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An accumulated body of choice research has demonstrated that choice behavior can be understood
within the context of its history of reinforcement by measuring response patterns. Traditionally, work
on predicting choice behaviors has been based on the relationship between the history of
reinforcement—the reinforcer arrangement used in training conditions—and choice behavior. We sug-
gest an alternative method that treats the reinforcement history as unknown and focuses only on oper-
ant choices to accurately predict (more precisely, retrodict) reinforcement histories. We trained
machine learning models known as artificial spiking neural networks (SNNs) on previously published
pigeon datasets to detect patterns in choices with specific reinforcement histories—seven arranged con-
current variable-interval schedules in effect for nine reinforcers. Notably, SNN extracted information
from a small ‘window’ of observational data to predict reinforcer arrangements. The models’ generali-
zation ability was then tested with new choices of the same pigeons to predict the type of schedule used
in training. We examined whether the amount of the data provided affected the prediction accuracy
and our results demonstrated that choices made by the pigeons immediately after the delivery of rein-
forcers provided sufficient information for the model to determine the reinforcement history. These
results support the idea that SNNs can process small sets of behavioral data for pattern detection, when
the reinforcement history is unknown. This novel approach can influence our decisions to determine
appropriate interventions; it can be a valuable addition to our toolbox, for both therapy design and
research.
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An analysis of the interactions between
behavior and with the environment provides us
with information about reinforcement contin-
gencies (Skinner, 1969). Reinforcement contin-
gencies have been extensively studied in choice
research and models developed to understand
how behavior changes in relation to environ-
mental factors (Davison & McCarthy, 1988;
Pierce & Epling, 1983; Skinner, 1969; Staddon,
2016). Extensive research has shown that this
relationship can be complex; choice is depen-
dent on recent reinforcement history, such that
responses that have in the past produced rela-
tively more reinforcement occur relatively

more often (Baum, 1974; Davison & Jenkins,
1985; Davison & McCarthy, 1988; Killeen,
1972). These effects are observed both when
environmental contingencies remain stable
over time (e.g., Baum, 1974), and also when
environmental conditions change rapidly
(Davison & Baum, 2003; Landon et al., 2003;
Mazur, 2016). Indeed, even when a reinforcer
ratio remains in effect for just 10 reinforcers,
choice varies systematically with the arranged
reinforcer ratio (Davison & Baum, 2000). Thus,
behavior is highly sensitive to recent rein-
forcers, and functional relations learned in the
past contribute to current behavior in a way
that allows prediction of future responses
under similar circumstances.

The relation between behavior allocation—
for example, when two keys are present—and
the relative reinforcement arrangement,
would suggest that either can be predicted
from the other. Given the fundamental rela-
tionship between choice and reinforcement,
different predictive questions can be asked
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about the effects of variables influencing the
behavior of individual organisms. In behavior
analysis, a traditional approach would be to
predict the next distribution of responses
when the reinforcer ratio is set as the indepen-
dent variable (Baum, 2018). This informs us
on how reinforcers obtained in a particular
context, over successive instances, can lead to
a change in behavior. An alternative approach
to prediction is to speculate about the rein-
forcement history (i.e., the reinforcement
arrangements used in training conditions and
no longer in place) of a behavior by looking
only at current behavior. This approach allows
us to identify the reinforcement history when
such information is not available and informs
us about the conditions in which new behavior
can be learned. The latter bears special signifi-
cance for both applied and experimental con-
texts. Especially in applied settings, the
reinforcement history is commonly unknown,
and is speculated on in the development of
assessments and interventions, but otherwise,
there is little attention to the matter (Pipkin &
Vollmer, 2009). Different schedules of rein-
forcement maintain different patterns and
rates of responses, and reinforcers are vari-
ables that play a role in current behavior.
However, these effects are still under investiga-
tion as earlier reinforcement history plays a
role in present performance (Freeman &
Lattal, 1992; Okouchi & Lattal, 2006). Recent
research also supports the idea that the effects
of reinforcement history were not only appar-
ent but can reappear when the reinforcement
contingency changes (Okouchi et al., 2014).
Accurately identifying reinforcement history
can improve our decision-making process
when designing reinforcement arrangements
to change behavior. To differentiate among
distinct types of predictive questions, from
now on we will use the term retrodiction to
denote predicting the reinforcement history
(i.e., to identify past concurrent variable-
interval (VI) schedules with various reinforcer
ratio arrangements).
In rapidly changing procedures, reinforcer

ratios across two alternatives change multiple
times in a session in an unpredictable manner.
This procedure simulates natural environ-
ments to some degree, and results in behavior
that changes quickly in response to the chang-
ing contingencies (Davison & Baum, 2000,
2002; Landon & Davison, 2001). In the

analysis of data from frequent changing proce-
dures, large amounts of data are aggregated
within and across sessions over a large period
allowing for the analysis of extended patterns
of behavior (Baum, 2002). In this research, we
wanted to investigate whether retrodiction
could be possible without the need to aggre-
gate the data and when a limited sample of
behavior was available. Therefore, we used a
minimal amount of data to resemble more
limited observational data from a naturalistic
setting (i.e., 5-s periods postreinforcer). In this
manner, we assessed the viability of
approaching observed behavior and relevant
processes in a way that might be attainable in
both experimental and natural settings in an
attempt assess whether a relationship is detect-
able using this small sample (5 s) of data.

