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Abstract

Background: Next Generation Sequencing techniques are producing enormous amounts of biological sequence
data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of
conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive
alignment, whose run time grows with the square of the number and the length of the aligned sequences and
requires significant computational resources. In this work, we present a method to efficiently discover regions of high
similarity across multiple sequences without performing expensive sequence alignment. The method is based on
approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-
throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-
alignments have numerous applications such as identifying species and their taxonomic class from sequences,
comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences.

Results: In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple
sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned
16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved
regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the
proposed method scales well for large data sets with a run time that grows only linearly with the number and length
of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly.

Conclusion: Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across
multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model,
we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many
potential applications such as finding characteristic signature sequences for families of organisms and studying
conserved and variable regions in, for example, 16S rRNA.

Background
With the development of Next Generation Sequencing
techniques, there has been a massive increase in the num-
ber of sequences available. Analyzing such a large volume
of sequence data presents a major computational chal-
lenge, especially since it often involves finding an optimal

alignment between the sequences as a first step. Multiple
Sequence Analysis (MSA), which is most commonly used
for aligning a set of sequences, is computationally very
expensive. In many bioinformatics applications (e.g.,
BLAST [1], BAlibase [2], T-Coffee [3], MAFFT [4],
MUSCLE [5,6], Kalign [7] and ClustalW2 and ClustalX2
[8]), sequence alignment and MSA play a critical role.
Finding the optimal alignment for a large set of sequences
that may be related by function, evolution, or structure is
a computationally complex task and often involves use of
high performance computing servers and resources.
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Alternative approaches involve creating statistical sig-
natures from nucleotide composition frequencies. These
so-called alignment-free methods [9] are more efficient
both in terms of processing time and storage require-
ments as they work with compact signatures and not
the entire set of sequences. These methods also scale
well for whole genome phylogenetic analysis [10] which
is an improvement over existing methods. However,
these methods do not retain any of the important local
information, such as the GC content in particular areas
of the sequences. Several other methods have tried to
characterize sequences based on the repeated presence
of certain shorter patterns [11,12]. These methods are
mostly used as heuristics for identification of smaller set
of sequences.
It is well known that different regions of DNA sequences

have different roles. For example, some regions are
responsible for protein coding and are known as coding
regions [13] while others are conserved across related spe-
cies and can be an indication of evolutionary similarity.
Thus, a flexible approach to sequence analysis is needed
that can take advantage of computational efficiency of
alignment-free techniques while still taking into account
the unique properties of different regions of sequences.
In this work, we propose a novel method for discover-

ing conserved regions across multiple sequences. Our
method is based on position-sensitive word frequency
analysis and uses high efficiency data stream clustering to
find regions with similar word frequency distributions
across multiple sequences. We refer to clusters as quasi-
alignments, since a similar word frequency distribution in
a cluster also means that the underlying segments are
likely to be very similar. For the found clusters, we also
retain important metadata such as the position of the
clustered segments in the original sequences and the GC-
content. This approach has previously been used for phy-
logenetic classification [14]. This paper expands our
preliminary investigation into discovering similar seg-
ments [15] by developing a more rigorous theory of
quasi-alignment, improved visualization and an expan-
sion to the species level. We show how quasi-alignment
can be used to quickly and efficiently discover conserved
regions across multiple sequences. Finding stretches of
identical sequences at the species level is useful for var-
ious applications including sequence identification and
DNA barcoding [16].

Quasi-alignment via position-sensitive p-mer
clustering
Constructing position-sensitive frequency vectors
In this section, we present the foundation for the analysis
and clustering framework. The basic unit of analysis for
our case is a word inside a segment of a sequence. In the
case of global frequency analysis used by alignment-free

methods [9], a word of length p is referred to as an oligo-
mer or p-mer. In case of DNA sequences, the words are
formed from the set of alphabet {A, C, T, G}. In our ana-
lysis, we are interested in the distribution of words within
specific regions (segments) of a sequence.
Definition 1. Given a DNA sequence × of length L, a

segment Si,l is defined as a subsequence starting at posi-
tion i and having length l, where l < L − (i − 1).
Next, we define the distribution of words within a

segment.
Definition 2. Given a segment Si,l, we define NSVi,l =

〈f1, f2, . . . , f4p〉 as a vector of length 4p where each ele-
ment fi, i = {1, 2, . . . , 4p}, represents the count of a pos-
sible p-mer in the segment. This vector represents the
word frequency distribution in Si,l and is referred to the
segment’s Numerical Summarization Vectors (NSV).
The set of NSVs for an entire sequence can be created

