF activity
profiles show differential behaviour across different stresses
and ecotypes. NCA algorithm predicted 10 119 connections
between 194 TFs and 1410 TGs (data not shown). Based on
the calculated correlation values, 4041 positive correlations
were considered as positive regulatory signals (activation)
and 6078 negative correlations were considered as negative
regulatory signals (repression). We have applied filtering cri-
teria based on the strength of the calculated regulatory sig-
nals (r≥ 0.75). The resulting NCA predicted network con-
tained 5380 pairs of interactions between 182 TFs and 1199
TGs (Supplementary Table S5).

Comparision with interactions retrieved from literature,
AthaMap and AraNet

Comprehensive experimental data for validating all the
predicited TF–TG interactions are still lacking. We have
cross-verified some of our TF–TG regulatory predictions
with already available interactions from the few avail-
able resources. For this purpose, we have downloaded
all the TF–TG interaction data from the AthaMap (55)
and CCSB plant Interactome Database (AraNet) (54).
With this comparison, we found 52 known interactions
reported in AthaMap for six TFs and four interactions
in AraNet for three TFs overlapped with our results (see
Supplementary Table S7). The retrieved overlapping inter-
actions were for the following TFs––EDF4 (ETHYLENE

RESPONSE DNA BINDING FACTOR 4: At1g13260),
PAP3 (PHYTOCHROME-ASSOCIATED PROTEIN
3: At1g09530), WRKY40 (WRKY DNA-BINDING
PROTEIN 40: At1g80840), WRKY18 (WRKY DNA-
BINDING PROTEIN 18: At4g31800), ABF1 (ABSCISIC
ACID RESPONSIVE ELEMENT-BINDING FACTOR
1: At1g49720), GT2 (At1g76890), EFR11 (ETHYLENE
RESPONSE FACTOR 11, At1g28370), NF-YA4 (NU-
CLEAR FACTOR Y, SUBUNIT A4: At2g34720) and
RAV2 (RELATED TO ABI3/VP1 2: At1g68840).

To compare with an independent gene regulatory net-
work, we have downloaded the TF–TG interactions from
Vermeirssen et al. (57). The downloaded network con-
tained 200 014 interactions between 1290 TFs and 11 938
TGs, generated from a heterogenous gene expression com-
pendium of 199 abiotic conditions. Our network contained
10 534 TF–TG interactions between 240 TFs and 1638
TGs, generated from a homogeneous gene expression com-
pendium of eleven biotic, abiotic and combined stress con-
ditions. Only three stress conditions were overlapped (cold,
heat and salt) between the two gene expression compendia.
Despite the differences between both the studies, regarding
the conditions, datasets used, number of TFs and TGs; in
total, 649 TF–TG interactions were common between the
two independent networks, representing 101 common TFs
and 340 common TGs (see Supplementary Table S7).

Cross-validation using STIF algorithm

As an another independent cross-validation strategy, we
have used a Hidden Markov Model based profile search
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Figure 4. Predicted activity profiles of 194 stress-regulated TFs as a heat
map. Activity profiles of 194 stress-regulated TFs (x-axis) during eleven
stress conditions (y-axis), in 10 Arabidopsis ecotypes, predicted using
NCA. The activity values were scaled to +1 to −1. Hierarchical cluster-
ing of the TFs performed using Pearson correlation with average linkage
method. The predicted profiles show the differential activity of the TFs in
different stress conditions, as well as in various ecotypes.

computer algorithm called STIF (Stress-responsive TF).
STIF can identify key TFBS in 1000 bp upstream with its
5′ UTR of a gene of interest (39). Hidden Markov Mod-
els of the TFBS were generated from previously published
literature (see Supplementary Table S3). It has allowed the
identification of predicted sites in 1000 bp upstream with
its 5′ UTR of plant stress-responsive genes. STIF algorithm
independently predicted 10 474 interactions (Z-score ≥ 1.5)

between 25 unique TF families and 1021 individual TGs,
based on HMM profile search in 1000 upstream with its 5′
UTR of the TGs for finding enrichment of TF binding sites
(see Supplementary Table S8). The Z-score threshold of 1.5
was chosen because it was demonstrated to be appropriate
to 90% sensitivity during the validation of STIF algorithm
(39). We merged all the redundant TF–TG pairs and cre-
ated a list of 9311 unique pairs of TF–TGs. A pairwise com-
parison between STIF predicted unique pairs of TF–TGs
versus NCA-predicted 5380 pairs of TF–TG interactions
identified 982 common interactions between the NCA pre-
dicted regulatory network and STIF based on HMM profile
search. This overlap included 20 TF families and 529 TGs
(see Supplementary Table S10).