Five second periods after the delivery of a
reinforcer were chosen because of the close
local proximity responses have to the rein-
forcer. Local effects of reinforcers, meaning
the effects reinforcers have in specific loca-
tions in time, have proven to be strong and
research has demonstrated individual rein-
forcers have short-term effects on momentary
behavior (Davison & Baum, 2002, 2003). Local
effects are evident in both stable and rapidly
changing environments, and occur in the con-
text of a more global shift toward the richer
response alternative e.g., (Landon et al., 2002,
2003). Localized control by reinforcers sug-
gests that even behavior recorded from a small
interval of time should be sufficient to allow
retrodiction.

Machine learning (ML) algorithms have
proven to successfully complete complex tasks
in only a few seconds and this advantage of ML
has attracted attention across scientific domains.
One subset of ML uses models inspired by neu-
roscience, with algorithms that simulate the
properties of neurons and neural networks.
Such artificial neural networks (ANN) have
been used extensively to model and understand
normal and abnormal brain function (Macpher-
son et al., 2021), as well as cognitive tasks includ-
ing perception and decision-making (Zador,
2019). Although ANN are widely used in
healthcare (Shatte et al., 2019), education
(Korkmaz & Correia, 2019), and other fields
such as speech recognition (Bhangale &
Mohanaprasad, 2021) or image recognition
(Cai et al., 2020), their application in behavior
analysis remains limited (Turgeon & Lanovaz,
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2020). Thus, in the present study we asked to
what extent ANN can identify reinforcement his-
tory based on current behaviors.
Although EAB has been hailed for its pow-

erful experimental designs and identification
of learning patterns, some argue that our sci-
entific work has isolated itself (Poling, 2010;
Vyse, 2013) from a world of modern technol-
ogies pervading almost all human activities.
The aim of this investigation is to stimulate a
discussion on how to approach data differ-
ently (i.e., using a snapshot of data) and rely
on observed behavior (i.e., retrodiction;
direct reverse test) and relevant processes
rather than manipulating the reinforcer–
behavior relation. This novel approach can
influence our decisions to determine appro-
priate interventions or aid knowledge over a
shorter time frame. Thus, this approach
might lead to dealing with behavior in alter-
native ways that the behavioral community
desires (Shahan, 2017).

Introduction to Brain-Inspired Neural
Networks for This Study

ANN is a subdivision of machine learning
(ML) software inspired by how the brain pro-
cesses information and solves complex prob-
lems. Artificial spiking neural networks
(SNNs) are termed the third generation1 ANNs
due to their ability to provide biologically

plausible neuronal models that capture some
of the complex temporal dynamics of the data
(see Gerstner & Kistler, 2002, for more on
SNNs). A computational spiking neuron (also
known as an artificial biological neuron
model) produces spikes—discrete events that
take place at points in time, coming from one
neuron to another and connected through
weights (Maass, 1997). This ability to work
with discrete events that occur at separate
times corresponds well with measures of
choice data. Information transfer in artificial
spiking neurons mimics the way information is
transferred in the biological neuron by consid-
ering the exact time of the spike or the
sequence of the spike (Fig. 1). As presented in
the example, the model learns by using artifi-
cial biologically plausible algorithms (Σ) feed-
ing the information forward across the neural
network, starting from the input node to the
output node. The weights represent the synap-
tic connections of neurons and refer to the
strength of those connections, that is,
the effect of the firing rates. Based on weights,
the input signal may be amplified or inhibited.
When the membrane potential reaches a cer-
tain threshold, the neuron will spike, generat-
ing a signal that will travel and instantly reset
to a lower value. The neuron stays in a resting
state for some time (the absolute refractory
period), after which it can process new informa-
tion coming from other presynaptic neurons
(Gerstner & Kistler, 2002). Thus, this process
attempts to resemble the natural nervous sys-
tem and is considered as biologically realistic
and plausible (Maass, 1997). Further, this pro-
cess eliminates the need for an averaging time
window and allows to process information in

Figure 1

Left: the Structure of a Biological Neuron. Right: a Sample of a Brain-Inspired Computational Neuron (Chen et al., 2018)