by partitioning it into equal sized segments that may or
may not overlap. For example, a sequence of length 1500
base pairs (bp) can be divided into 15 segments each of
length 100 without any overlap between them. The word
frequency distribution will later be used to find similar
segments. Thus, the word size parameter p controls how
well the similarity between segments is approximated
with larger values leading to better approximation while
smaller values lead to faster computation. We find that
p = 3, i.e. we count the occurrence of tri-mers within a
segment, produces good results while creating NSVs of
length 43 or 64. Cutting a sequence into segments and
then creating NSVs is illustrated in Figure 1. We cur-
rently do not take into account any unknown characters,
such as “N” that may be present due to sequencing errors
or ambiguous sequencing.

Data stream clustering
After constructing NSVs for the entire set of sequences
to be examined, we use high-throughput data stream
techniques [17] to cluster similar segments. We consider
each NSV as a data point in a stream of consecutive
NSVs. The clustering algorithm then adds one NSV
after the other to the cluster model by adding it to an
existing cluster if it is within a user defined clustering
threshold from its center or otherwise creating a new
cluster with the NSV as its first member. This idea is
illustrated in Figure 1. In addition to the clusters we
also retain order information in the form of a directed
graph (shown in Figure 1). The exact clustering proce-
dure is discussed in [18].
Definition 3. A GenModel M is defined as a directed

graph G = 〈C, E〉where the vertices are the set of clusters
C = {C1, C2, ..., Cm} of NSVs and the edges E represent
the ordering of the NSVs in the sequences. Each cluster
contains metadata such as location in the original
sequence and the sequence IDs.
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We can now reframe the problem of alignment as the
problem of finding similar subsequences (segments) via
clustering.
Definition 4. Each cluster C in a GenModel M repre-

sents a set of similar segments and is referred to as a
quasi-alignment and the segments are said to be quasi-
aligned.
By using clustering, we avoid the expensive alignment

process and yet obtain information about local similarity
between multiple sequences. The data stream clustering
algorithm makes just one single pass through the seg-
ments and thus it has a linear time complexity in terms of
the length and number of sequences. Also, new sequences
can be added very efficiently to an existing model.

Similarity measures for clustering
Clustering algorithms use similarity measures for com-
paring individual data points. In our case, the sequence
data is converted into fixed dimension NSVs represent-
ing the word frequency distribution within segments.
NSVs can be compared using standard measures for
vectors such as Manhattan distance, Euclidean distance,
squared Euclidean distance, Kullback-Leibler discre-
pancy and Mahalanobis distance [9]. They can also be
compared using other measures such as the number of
shared words between two segments. For example, Sim-
rank [19] compares the number of matching p-mers
(typically with p = 7) for fast sequence search.
The distance between NSVs can be related back to the

difference between the original sequence strings also.
The difference between two sequences is measured in
terms of edit distance [20], which is the minimum num-
ber of point mutations required to change one sequence

into another. A point mutation can be an insertion, dele-
tion, or substitution. Ukkonen [21] has proposed that the
edit distance between two strings can be approximated
by the Manhattan distance between their q-gram profiles
(which in our case will be the p-mer profile). The Man-
hattan distance between two frequency vectors x and y
obtained from the segments sx and sy is defined as:

dManhattan(x, y) =
4p∑

i=1

∣∣xi − yi
∣∣ (1)

The Manhattan distance simply computes the number
of p-mers that are different between the two sequences.
It can be shown that the Manhattan distance gives a
lower bound for the edit distance between the two seg-
ments.

dEdit(sx, sy) ≥ dManhattan(x, y)
2p

(2)

The reasoning behind the bound above is that any
insertion, deletion, or substitution in the segment will
create at most p new p-mers and destroy p existing
p-mers. Note that in theory it is possible to create two
completely different sequences with the same q-gram
profile (see [21]), however, this is very unlikely if we
deal with biological sequences which are expected to
have a certain degree of similarity (e.g., caused by con-
served regions or homology).
The relationship in equation 2 can be used to determine

a reasonable clustering threshold for the data stream clus-
tering algorithm in [18] for a given word size p. For exam-
ple, we often use a segment size of 100 bases with 3-mers
and a Manhattan clustering threshold of 30. Equation 2

Figure 1 Process of creating a GenModel. GenModel is created by dividing the sequence into equal sized segments and evaluating word
frequency distributions, called Numerical Summarization Vectors (NSVs), for each segment. This example shows word size of 3. The model is
created by comparing each new segment’s frequency profile with existing clusters. The segment is assigned to the closest cluster that is within
a threshold distance, if no such cluster is available, a new cluster is created with the segment as the first member. Here NSV3 and NSV4 are
close enough to be assigned to the same cluster.
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shows that this threshold means that the edit distance
between two segments needs to be at least 30/6 = 5 to put
them into two separate clusters. Note also that position
specific p-mer frequency clustering is not restricted to
using Manhattan distance, it can be used with any proxi-
mity measure defined on the frequency counts in NSVs.