Stress wise regulatory sub-networks

To extract the 11 stress specific sub-networks from the
global TF–TG network, we have considered the stress-wise
TF lists and extracted all the connections to the associated
TGs from the global network. Highly connected regulatory
hubs have been identified, and corresponding biological rel-
evance were retrieved from published literature. Detailed in-
formation of the sub-networks is provided in Supplemen-
tary Table S6 and as network topology diagrams in Sup-
plementary Figures S2–11. Brief descriptions of the eleven
stress-wise sub-networks and functional relevance of few of
the highly connected regulatory hubs are described below.

Heat stress sub-network

HSFA2 (HEAT SHOCK TRANSCRIPTION FACTOR
A2: At2g26150) is one of the key regulatory components
of the cytoplasmic protein response during heat shock in
Arabidopsis (93). Arabidopsis HSFB1 (HEAT SHOCK
TRANSCRIPTION FACTOR B1:At4g11660) and
HSFB2b (HEAT SHOCK TRANSCRIPTION FACTOR
B2: At3g54660) act as repressors of many heat-inducible
HSFs, but positively regulate the acquired thermotolerance
(94). All members of the DREB2 (DEHYDRATION-
RESPONSIVE ELEMENT BINDING PROTEIN 2)
family (DREB2A, DREB2B and DREB2C) are involved
in the regulation of heat-responsive genes. Multiprotein
bridging factor 1c (MBF1c) protein functions as a tran-
scriptional regulator which binds DNA and controls the
expression of 36 different transcripts during heat stress,
including the important transcriptional regulator such
as DREB2A, HSFs and several zinc finger proteins (95).
Phytochrome interacting factors (PIFs) and pseudo re-
sponse regulators (PRRs) are known to control growth
and flowering in Arabidopsis, by regulating hundreds of
TGs via temperature-dependant clock-regulated pathways
(96). The putative dehydration-responsive element-binding
protein At2g40350 contains one AP2 (APETALA 2)
domain, is known to be associated with heat acclimation in
Arabidopsis (97). (See Supplementary Figure S2).

Salt stress sub-network

The major hub in the salt stress sub-network is TIFY10A
(At1g19180), which plays positive regulatory roles dur-
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ing responses to salt-alkaline stress in plants (98). Con-
trastingly, TIFY 11A (At1g17380), also known as JAZ5
(JASMONATE-ZIM-DOMAIN PROTEIN 5) protein acts
as co-repressor, together with the Groucho/Tup1-type
TOPLESS (TPL) for the activation of jasmonate signalling
pathways during stress (99). PHYTOCLOCK 1 (PCL1:
At3g46640) plays a crucial role in modulating circadian
clock associated transcriptional circuitry, mediated by light
signals in a synergistic manner (100). Several WRKY TFs
such as At4g18170, At4g18170 are an important com-
ponent in Arabidopsis salt stress pathways, as well as in
defence-related regulons (101). (See Supplementary Figure
S3).