1ANNs can be classified into three generations
according to their computational units (Maass, 1997):
McCulloch-Pitts neurons, also called perceptrons or
threshold gates, activation functions (sigmoid) and spiking
neurons (“integrate-and-fire-neurons”).
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continuous time. In essence, artificial SNNs’
strength is that the networks learn from
spatiotemporal data.
In ANN ‘learning’ refers to the process of

extracting structure from the data that will be
encoded in the parameters of an artificial net-
work and will provide all the information
needed to develop the artificial network (Zador,
2019). In other words, all ANN explicitly learn
from the datasets. There are three learning
methods commonly used to train an artificial
neural network: supervised, unsupervised, and
reinforcement learning. In this study we
employed a semisupervised ML method combin-
ing supervised and unsupervised learning
methods. With supervised learning the ML task
is to employ the same label to the input/output
set as with the training dataset. Data consists of
pairs: an input item (for example, the choice
made by a pigeon) and its label (e.g., the
concurrent-VI schedule to the learned behav-
ior). By training the ML algorithm, it searched
for patterns on a ‘labeled’ dataset. After this
training, any new inputs are cross-matched with
the training dataset to determine the desired
output. By this, the learning algorithm can
deduce a pattern by identifying a relationship
between the target variable and the rest of the
dataset based on the information it already has.
On the other hand, with unsupervised learning
the training set contains no ‘labels’ in the data
and the algorithm learns without needing to
supervise the model (Rafi, 2021).
SNNs can be an appropriate tool for model-

ing behavioral data for several reasons. Firstly,
choice and reinforcers are complex variables
that constantly interact with each other in
space and in time (Cowie & Davison, 2016).
We hypothesized that an ANN like SNN can
be beneficial since its advantage resides in
handling spatiotemporal information. Sec-
ondly, SNNs lend themselves to the small-N
approach that characterizes work in the field;
by extracting sufficient amount of data from
fewer individuals (i.e., six pigeons) rather than
the reverse (i.e., small amount of data accu-
mulated across a large number of individuals)
can add value to the prediction accuracy of
the model when it is applied to a single
organism.
Our aim was to investigate whether a

machine-learning algorithm capable of
processing spatiotemporal information can
identify reinforcement history when no

previous knowledge about this history is pro-
vided. Retrodicting histories of operant behav-
ior may open exciting avenues in the field of
behavior analysis. From a practical standpoint,
a retrodictive outcome would be possible
based solely on limited data (e.g., 5-s periods).
This could parallel situations where laboratory
resources are limited or when clinicians need
to decide on the appropriate intervention hav-
ing only limited observational data available.
Also, behavior analysts could have an addi-
tional alternative tool for studying the relation
between past reinforcement arrangements
and current behavior when generating
knowledge.

Method

Dataset for Training and Testing the
Artificial Spiking Neural Networks

The dataset was extracted from Landon and
Davison’s (2001) study in which a frequently
changing concurrent-schedule procedure
arranged seven different reinforcer ratios, in
components (1:27, 1:9, 1:3, 1:1, 3:1, 9:1, or 27:1
– see Table 1) which changed randomly within
each session. The overall reinforcer rate was
constant, and each component was in effect
for 10 successive reinforcer deliveries, and
components were separated by 10-s blackouts.
The time and nature of all experimental
events were recorded (for full details, see Lan-
don & Davison 2001). We extracted the raw
data for all six pigeons in all 50 training ses-
sions from one experimental condition
(Condition 1). We then created an extraction
rule to use a minimal amount of data. All
choice responses made in the first 5 s after
every reinforcer were extracted as a frequency
event and represented as discrete events in
time (i.e., temporal data). All pigeons’ choices
were taken after the delivery of the first nine
reinforcers within each component.

Extraction Rule of the Data for SNN
Training

All files originally had a “.txt” extension and
were generated by MED-PC® software. All files
used in this study were programmed by the
original experimenters to record all experi-
mental events and the time at which every
event occurred within the experimental condi-
tions. To extract a snapshot of data from the
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whole dataset of Condition 1, the second
author developed a computer code in Java.
When the code was run by the first author,
samples in “.csv” format were created, of
pigeons’ left- and right-preference responses
following each reinforcer delivery, during a 5-s
period. Each sample consisted of a single com-
ponent and was organized of aggregate data
from 10 daily sessions. This resulted in a total
of five samples for each bird out of all 50 ses-
sions. Each sample contained 90 periods of 5 s
as nine reinforcers were given each day (9 *
10 daily sessions). Thus, from each pigeon we
took a total of 35 (7 conditions* 5 ten-daily
sessions) samples, and all pigeons together
generated 210 (6*35) samples. Each row in
each sample represented a frequency event,
which was created by calculating the ratio of
left and right preferences based on the time
window (5 s) and on the actual location (L or
R) where the reinforcer was delivered (see
Appendix A for an example).
This approach to samples gave the opportu-

nity to allow the assessment of the explicit use
of pigeons’ temporal data, and the actual loca-
tion where they occurred in time (L or R) was
sufficient to learn to detect patterns without
any need to add further information.