Discovery of conserved regions from GenModels
GenModels provide vital information about the similar-
ity between segments in the form of quasi-alignments.
This allows us to identify regions that are highly similar
across multiple sequences. For sequences related by evo-
lution, such as those from the same taxonomic unit,
these segments are known as conserved regions.They
are likely to be responsible for a particular function or
provide a needed structural characteristic.
As an illustration, Figure 2 shows a GenModel created

from the 16S rRNA sequences belonging to the phylum
GN06. We used the unaligned version of the sequences
from the Greengenes database [22]. The available 13
sequences range in length between 1374 and 1525 bases.
For building the model, these sequences were broken
down into non-overlapping segments of size l = 100
bases each, which were then aggregated with 3-mers
(p = 3) and clustered using Manhattan distance and a
clustering threshold of 30. The resulting GenModel con-
tains 54 clusters or quasi-alignments. The plot shows
each of the quasi-alignment as circles uniquely identified
by an id. The circle size is proportional to the size of
the clusters (i.e., number of segments participating in
the quasi-alignment) and arrows represent the direction
of the transitions between them. A stronger arrow indi-
cates that the transition occurs with a higher probability.
For example, Figure 2 shows that one of the common
transition paths is the quasi-alignment sequence 26 ®
27 ® 28 ® 4 ® . . . ® 12 ® 13 ® 14 indicating that a
large fraction of the sequences share some common
sequence segments. In addition the plot shows that
almost all sequences go through a few quasi-alignments
(e.g., 4, 6, 10 and 14) which represent candidates for
regions that may be highly conserved in the set of ana-
lyzed sequences. The sequences share a common higher
level taxonomy (phylum) and thus we expect relatively
stronger quasi-alignments as compared to random
sequences. Interesting in Figure 2 is the almost comple-
tely separate path of smaller clusters starting with quasi-
alignment number 16. This indicates that a single or a
few sequences are significantly different from the major-
ity of the sequences in the set. This might be due to sev-
eral reasons, such as mis-classification of the sequence,
or a sequencing error whereby some of the initial bases
may have been removed.
In Figure 3, we visualize the largest quasi-alignments

found in the GenModel along the approximately 1500

bases (x-axis). The top part of Figure 3 shows the seg-
ments grouped into the 5 most popular quasi-align-
ments as red horizontal lines. In this model, all red
horizontal lines are exactly 100 bases long because a
segment length of 100 was used. The segments that are
part of the same quasi-alignment are joined by vertical
dotted lines and the cluster id from Figure 2 is shown
on top. We see that the well preserved segments are
found in quasi-alignment 4, 6, 31, 10 and 14 which cor-
respond to the largest clusters in the model where
almost all sequences converge in Figure 2. The lower
part of Figure 3 shows a measure of consensus for each
segment i.e. proportion of sequences clustered into the
most popular quasi-alignment. For example, it shows
that all of the sequences in the nucleotide region 900-
1000 converge in quasi-alignment 10. Similarly, all
except one sequence converge in quasi-alignment 4, 6
and 14 for the nucleotide regions 300-400, 500-600 and
1300-1400, respectively. This is an indication that these
segments are highly similar and could be conserved
regions of the sequences.
To validate our claim that the segments that are clus-

tered together into a quasi-alignment are indeed highly
similar, we performed traditional Multiple Sequence
Alignment (MSA) on the segments that are part of quasi-
alignment 10. We used Clustal [8] available through the
software JalView [23,24] to perform MSA and visualize the
alignment in Figure 4. The results show that the segments
have an average pairwise alignment score of 0.94 (out of a
maximum possible of 1.00) with a large majority of seg-
ments being almost identical and having 100% pairwise
alignment. Figure 4 and the MSA results indicate that the
segments in quasi-alignment 10 are indeed very similar.
We have performed a similar analysis on the other quasi-
alignment shown in Figure 3 and verified that the seg-
ments have a high degree of base-wise identity.
It is interesting to note that in Figure 4 some sequences