Cold stress sub-network

The CBF (C-repeat binding factor) regulon has a major
role in cold stress response in plants. CBF1, CBF2 and
CBF3 (also known as DREB1B, DREB1C and DREB1A)
genes appear to be present across plant species and are
almost always present as a gene family. The CBF TFs
regulate a set of about 100 downstream genes (102).
There are other CBF-independent pathways and their
complex interactions between different components also
significantly contribute to cold tolerance. Regulators
such as CIL (At4g25990), RAV1 (At1g13260), ZEP
(At5g67030), LBD37 (LOB DOMAIN-CONTAINING
PROTEIN 37: At5g67420), MYBL2 (At1g71030), IAA29
(At4g32280), OZF2 (OXIDATION-RELATED ZINC
FINGER 2: At4g29190) are believed to control cold stress
response processes in plants (103). It is also known that
light and cold signals integrate and cross talk for cold
tolerance, via a CBF and ABA-independent pathways
(102). Previous studies have reported that circadian reg-
ulators LHY1 (LATE ELONGATED HYPOCOTYL
1: At1g01060), CCA1 (CIRCADIAN CLOCK AS-
SOCIATED 1: At2g46830), TL1 (At2g46790), COL1
(CONSTANS-LIKE 1: At5g15850) induced different
cold stress response pathways in A. thaliana plants (104).
Arabidopsis TOE protein (TARGET OF EARLY ACTI-
VATION TAGGED2: At2g28550) has been reported to
regulate flowering time via circadian and micro-RNA medi-
ated pathways during cold stress (105). (See Supplementary
Figure S4).

High-light stress sub-network

Ethylene-responsive element binding factor 6 (ERF6:
At4g17490) is the top most connected hub in high-light
stress sub-network. It has recently been shown that the ac-
climation response to high-light is initiated within 10 sec-
onds, by the upregulation of ERF6-mediated TF network
in A. thaliana (106). The typical domain structure of BTB
and TAZ domain proteins (BT1: At5g63160) is only ob-
served in land plants, and they are involved in various
stress signalling pathways (107). ZEP/ABA1 (At5g67030)
encodes a single copy zeaxanthin epoxidase gene that func-
tions in the first step of the biosynthesis of the key abi-
otic stress-responsive hormone abscisic acid (ABA). ZEP
over-expression led to increased ABA levels and decreased
water loss during high-light, heat, drought and salt tol-

erance. It has been demonstrated that the high-light re-
sponse in A. thaliana involved ABA signalling between
vascular and bundle sheath cells (108). Circadian reg-
ulators such as phytochrome interacting factor 3-like 6
(PIL6: At3g59060), CCT motif-containing response regula-
tor protein TOC1 (At5g61380), CONSTANS-like 5 (COL5:
At5g57660), plant-specific GATA-type zinc finger TF fam-
ily protein (GATA8: At3g54810) are important compo-
nents of light intensity-mediated signalling in A. thaliana,
controlling various developmental processes, such as elon-
gation, growth and flowering (96). (See Supplementary Fig-
ure S5).

Biotic (FLG) stress sub-network

WRKY22 (At4g01250) is one of the major regulatory hubs
in the biotic stress sub-network (See Figure 3D). It acts as
an early defence gene, also known to play a crucial role dur-
ing signal crosstalk between pathogen-associated molecular
patterns (PAMPs)-triggered immunity and photosynthesis
(109). Another hub in the network is MYB117 (At1g26780),
known to regulate alternative splicing events mediated by
various stress signals (110). On the other hand, MYB124
(At1g14350) is associated with stomatal development in A.
thaliana. Entry of pathogens into the host tissue via nat-
ural surface openings, such as stomata is the critical first
step in causing infection. Hence, MYB124 may play an ac-
tive role by regulating stomatal development to limit bac-
terial invasion as part of the plant innate immune system
(111). HSFA1A (At4g17750) is a master regulator of the
multiple stress conditions and believed to have played an
important role during the cross-talking event of biotic and
abiotic stresses (112). Cytokinin-responsive gata factor 1
(At4g26150) is involved in gibberellic acid-mediated sig-
nalling pathway, negative regulation of flower development,
negative regulation of seed germination, during stress con-
ditions (113).

Heat + FLG stress sub-network

Global warming and associated severity of biotic invasions
and abiotic stresses are the major threat to agricultural pro-
duction globally. The Heat + FLG (biotic) sub-network
represents an ideal regulatory network model for study-
ing biotic and abiotic stress combination. Similar to the
FLG sub-network, WRKY22 (At4g01250) is again the top
most highly connected regulatory hub in heat + FLG sub-
network, reflecting its cross-talking role during biotic and
abiotic combined stress conditions (109). SPOROCYTE-
LESS (SPL) TFs (eg. SPL9: At2g42200) are master regu-
lators of developmental transitions and known to be as-
sociated with microRNA pathway for the integration of
multiple stress signals with developmental processes during
the event of recurring multiple stresses (114). The NF-YB2
(At5g47640) is an important stress regulator, also known
to required for COL5 (At5g57660) mediated photoperiod-
dependent flowering (115). (See Supplementary Figure S6).