Dataset for Further Generalization Tests of
the Artificial Spiking Neural Networks
For generalization testing, we extracted

three new datasets from the same pigeons, this
time from a different experimental condition
(Condition 6) of the original study (Landon &
Davison, 2001). The six pigeons were exposed
to Condition 6 for 35 sessions after the

completion of experimental Conditions 1-5.
The same environmental arrangements as in
Condition 1 were set for Condition 6. We
aggregated data from the 35 sessions in three
separate ways—we first created samples each
containing datasets from 10 sessions (resulting
in three samples per bird for each compo-
nent); then we created samples each con-
taining datasets from seven sessions; and finally,
samples containing datasets from five sessions
each. We did so in order to assess the model’s
dependence for generalization on individual
dataset size. Temporal data were taken, as in
the training phase of the model, in the first 5 s
after the delivery of the first nine reinforcers.
Thus, from the 10-session samples we created
dataset G1, where the data were aggregated
from ninety 5-s periods (9 reinforcers * 10 ses-
sions) in each sample; from the seven-session
samples we created dataset G2, where the sam-
ples contained data from 63 periods (9 rein-
forcers * 7 sessions); and from the five-session
samples we created dataset G3, where each
sample included 45 periods (9 reinforcers *
5 sessions). All in all, the G1 dataset included
126 samples (6 pigeons * 7 components *
3 samples per pigeon). An equal number (126)
of samples resulted from the data extraction
for G2 because the data did not generate more
than three samples per pigeon. Lastly, for the
G3 dataset, the number of samples was 294 due
to the samples containing only forty-five 5-s
periods each. For a summary of all datasets
extracted for training and testing the SNN
model, see Table 2.

Artificial Single Spiking Neural Network
Architecture Constructed for this Study

We created an artificial SNN based on the
architecture initially proposed in Vazquez &
Cach�on, (2010) to identify the reinforcement
history (i.e., frequently changing concurrent-
schedule procedure arranged seven different
reinforcer ratios, in components) based on
pigeon choices and the firing rates these data
produced. This was achievable using the Leaky
Integrate-and-Fire (LIF) model, a mathemati-
cal representation of a neuron that was
trained to perform the task. The LIF model is
commonly used due to its simplicity and com-
putational efficiency while attempting to
mimic biology (see, e.g., Ahmed, 2020, for
more on neuron models).

Table 1

The Relative Reinforcer Probability (Shown as Probability of
Reinforcement to the Left Alternative) for Each of the Seven
Concurrent VI Schedules (Referred to as Components) for Both
Conditions

Component Reinforcer Ratio (Left: Right)

1 1:27
2 1:9
3 1:3
4 1:1
5 3:1
6 9:1
7 27:1

Note. The overall probability of reinforcement per second
was constant at 0.037.
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Figure 2 depicts a simplified schematic rep-
resentation of the single SNN architecture
(more technical details are provided in supple-
mentary materials). The inputs were samples
that represented discrete events of left and
right choices based on the time window (5-s)
and on the actual location (L or R) where the
reinforcer was delivered (see extraction rule
of data for SNN for Training). The output of
the SNN was the firing rates associated with
the seven components presented in Table 1
(multiclassification problem).
These samples were transformed into a vec-

tor of values that simulates the electrical cur-
rent that is injected to the LIF neuron model.
Each sample produced a spike train (sequence
of ones and zeros) that was transformed into a
firing rate. To achieve transformation of the
spiking data, the information was encoded in
the number of spikes over a specified tempo-
ral window (rate encoding) (see, e.g., Auge
et al., 2021, for more on encoding processes).
This produced a sequence of artificial spikes
with a specific firing rate. Then each compo-
nent was associated with a specific firing rate.

It was hypothesized that the input signal pro-
duced by samples of the same component pro-
duce similar firing rates, whereas input
currents of different components produce fir-
ing rates different enough to discriminate
among the various components. We used
JNeuCube to develop the proposed artificial
single neuron model and performed the
experiments of this study. JNeuCube is a Java-
based framework for building SNNs able to
solve classification and prediction problems
(https://github.com/Auckland-University-of-
Technology/NeuCube-java). Specific parame-
ters were set to train the artificial neuron to
correctly perform the requested task (see sup-
plementary materials).

Training Procedure of the SNN Model
We chose a Differential Evolution (DE)

algorithm due to its effectiveness to investigate
how we can understand patterns in our data
(Storn & Price, 1997). It is a kind of decision-
making tool, where decisions are made to
optimize one or more objectives under

Figure 2

The SNN Architecture Constructed for Classification of Seven Components Based on Pigeons’ Choices

Note. The letters in the figures represent: 90 periods of 5 s as t; left choice responses as X1; right choice responses as X2;
left and right weights as w1-w2; s1….s175, as samples 1-175; C1.C7 as Components 1-7.

Table 2

Samples Extracted by the Pigeons’ Temporal Data

Experimental Condition Datasets No of Pigeons Points of 5-sec periods

Cond. 1 Training the model 5 Pigeons 90 periods
Testing model 1 Pigeon 90 periods

Cond. 6 Generalization-1 6 Pigeons 90 periods
Generalization-2 6 Pigeons 63 periods
Generalization-3 6 Pigeons 45 periods

Note. Some samples consisted of <90 points as some of the 10 daily sessions ended at the prearranged time (45 min), and
the pigeon had not consumed all reinforcers.