have bases that are “shifted” by a certain amount. For
example, the first sequence shown with id 159470, has its
bases shifted to the right by 29 bases. This can be the
result of insertions/deletions (indels) in the sequences due
to evolutionary processes. If this offset becomes too large,
then it can interfere with clustering segments. This pro-
blem can be removed by using overlapping segments, i.e.,
considering many or all possible offsets. This increases the
time complexity in the worst case by a fixed factor of l
(segment length). It also makes makes visualizing quasi-
alignments more complicated and therefore we will
restrict the discussion in this paper to non-overlapping
segment.
Further validation of the location of the found con-

served regions can be obtained by looking at biological
evidence available in the literature. Studies have reported
that 16S rRNA contains regions that are highly conserved
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within each species, but variable between species. These
regions are known as hypervariable regions [25,26],
which are characteristic for each species, and have appli-
cations such as PCR amplification using universal
primers [25]. It has also been reported that hypervariable
regions are flanked on both sides by regions that are
highly conserved across multiple species [27,28]. These
flanking regions are conserved even for sequences

exhibiting wide genomic diversity such as environmental
or biological samples.
Nine identified hypervariable regions in 16S rRNA

consist of nucleotides number 69-99, 137-242, 433-497,
576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and
1435-1465, and are denoted by V1 through V9, respec-
tively [25]. The sequence data of the phylum GN06 con-
tains 13 sequences potentially from multiple species,

Figure 2 GenModel for the phylum GN06. GenModel of 13 16S rRNA sequences from the phylum GN06 with the circles denoting quasi-
alignments (clusters of segments) with a unique id. Arrows show the preserved order information of segments in the original sequences. For
example, all sequences with a segment participating in quasi-alignment 31 have the next segment in quasi-alignment 32.
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which in the data have not been identified and hence
are coded as unknown in the Greengenes database.
Since the data contains several species, we would expect
greater variations in the hypervariable regions than in
the flanking, preserved regions. The top part of Figure 3
shows the 5 largest quasi-alignments (clusters) found for
the GenModel for the sequences from GN06. The posi-
tions of the hypervariable regions are shown as blue
lines labeled V1 through V9 at the top of the plot. It is
very clear that our algorithm identifies regions that

flank the hypervariable regions. For example, quasi-
alignment 10 covers the nucleotide bases between
the hypervariable regions V5 and V6. Similarly, quasi-
alignment 4, 6, 31, and 14 cover the bases between
hypervariable regions V2, V3, V4, V5, V6, V8 and V9.
The plot in the lower part of Figure 3 also confirms this
finding. The peaks of the plots indicate those segments
that have a high consensus i.e. a strong quasi-alignment.
The region between bases 900 and 1000 share a perfect
consensus, i.e., all the segments belong to the same

Figure 3 Plot of the top 5 quasi-alignments from the phylum GN06. The top plot shows the positions of the segments that belong to the
five strongest quasi-alignments. These segments indicate well preserved regions in the sequences. The bottom plot shows the consensus
among the quasi-alignments for the segment, i.e., fraction of sequences participating in the most common quasi-alignment for each segment.

Figure 4 Multiple sequence alignment of segments that are part of quasi-alignment 10 in GN06. Multiple sequence alignment of the
segments forming quasi-alignment 10 (at positions 901-1000) in the GenModel for GN06 (visualized with JalView [23]).
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quasi-alignment. As discussed earlier, this area lies
between hypervariable regions and is thus is expected to
be more conserved for a sample containing multiple
species.

Implementation details
We have implemented an open source software package
using the R framework called QuasiAlign which can be
downloaded from http://r-forge.r-project.org/projects/
mmsa/. This package has methods to quickly load a large
set of sequence files, that can be in FASTA format with
Greengenes [22] annotations, into a relational database
and can be used to easily filter sequences belonging to
any taxonomic rank. This package is built on top of a
number of other packages including Biostrings [29] for
handling sequences, and the data stream clustering pack-
age rEMM [30,31]. It provides a complete interface for
managing sequences, creating word frequencies distribu-
tions (NSVs) and creating and analyzing GenModels.
Several other useful functions, such as those for metage-
nomic classification, are also available. More details can
be obtained from the package documentation [32].
For the analysis in this paper, we have used the default

parameters for creating NSVs and GenModels. The
parameters for NSVs are a segment length of l = 100
bases with no overlap between and segments and a
word size of p = 3. For creating GenModels, the default
is Manhattan distance with a clustering threshold dis-
tance of 30 which requires a minimum edit distance of
5 between two segments to place the into separate clus-
ters (see equation 2 above).