Cold + FLG stress sub-network

The simultaneous occurrence of cold temperature and
pathogen attack results potentially negative impact on
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plants (18). Additionally, the underlying molecular mech-
anism of pathogen resistance obtained through cold stress
is not understood well (116). WRKY22 (At4g01250) again
appeared to be a core regulator in the Cold + FLG sub-
network, confirming the strong role in biotic stress medi-
ated defence signalling and crosstalk. Another member of
the WRKY family, WRKY29 (109) is a well known tran-
scriptional regulator of the innate immune response to bi-
otic stress. ERF11 (At1g28370) and WRKY40 (At1g80840)
are two multifunctional defence regulators in plants, with
a broad range of reported evidence of their association
with multiple stress signalling pathways such as MAPK cas-
cade, ethylene-activated signalling pathway, jasmonic acid-
mediated signalling pathway, salicylic acid-mediated sig-
nalling pathway, response to abscisic acid, response to auxin
etc. (117). A recently published study has shown that the
MYB96 or MYBCOV1 (At5g62470) integrated discrete re-
sponses of cold and abscisic acid signalling to activate the
CBF-COR pathway in A. thaliana, ensuring plant adapta-
tion to a diverse set of biotic and abiotic stresses (118). (See
Supplementary Figure S7).

Cold + high-light stress sub-network

It has been hypothesized that putative light signalling path-
ways involved in low-temperature regulation of gene ex-
pression (119). TL1 (At2g46790) in the, also known as
the pseudo-response regulator (PRR9) is an essential com-
ponents of a temperature-sensitive circadian system (120).
BTB and TAZ domain protein4 (BT4: At5g67480) regulates
the expression of various abiotic stress-responsive gene ex-
pression by binding to different cis-acting elements in re-
sponse to various stress signals (121). ZEP (At5g67030) is
also a prominent hub in cold and high-light single stress reg-
ulatory network. (See Supplementary Figure S8).

Heat + high-light stress sub-network

Heat stress is a naturally co-occurring stress with high-light
conditions, and both lead to dehydration or osmotic stresses
in plants. NFYA5 (NUCLEAR FACTOR Y, SUBUNIT
A5: At1g54160) is an important TF for drought resistance
in Arabidopsis. Drought stress upregulates NFYA5 gene ex-
pression not only at the transcriptional level but also at the
post-transcriptional level by down-regulating the expres-
sion of miR169a that targets NFYA5 transcript for cleav-
age (122). MYB70 (At2g23290) is one of the putative can-
didates of ‘Arabidopsis repressome’, reported to play key
roles in diverse biological functions by negatively regulating
genes involved in developmental, hormonal and stress sig-
nalling pathways (123). Under unfavourable environmen-
tal conditions such as an onset of heat, high-light, drought,
salt, etc., the demand of the cell for protein folding can ex-
ceed its folding capacity and lead to the endoplasmic retic-
ulum stress (ER-stress) by the accumulation of unfolded or
misfolded proteins. The membrane-associated TF NAC089
(At5g22290) controls ER-stress induced programmed cell
death in plants (124). Modulation of DNA methylation in
response to environmental stress represents a potentially ro-
bust mechanism to regulate gene expression networks in
plants. SDG20 (SET DOMAIN PROTEIN 20: At3g03750)

is believed to be involved in the regulation of the Arabidopsis
methylome through H3K9 methylation (125). (See Supple-
mentary Figure S9).