Anna Plessas et al.306

https://github.com/Auckland-University-of-Technology/NeuCube-java
https://github.com/Auckland-University-of-Technology/NeuCube-java


specific circumstances. We used a cross-
validation procedure to evaluate the model’s
performance by using pigeon datasets for train-
ing the model and then for validating its perfor-
mance on a testing dataset that the model had
not encountered before. We trained the model
applying the stratified k-fold cross-validation
(k = 5) on the training dataset (five pigeons)
and evaluated its performance using the testing
dataset (the sixth pigeon). In the five-fold cross-
validation, the data were partitioned into five
sets of equal sizes that were randomly used, then
the model was trained using k-1 folds and esti-
mated its own postdictive ability using 1-fold
(Fig. 3). The process was repeated five times,
with a different fold for training (k-1) and test-
ing selected each time, creating different accura-
cies each time. This strategy allowed for an
objective, less biased and less optimistic estima-
tion of the model’s performance than other
methods (James et al., 2013).

With the completion of cross-validation, we
evaluated the model’s generalization ability by
testing it on the data of another pigeon
unknown to the model. The outcome was
40 single artificial SNNs that could accurately
classify components based on a pigeon’s
choices. From all these we kept the fittest as
the final result. We repeated the experiment
10 times and created 60 artificial SNN models
by splitting the total of six pigeons’ data from
Condition 1 to five pigeons’ data for training
and one for testing each SNN model. With this
method, all possible combinations of pigeons’
data were used both for training and for test-
ing for generalization.

Procedures
Model Performance Evaluation

We calculated five different measures to
assess our model’s performance. The most
common method to evaluate model perfor-
mance is prediction accuracy (Table 3). How-
ever, it has been proposed that when
considering using the output for clinical deci-
sions, additional metrics should be taken into
account, as accuracy does not take into consid-
eration other characteristics of the data
(Kuhn & Johnson, 2018). Thus, going beyond
accuracy metrics, we tested the model’s ability
to identify true positives and negatives assessed
by recall (or ‘sensitivity’) and specificity values.
An effective predictive model that can classify
components based on choice behavior should
be able to discriminate events from nonevents.
Responses in each component should create

Figure 3

A Schematic Representation of K-Fold Cross-Validation Training
When Using Right and Left Responses (Pigeons’ Choices)

Table 3

Performance Metrics Used in this Study to Interpret Results and Formulas Used for Calculations

Measure Description Formula

Accuracy The fraction of correctly predicted events
in relation to all data

#of samples predicted as having the event
#of total samples

Recall (or sensitivity) The proportion of correctly predicted
actual events (i.e., a true positive) in
reference to the total true events

#of samples predicted as having the event
#of samples with the event of interest

Specificity The proportion of correctly predicted
nonevents (i.e., a true negative) in
reference to the total nonevents

#of samples predicted as non events
#of samples without the event of interest

Informedness The probability of an informed decision
(or Youden’s index)

J ¼RecallþSpecificity�1

Precision The fraction of correctly predicted actual
events in reference to retrieved events

#of samples predicted as events
#of samples predicted as trueþfalse positives

F1 Weighted average of precision and
sensitivity

2xprecision x recall
precisionþrecall
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unique patterns that differentiate choice
behavior in one component from choice
behavior in another component. In the origi-
nal study (Landon & Davison, 2001), pigeons’
responses in a component were significantly
affected by the reinforcer ratio and the
sequential effects of reinforcers. Having a
model that performs equally well in recall and
specificity is critical in terms of matching
response ratios to reinforcer ratios in a com-
ponent in conformity with the generalized
matching law (GML). Additional metrics were
also calculated to measure performance. See
Table 3 for some critical notions used when
measuring performance of artificial neurons.

Response-By-Response Analysis Based on the Time
Window (5-s)
We re-analyzed the data from Landon &

Davison (2001) within a 5-s window to investi-
gate the ability of the learning algorithms to
identify patterns in smaller samples by com-
paring the model’s output with the pigeons’
actual performances.

Results

SNN Performance Metrics in Modeling
Learning Histories
Analysis of the Overall Performance of the Classifi-
cation Model
Overall, all combinations of pigeon datasets

were able to detect the reinforcement history
from current operant choices with a good
degree of success. The artificial SNN models
correctly identified the components based on
the pigeons’ choice responses, ranging from
93% (Pigeon 66 – data used for testing) to
96% (Pigeons 61 to 64) correct identification.

Overall specificity performance measures were
higher (≥ 96%) than recall, illustrating that all
artificial SNN models were better at classifying
which component a choice response does not
appertain to (specificity) than identifying in
which component choice learning took place
(recall). We combined these measures to esti-
mate informedness, that is, error magnitude
in recall and specificity, as presented in
Table 4. This index had values ranging from
77%-85%, indicating only small errors in the
SNN model performance. The index was
highest when Pigeon 61 was used for testing
and dropped slightly with Pigeon 66. The pre-
cision results revealed a similar pattern of
recall and informedness metrics (Table 4).
These results reveal that only a few events that
should have been predicted as events were
not. Lastly, F1 calculated as a weighted average
of precision and recall score verified the same
results. Thus, detection of patterns in choice
responses with a small window is possible with
SNNs. Overall, the results demonstrated high
accuracy in the models’ performance when
making decisions regarding components and
choice responses.