Large scale experiments
Position sensitive p-mer clustering can work with a set
of DNA/RNA sequences or even fragments of sequences
from any source. This is a valuable asset for metage-
nomic analysis and also fits in nicely with the require-
ments of Next Generation Sequencing methods. All
experiments in this paper can be reproduced using the
QuasiAlign [32] package.

Dataset used
The method presented here for discovering conserved
regions is general enough to be applied to any set of
sequences. For this analysis, we used the more than
400,000 16S rRNA sequences obtained from the Green-
genes project [22]. The 16S gene is widely used for phy-
logenetic analysis as it is highly conserved for different
species of bacteria and archaea. The sequences of this
gene have remained more or less constant over time
and evolutionary cycles. Further, it contains several dis-
tinct regions, known as hypervariable regions, that are
very specific and unique for each individual species [25]
and are widespread used for sequence identification and

classification. The package QuasiAlign allows us to
directly import FASTA sequences with Greengenes
annotations into a relational database for further
analysis.

Results
We processed the entire Greengenes 16S rRNA database
using the default settings for creating NSVs and Gen-
Models and then analyzed the models for interesting
patterns and clusters to search for highly similar or con-
served regions across multiple sequences that may be
related by taxonomy.
As an example, we present an analysis of the species

Leptotrichia buccalis that belongs to the phylum Fuso-
bacteria and genus Leptotrichia. The database contains
11 sequences of this species having lengths between
1310 and 1510 bases. We ran the position sensitive
p-mer clustering algorithm on these sequences. The plot
of the GenModel is shown in Figure 5 and the plot of
the segments belonging to the 5 largest quasi-alignment
is shown in Figure 6. It is easy to see that most
sequences follow a similar path with the exception of
one sequence that starts a totally different path starting
from quasi-alignment 20 and ending at quasi-alignment
32. This outlier sequence may have its bases shifted by a
certain amount due to insertions or deletions giving it
somewhat of a different frequency profile. Since the
sequences belong to the same species, the hypervariable
regions are expected to be highly conserved. The top 5
quasi-alignments contain segments that belong to hyper-
variable regions V2, V3, and V4. The bottom part of
Figure 6 shows that the consensus of quasi-alignments
peaks at the hypervariable regions. To check these
results, we also performed MSA using Clustal [8] on the
segments belonging to quasi-alignments 2 and 3. The
average pairwise alignment score is 0.93, and many
sequences being perfectly aligned with a pairwise align-
ment score of 1.00. The results are shown graphically in
Figure 7 for a section of the 200 bases that are perfectly
aligned.
A second example comes for the species Cetobacter-

ium somerae that belongs to the phylum Fusobacteria
and genus Cetobacterium. There are 207 sequences in
the dataset for this species having lengths between 1335
and 1472 bases. We created the GenModel shown in
Figure 8. Since there are about 20 times more sequences
than for the earlier, the model is more complex and has
many more clusters and related transitions. Still, we can
see that there are certain clusters and transitions that
are more pronounced and the most common path is
28 ® 29 ® 36 ® . . . 26 ® 27 ® 35. The plot of the seg-
ments belonging to the top 5 quasi-alignments are shown
in Figure 9 at the top and the consensus for the quasi-
alignments is shown at the bottom. It is easy to see that
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the consensus mostly peaks at the location of the hyper-
variable regions, implying that these segments are similar
and cluster together in the same quasi-alignment. We
have also performed MSA on the segments belonging to
the largest clusters and they have very high nucleotide
similarity with several sub-regions having perfect
matches.