Salt + heat stress sub-network

Salt stress and heat shock are two of the commonly co-
occurring environmental conditions particularly for the
plants in arid and semi-arid regions (126). The combina-
tion of heat and salt stress also generates drought and os-
motic stress in the effected plants. The top most highly con-
nected regulatory gene in the salt + heat sub-network is
At2g40350, which encodes a member of the DREB sub-
family A-2 of ERF/AP2 TF family protein involved in the
response to drought (127). Similarly, MYB60 (At1g08810)
controls the stomatal aperture, which helps to limit wa-
ter loss during drought (128). The important regulatory
role of WRKY22 (At4g01250) in stress signalling and
crosstalk events during multiple conditions was mentioned
above. PHYTOCHROME INTERACTING FACTOR 3
(PIF3/POC3) was shown to control transcriptional net-
work in response to initial light exposure, and later, to de-
velop sensitivity to other stress signals like drought and,
reactive oxygen species (ROS) upon prolonged exposure
(129). ROS-mediated homeostasis and signalling events im-
plicated during drought and salinity stresses has been well
demonstrated in earlier studies (130). (See Supplementary
Figure S10).

Salt + high-light stress sub-network

ERF6 (At4g17490) is a member of the ERF TF family pro-
tein involve in response to ROS and light induced stress
in plants (131). It has also been reported that modulation
of ethylene responses affected plant salt-stress responses
(132). Another hub in the salt + high-light network is
At5g44260, which encodes a tandem zinc finger C-x8-C-
x5-C-x3-H type family protein, involves in early stage re-
sponse to ethylene in Arabidopsis. SOC1 (SUPPRESSOR
OF OVEREXPRESSION OF CO 1 : At2g45660) is a key
component of Arabidopsis flowering time gene regulatory
network and was shown to act as a negative regulator of the
salinity stress-response via CYCLIN-DEPENDENT KI-
NASE G2 (CDKG2) (133). The important role of plant-
specific GATA-type zinc finger TF family protein (GATA8:
At3g54810) in light intensity mediated signalling in A.
thaliana was mentioned in the high-light stress sub-network
section above (96). (See Supplementary Figure S11).

Clustering of transcription factor binding sites (TFBS)

Regulation of gene expression is executed through the com-
binatorial action of many CREs, including core promot-
ers, promoter-proximal elements, as well as a various cis-
regulatory modules (CRMs) that are situated distally from
the TSSs, such as enhancers, silencers, insulators and teth-
ering elements (134–136). We have analysed the clustering
patterns of the TFBSs in the regulatory regions of each of
the stress-regulated TGs. As many as 852 TF–TG pairs had
multiple binding sites for the same TF, also known as ho-
motypic clusters of TFBS (HCTs) (137). In total, 28 TF–TG
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pairs had five HCTs, 164 pairs had four HCTs, 266 pairs had
three HCTs and 394 pairs had two HCTs. Remaining 8359
pairs of TF–TG interactions were singletons and occurred
in heterotypic clusters of TFBSs (see Supplementary Table
S9). Heterotypic clusters of TFBSs are CRMs consisting of
unique classes of TFs in different combinatorial patterns.
The homotypic clusters of multiple TFBSs were promi-
nently enriched for MYB, bHLH (BASIC HELIX-LOOP-
HELIX) and bZIP (BASIC LEUCINE-ZIPPER) TF fami-
lies, which were previously reported as ‘versatile master reg-
ulators’ controlling diverse stress signalling events in plants
(138).

Gene set enrichment analysis (GSEA) of the overlapping in-
teractions suggests their involvement in stress response pro-
cesses

To obtain an overview of the functional categories enriched
among the overlapping TGs (529 genes), GSEA was per-
formed using BiNGO tool (60). The network-based visu-
alization of statistically significant over-represented func-
tional categories identified four distinct clusters (Figure 5
and Supplementary Table S11).

Cluster 1: primary processes (photosynthesis, carbohydrate
metabolism, lipid metabolism, growth, anatomical devel-
opment, reproduction, DNA replication, etc.).

Cluster 2: secondary processes (processes related to sec-
ondary metabolism, small molecule metabolic processes,
production of defence-related secondary metabolite, etc.).

Cluster 3: stress response (response to heat, salt, cold,
wounding, radiation, water deprivation, other organisms,
etc.).

Cluster 4: regulation of biological processes.