Analysis of the Classification Models’ Performance
Per Component

An additional analysis was conducted to
examine the models’ performance in correctly
detecting unique patterns in pigeon responses
in each individual component. The number of
errors the algorithm made in identifying the
actual component for each pigeon dataset
was calculated and is shown in Figure 4.
The two indicative models presented in the
Figure show that most errors in identifying the
component occurred when choice responses

Table 4

The Overall Results of the Six Best Models for all Combinations

Outcomes Pigeon 61 Pigeon 62 Pigeon 63 Pigeon 64 Pigeon 65 Pigeon 66
Overall overall overall overall overall overall

Accuracy 0.96 0.96 0.96 0.96 0.94 0.93
Recall Specificity 0.87 0.87 0.87 0.86 0.81 0.81
Informedness 0.98 0.98 0.97 0.97 0.96 0.96
Precision 0.85 0.85 0.84 0.83 0.77 0.77
F1 0.87 0.87 0.87 0.86 0.81 0.81

0.87 0.87 0.87 0.86 0.81 0.81

Note. The results reflect cross-validation (CV) training and generalization testing for validation. The results are listed per
pigeon used for testing generalization.
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were trained under Component 2 (1:9 rein-
forcer ratio). Low recall in Component 2 was
observed across pigeon datasets contrasting
the classification rate for other components.
Furthermore, the models’ ability to identify
patterns in the data was overall higher with
Component 3, Component 5, and Component
7 than with Component 1, Component 2, and
Component 6. Overall, these results suggest
that differences in metrics presented in
Table 4 were dependent on the component,
as any errors in the retrodictive ability of the
model were more prominent with specific
components (i.e., Component 2). The phe-
nomenon might have a specific explanation
pertaining to the training environment in
Component 2. The retrodictions made by our
model were analyzed further to investigate
whether reduced performance was due to the
learning algorithm, or it reflected the actual
pigeons’ performance.

Analysis of the Model Performance Per Individual
Pigeon Dataset
We examined the effects of individual

pigeon datasets on the artificial SNN model by
analyzing the machine metrics when splitting
the metrics for training and testing data. The
model handled individual datasets equally well
(Table 5). This indicates that the generated
models performed highly in classifying pigeon
responses by component, showing high recall
to the relevance of the data (> 82%) and

specificity (> 96%) in identifying true nega-
tives (nonevents). The precision of the model
was also high (> 82%), showing that the over-
all analysis was relevant to the whole data set.

Pigeon Performances Compared to SNN
Model Performances

To examine the differences in the retrospec-
tive ability of the artificial SNN model, in par-
ticular with Component 2, we reanalyzed the
extracted pigeon datasets (within a 5-s window
following the delivery of a reinforcer) in each
component from Landon & Davison’s (2001)
study. For each dataset, pigeons’ actual choices
were aggregated according to the left-key over
right-key response ratios by conducting a
response-by-response analysis of pigeon’s
choices; logarithms of these ratios were calcu-
lated and plotted as a function of each sequen-
tial response of the pigeons. When responses
were occurring only on one alternative, the
log(L/R) was set as 3.5 to indicate the exclusive
direction of the pigeon’s choice. Our analysis
revealed that birds’ responses in Component
1 (1:27) and Component 2 (1:9) followed a
similar pattern; choices seemed more extreme
than in other components (Fig. 5).

Further, when we extended our analysis to
all pairs of responses, as accumulated within
the sequence of responding, a similar pattern
was observed (Fig. 6) and became more prom-
inent from the third response on. Across

Figure 4

A Normalized Confusion Matrix Across all Seven Components with the Horizontal Line Representing the Retrodicted Component and
the Vertical Line the Actual Component

Note. The figure presents a table that is used to describe the performance of a model (confusion matrix). In this study the
performance of the model was evaluated by assessing the number of choice responses retrodicted as learned in a compo-
nent, and those that were not. For example, in line 1, 76% of choices were retrodicted as learned in Component 1, yet
17% were retrodicted as learned in Component 2 though in Component 1, and 7% as in Component 1 though learned
in Component 1. From the confusion matrix we compute the rates of errors, true positives, negatives etc. The diagonal
elements represent the recall values. A normalized matrix represents all components as having 1.0 samples (or 100%).
The seven components are abbreviated as C1 to C7.
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all combinations of constructed models, Com-
ponent 2 was confused with Component
1 more. The analyses in Figures 5 and 6 sug-
gest that the artificial SNN model was unable
to find distinctive patterns between Compo-
nents 1 and 2. Those two components had
similar patterns; in this sense, the model accu-
rately reflected pigeon responses in those par-
ticular training environments.

SNN Model Performances in Extended
Generalizations

Table 6 summarizes the metrics for gener-
alization. Accuracy remained high across
all pigeons (≤ 93%) and for all three generali-
zation approaches. Informedness metrics
dropped with specific pigeons’ datasets,
which suggests that the ability of the model to
identify the component was not related to the
size of the samples provided but rather to the
individual pigeons’ differences in patterns of
responding. The only apparent exception was
when tests were performed with G2, where
informedness scores were slightly higher than
informedness scores with G1 and G3. The
same pattern is preserved in all the rest of the
metrics, with a slight drop when only 50% of
the data was provided (G3). Overall, the anal-
ysis for generalization suggests that the gener-
ated models can handle new datasets well and
5 days of training are sufficient when making
decisions regarding components and choice
responding.