Applications
There are several possible applications of our method.
The first is to discover regions of very high sequence
alignment by limiting the search space to regions of
strong quasi-alignment. For the case of the species

Leptotrichia buccalis, we have identified in the sequences
that the region between nucleotides 100 and 300 has a
highly similar word frequency distribution. While this
does not necessarily mean that all bases in this region
will be perfectly aligned, it does indicate that this region
is a good candidate for alignment. Therefore, the search
space for the best alignment can be reduced from the
entire sequence length to just the strongly quasi-aligned
segments. This can result in substantial savings in com-
putational resources and time and produce results more
efficiently.
Another application is in the area of DNA barcoding

[16], which seeks to identify species based on sequence

Figure 5 GenModel of 16S rRNA sequences from the species Leptotrichia buccalis.
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segments that are standardized and well-conserved
across sequences belonging to the same species. By
using our methods, we can limit the search for DNA
barcodes to those regions that are strongly quasi-

aligned. For example, in case of the species Leptotrichia
buccalis, we discovered the region between nucleotide
base positions 100-300 contain highly similar sequences.
Further analysis of MSA results reveals that in this

Figure 6 Plot of the top 5 quasi-alignments from the species Leptotrichia buccalis. The top plot shows the 5 strongest quasi-alignments
from the species Leptotrichia buccalis. The bottom plot shows the consensus of the quasi-alignments.

Figure 7 MSA of a section of quasi-alignment 2 showing perfectly aligned bases. Plot of the Multiple Sequence Alignment of a section of
quasi-alignment 2 between bases 122 and 168 for the species Leptotrichia buccalis showing perfect alignment.
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region the nucleotide positions 122-168 and 183-235 are
exactly identical. These regions can form the basis of a
more thorough DNA barcoding analysis.

Run time analysis
The existing methods for analyzing a group of sequences
for similarity rely mostly on Multiple Sequence Alignment
(MSA). Finding the optimal MSA is known to be NP hard
and thus computationally challenging [33,34]. Various
heuristics are currently used for MSA based analysis.
Progressive alignment is a heuristic method that first con-
structs a guide tree based on relationships between the
sequences and then builds the MSA by iteratively adding
sequences from the guide tree to the alignment. The time
complexity of progressive alignment is O(N2L2) where N
the number of sequences having average length L [35].
In contrast to the above methods, position sensitive p-

mer clustering makes just one pass through each of the
sequences to create the NSVs and construct the GenMo-
dels. Thus, the time complexity of our method is O(LN)
for N sequences of average length L. In addition, adding

new sequences to an existing model is very easy since the
use data stream clustering allows us to add new NSVs at
any time.
The above advantages allow us to analyze a large set of

sequences for similarity and allow easy discovery of con-
served regions. Our algorithm can easily analyze the entire
data set from the Greengenes [22] using a simple personal
computer. Performing such an analysis using traditional
MSA would require extensive server resources and com-
puting time.
To compare run times of our method against MSA,

we incrementally sampled between 10 and 100
sequences from the phylum Fusobacteria and ran quasi-
alignment and the Clustal [8] implementation of MSA
on them and noted the run times. The plot is shown in
Figure 10. It is clear that the run time for quasi-align-
ment increases linearly with the number of sequences
while for Clustal it grows polynomially. Because of this,
quasi-alignment scales well for larger number of
sequences and can provide accurate results quickly and
efficiently.

Figure 8 GenModel of 16S rRNA sequences from the species Cetobacterium somerae.
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Conclusion
In this work, we have presented the foundation for quasi-
alignment based on position sensitive p-mer clustering, a
technique which applies high-throughput data stream clus-
tering to produce GenModels, where strong clusters repre-
sent potential areas of high sequence similarity. In contrast
to MSA heuristics, the runtime of quasi-alignment scales
linearly in the number of sequences and the average
sequence length. This allows us to process larger number
of sequences efficiently. We carried out experiments for
sequences consisting of single and multiple species and
verified the accuracy of our results by comparing them to
traditional MSA and using biological evidence from the
hypervariable regions.
There are many possible applications such as identifi-

cation of identical DNA fragments and their positions
within multiple sequences for DNA barcoding studies.
Our methods can reduce the search space from the entire
length of DNA sequences to just those regions that are
part of stronger quasi-alignments. Other applications

Figure 9 Plot of the top 5 quasi-alignments from the species Cetobacterium somerae. The top plot shows the 5 strongest quasi-
alignments from the species Cetobacterium somerae. The bottom plot shows the consensus of the quasi-alignments.

Figure 10 Comparing run times of quasi-alignment and Clustal
implementation of MSA.
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might include identification of sequences from their
quasi-alignment models and finding interesting regions
within sequences, such as those with high GC content.
In this paper we have restricted our discussion to creating

non-overlapping segments. For dealing with sequences
which contain a larger amount of insertions and deletions or
for classification of shorter fragments sampled randomly
from the sequence, it is necessary to use overlapping
segments while constructing GenModels. The runtime
complexity increases only by the constant factor l, the seg-
ment length. We are currently working on expanding the
QuasiAlign package to support use of overlapping segments.
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