DISCUSSION

Reconstruction of gene regulatory networks using gene ex-
pression data from multiple ecotypes, and under multiple
conditions is an ideal strategy for identifying important reg-
ulators that control the dynamic behaviour of cellular pro-
cesses related to stress responses in plants. Using a homoge-
nous dataset from a uniform experiment has the advantage
of minimizing the potential influence generated by experi-
mental heterogeneity. To explore the transcriptional regu-
lation in plants during multiple stress conditions, we have
constructed an in-silico transcriptional regulatory network
model in cellular responses to 11 stresses (five single and
six combined) in A. thaliana, using a homogenous gene ex-
pression dataset from ten natural ecotypes. Considering the
number of differentially regulated genes as a measure, signa-
tures of transcriptomic response variations were observed
among the ten Arabidopsis ecotypes while responding to
the eleven stress conditions. There were variations within
an ecotype while responding to different stresses, as well
as variations among different ecotypes while responding to
a particular stress condition. There were observable differ-
ences between responses to single stress versus response to
the combination of stresses (Table 1). Regulation of gene ex-
pression is a critical component in development and evolu-
tion of living beings along with genome composition, struc-

ture and function. Responding to the changing environ-
mental conditions, a functional cell of any living organism
would alter the expression of particular genes through tran-
scriptional regulation to make it possible to preserve the ro-
bustness of cellular processes (139).

In this paper, we focused mostly on inferring a global
stress regulatory network and 11 conditions dependent reg-
ulatory sub-networks in the model plant A. thaliana by
uniting the dataset from 10 ecotypes and 11 stress con-
ditions. The united lists of stress-regulated genes from all
the stress conditions and 10 ecotypes contained 3429 dif-
ferentially expressed genes, out of which 294 were Ara-
bidopsis TFs. The initial bi-partite network contained 10
534 interactions between 240 stress regulated TFs and 1638
TGs. NCA algorithm was able to predict activity profiles
of 194 TFs. Applying the regulatory signal strength based
filtering criteria, 5380 connections were retained between
182 TFs and 1199 TGs. The stress-wise lists of differen-
tially expressed TFs were used to generate eleven condition-
dependent regulation regulatory sub-networks. Very few
TFs were differentially expressed in more than one stress
conditions, and most of the multifunctional regulators were
directly or indirectly related to circadian pathways, con-
trolling various physiological and developmental processes
coupled with environmental stimuli. Circadian clocks con-
sist of positive and negative elements that comprise a tran-
scriptional feedback loop (140). There have been several
reports about circadian clock genes that are not essential
for oscillator control under diurnal cycles of light and dark
(141). Many such circadian clocks of higher plants were
believed to act as the master regulator by orchestrating
the various layers of metabolic and physiological processes
that coordinate growth and performance under a changing
environment (142,143). Our analysis identified few highly
connected clock-related genes in multiple stress conditions.
Stress-specific lists of TFs were identified for five single and
six combined stress treatments. Many of the single stress-
regulated TFs were already reported in benchmarked liter-
ature elsewhere (14,17,19,144). However, results for com-
bined stress-regulated TFs were not available in multiple
ecotypes of A. thaliana. We have created six lists of TFs for
each of the combined stress conditions used in our anal-
ysis, and extracted their corresponding interactions with
TGs. Information regarding regulation of combined stress
gene expression is of great interest to study signalling cross-
talk events during combined stress conditions (145). It is a
well-known fact that TFs alter their interactions to vary-
ing degrees in response to diverse stimuli, thereby rewiring
the whole network topology. By analysing the stress reg-
ulatory sub-networks, we have observed that a few TFs
serve as multifunctional regulatory hubs, but most act tran-
siently only responding to certain conditions (146). Finding
functional association of the condition-specific regulators
in combined stress conditions is difficult due to the non-
availability of published information in this direction. The
multifunctional regulators maintain the core stress response
processes while the transient regulators confer the speci-
ficity to certain conditions by regulating a diverse range of
downstream TGs. The relationship between network topol-
ogy and TF activity dynamics allow differential utilization
of the same underlying network topology by different regu-
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Figure 5. GSEA of the overlapping TGs. Network based visualization of GSEA results identified four clusters of statistically significant over-represented
functional categories. Parental GO terms are shown in the centre. The differentially regulated primary processes were present in cluster 1, and secondary
processes in cluster 2. The various stress response processes were distinctly clustered together in cluster 3. Processes that regulate the series of complex
stress––response events were grouped together in cluster 4. These categories reflect the sequential modulation of stress-response processes. Upon exposure
to stressed conditions, plants compromise with primary processes such as primary metabolism, photosynthesis, reproduction, to allocate extra resources
to the activation of various defence and stress-response processes and secondary metabolic processes. Nodes were coloured according to their corrected
P-values. Node sizes reflected the total number of genes in that category.