Discussion

The purpose of this study was to investigate
whether an artificial SNN model could be
trained to identify the reinforcement history
that led to current choice behavior based on
small samples of choices in pigeon datasets.
The results demonstrated that the single neu-
ron architecture could identify learning histo-
ries by detecting learning patterns in choice
responses. In particular, the SNN model could
distinguish pigeon performance in one proce-
dure (Condition 1) and then in another expe-
rienced much later on by the same pigeons
(Condition 6). Overall, the results showed that
choices can be used to retrospectively identify
reinforcement history when this is unknown,
demonstrating that artificial SNN models may
be a useful tool for behavior analysis.T
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Artificial neural networks learn solely based
on datasets; therefore, they reflect patterns
encoded in the parameters of the artificial

network. In this study the SNN model was
developed to detect patterns of two-alternative
choice responses (input data) without any

Figure 5

Log Response Ratios of Choices Emitted During the First 5 s Following Each Successive Response in Each of the Seven Components of
Condition 1, of Landon & Davison (2001)

Note. Response numbers were summed across 50 sessions. On each graph, separate plots show data from each individual
subset. On the x-axis, the successive responses for all pigeons are presented. When responses were occurring only on one
alternative, the log(l/r) was set at 3.5 to indicate the exclusive direction of the choice.
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Figure 6

Total Number of Pair Responses Emitted for the First 5 s Following Each Successive Response in Each of the Seven Components of Condi-
tion 1, from Landon & Davison (2001)

Note. Response numbers were summed across 50 sessions as right–right, right–left, left–right, left–left responses. On the
x-axis, the total number of responses for each bird is presented.

Table 6

The Overall Results of the Best Model for Each Generalization Test

Generalization Test # Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

G1 10d Accuracy 0.96 0.95 0.95 0.95 0.94 0.94
Sensitivity 0.89 0.85 0.85 0.84 0.82 0.82
Specificity 0.98 0.97 0.97 0.96 0.96 0.96
Informedness 0.87 0.82 0.82 0.81 0.78 0.79
Precision 0.89 0.85 0.85 0.84 0.82 0.82
F1 0.89 0.85 0.85 0.84 0.82 0.82

G2 7d Accuracy 0.97 0.95 0.95 0.95 0.95 0.95
Sensitivity 0.89 0.86 0.87 0.84 0.86 0.86
Specificity 0.98 0.98 0.98 0.97 0.97 0.97
Informedness 0.87 0.83 0.83 0.81 0.83 0.83
Precision 0.89 0.86 0.86 0.84 0.86 0.86
F1 0.89 0.86 0.86 0.84 0.86 0.86

G3 5d Accuracy 0.93 0.93 0.93 0.93 0.93 0.93
Sensitivity 0.82 0.79 0.79 0.79 0.80 0.79
Specificity 0.96 0.96 0.96 0.96 0.96 0.96
Informedness 0.76 0.75 0.76 0.75 0.75 0.75
Precision 0.81 0.79 0.80 0.79 0.79 0.79
F1 0.81 0.79 0.80 0.79 0.79 0.79

Note. The results reflect generalization tests per pigeon.
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knowledge of what experimental conditions or
reinforcement arrangements the pigeons had
been exposed to. The ability of the artificial
SNN model to predict (retrodict) shows that
limited observational data from naturalistic set-
tings alone could potentially provide informa-
tion on the relation between choice and
reinforcer. Further, this ability to retrodict the
history of novel operant behaviors (i.e., novel
as in not participating in the development of
the artificial SNN model) allows us to shape
future behaviors without necessarily having to
know how these functional relations were
established in the environment; rather, by rely-
ing only on the information that the func-
tional relation is apparent. Overall, knowing
what relation exists might provide a particu-
larly effective pathway when the sole interest is
to set up optimal learning environments that
are task-specific and learner-specific, and a
small amount of current behavior as the only
source of information. Subsequently, the pre-
diction outcome can help us decide which
reinforcement arrangements can effectively
shape future choices and which may not. Fur-
ther, being able to determine the reinforcer
history in this way allows us to investigate other
matters such as how or why the reinforcer–
behavior relation exists. The outcome
obtained from the SNN model reconfirms the
reality of a reinforcement–behavior relation
regardless of the theoretical explanation for
this relation (see, e.g., Cowie & Davison, 2016;
Simon et al., 2020, for current debate on the
mechanism of the relation).
Our results demonstrated high overall accu-

racy in retrodicting reinforcement arrange-
ments (≥ 93%) across all artificial SNN models.
A possible advantage of using a machine learn-
ing tool compared to moment-to-moment
visual analysis is that it can provide instant
additional information on true and false posi-
tive and negative values. For example, confu-
sion matrices (Fig. 4) can visualize Type 1 and
Type 2 errors, providing additional informa-
tion on responses that were retrodicted as
belonging to a component when they did not.
These errors are not easily detected with visual
analysis of single case data (Lanovaz et al.,
2020). Therefore, the analysis approach
explored here can provide more details on
learning patterns which will enrich the behav-
ior analyst’s decision-making regarding inter-
vention characteristics.