lators under different conditions (3). Our dataset contained
of gene expression data from single time point only (17).
Together with the utilization of multiple ecotypes, and mul-
tiple stress conditions (both single and combined), a high-
resolution time series analysis of gene expression profiles
would be an ideal experiment to conduct in future, for cap-
turing the dynamic behaviour of the TF–TG interactions
during multiple stress conditions.

As an independent cross-validation strategy to verify co-
expression based regulatory network, STIF algorithm was
employed to find enrichment of TFBSs in the 1000 bp up-
stream with its 5′ UTR of the TGs. Comparison between
the predicted regulatory network and STIF-based predic-
tions had identified 982 common interactions between 20
different TF families and 529 unique TGs. The STIF al-
gorithm has identified 852 pairs of homotypic clusters of
TFBSs (HCTs). Comprehensive models of gene expression

consider how each TF contributes independently to gene
expression. However, researchers have now demonstrated
the complex regulation of gene expression by combinatorial
promoters (147). Identified HCTs in the predicted stress reg-
ulatory TF–TG network were mainly comprised of MYB,
bHLH and bZIP TF families. The stress-regulated lists of
TFs contained 17 MYBs, 16 bHLHs and 7 bZIPs members
of TFs respectively (see Supplementary Table S3). Litera-
ture survey confirmed the role of MYB, bHLH and bZIP
TFs as conserved ‘versatile master regulators’ in signalling
pathways in responses to multiple stress conditions in plants
(138,148–149). Our results suggest that the homotypic clus-
ters of TFBSs may play important evolutionary role for pre-
serving the transcriptional robustness of the key stress regu-
lators by avoiding any mutational effect in the cis-regulatory
regions. Clustering of multiple TFBSs for the same TF is a
common feature of CRMs in lower organisms (137). Several
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reports have indicated the potential role of cis-regulatory
evolution on natural variations in stress-responsive gene ex-
pression in plants (61,66,73,150). However, the occurrence
of such CRMs in the plant genome has remained largely
unknown (58). Large scale experimental screening of cis-
regulatory regions of stress associated genes in multiple eco-
types, together with sequence polymorphism data would be
able to confirm the evolutionary significance of the HCTs in
stress response, acclimation and successive evolution. Gen-
erating large-scale phenotypic and physiological data and
combining predictive models with downstream experimen-
tal charecterization would also be an added advantage in
this regard.

Network-based GO analysis of the overlapping TGs has
shown the significant over-representations of sequentially
activated defence response processes. The complex orches-
tration of plant biotic and abiotic defence responses re-
quire an adequate supply of energy (149,151). While mod-
ulating the multitude of defence response processes dur-
ing a physiologically stressed condition, plants have to re-
organize some of the resources of central metabolism by al-
locating resources for the activation of defence-related pro-
cesses (152). Along with secondary metabolism, primary
metabolism of the plant is also differentially regulated dur-
ing a stressful event and finally lead to smoothly orches-
trated defence responses. The resulting GO-network (Fig-
ure 5) reflects this observation.

Experimental evidences regarding TF–TG interactions
in plant systems are very limited (58). Again, within the
available information, condition-specific regulatory inter-
actions in plants are almost rare. It poses a significant
challenge in benchmarking computational predictions. By
cross-comparing of our predicted network with the lim-
ited information retrieved from AraNet and AthaMap, we
were able to identify few known interactions. Considering
the differences in used data, conditions and methods, the
overlap of 649 TF–TG interactions (out of 10 534) with an
independently predicted network was relatively good (57).
Our study has suggested many novel interactions between
key TFs and differently expressed TGs during the stress re-
sponse during 11 conditions. This information will help to
identify and experimentally validate molecular markers or
relevant stress regulators by forward genetics experiments
to develop single and multi-stress tolerant crop varieties. In
addition, similar integrative approaches could be employed
to study networks regulating any biological process in any
biological system.
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