Retrodiction was achieved quickly from a
small set of robust behavioral data (spanning
5 s following the reinforcer delivery). Also,
small amounts of data render artificial models
simple and friendly to use, without need for
expertise in training conditions. As rapidly
changing environments make it difficult to
predict when the number of conditions
increases, artificial SNN can be a useful tool to
make predictions (retrodictions) in an effi-
cient manner. This is of interest to experimen-
tal and applied researchers because collecting
continuous data for extended periods can be
tedious and costly, and by using ML we dem-
onstrate that the first 5-s periods may not be a
constraint. A further question is whether less
or more than 5 s of data can alter the model’s
ability to detect the reinforcement history.

The literature has shown that learning
occurs over time and behavior takes time to
stabilize. Thus, an additional factor to consider
is how large a ‘window’ of data we choose to
model the reinforcement history. It may also
be important to consider the time needed for
a pigeon to learn in a reinforcement arrange-
ment, as both short-term and long-term rela-
tions between choice and reinforcement are
evident (Landon & Davison, 2001). Even so,
moment-to-moment analysis with 5-s periods
(Figs. 5 and 6) revealed that the pigeons
behaved similarly in Components 1 (1:27) and
2 (1:9) despite different learning histories in
the two reinforcement arrangements. How-
ever, this was not the case for Component
6 (9:1) and 7 (27:1). A second question is
from which point in time (e.g., the beginning,
the middle of the training or when behavior
stabilizes) we extract our data to create inputs
for the SNN to make an accurate retrodiction.

Based on research into local effects of rein-
forcers, we included all responses immediately
after the reinforcer delivery, both from train-
ing and stabilized learning. The point in time
at which training occurs in the animal’s learn-
ing history may affect the ML model’s ability
to retrodict histories correctly. If behavior
changes with experience, then models devel-
oped with data both from early (learning) and
later (stable) sessions are trained to detect pat-
terns from variable data, which adds to the
complexity of ‘retrodicting’. By including all
types of data as inputs we showed that the arti-
ficial SNN models could handle variability over
time and modeling histories based on pigeon
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responses, without aggregating or averaging
the responses (something that is commonly
required with second-generation ANN
(Alaloul & Qureshi, 2020). Choice research
has shown that previous reinforcer deliveries
affect subsequent behavior, and the dynamics
of this relation is determined by environmen-
tal variation (Davison & Baum, 2000). We con-
sidered that, if a series of cross-sectional data
were taken (i.e., data from a set period of time
during the experiment), we would have mis-
sed significant information about the degree
of environmental variability. In this study the
pigeons’ datasets of left- and right-key
responses were altered by the weights of the
model and combined into one element to pro-
duce one current (feature), which we used to
stimulate the artificial neuron model and pro-
duce sequences of spikes. This total transfor-
mation of the data allowed us to make reliable
retrodictions without the need for curve-fitting
the data (Davison & Elliffe, 2009).
Yet, reducing the sample sizes (five sessions

of training versus 10) reduced only slightly the
model’s ability to retrodict, implying that at
least the sample size may play a small role
below a certain number of time-events. Future
studies could explore the relation between
prediction accuracy, from where in time the
data are extracted, how much time from the
delivery of the reinforcer, and the sample size
we generate as input data. Understanding how
these factors impact the model’s ability to pre-
dict may provide further insight into the
reinforcer–behavior relation, and the effects
of reinforcers on behavior changes with expe-
rience. Overall, we demonstrated that artificial
SNN allows us to investigate how additional
environmental variables such as time in train-
ing can detect reinforcement histories with
minimal amount of operant choice.
The focus of our study was on the output of

a ML model demonstrating retrodiction of
reinforcement histories from current behavior
when these histories are unknown, and how
this outcome can be used to achieve insights
into learning. Future work can take further
steps to generate new research questions and
investigate how a dataset is classified by alter-
native ANN models to compare the informa-
tion derived from other models’ performance.
Such a comparative study of different ANNs
could investigate how inputs are handled dif-
ferently by other architectures and algorithms.

It is also interesting to compare ML results
with the human expert classification of the
same datasets from experiments arranging
high- and low-discriminability histories. Such a
comparison might highlight what the specific
abilities are that ML can contribute to behav-
ioral data processing.

By being able to identify the most likely
learning histories, this tool has the potential to
be used in two separate ways: firstly, in the
experimental analysis of behavior research to
further investigate fundamental behavioral
principles, and secondly, to understand what
maintains current behavior and to identify
effective training conditions that can produce
the desired future behavior. The approach we
used proves to have good utility in experimen-
tal contexts with simple choice paradigms
(such as left- vs. right-key responses). Future
studies can extend to more complex choice sit-
uations, as ML can be accurate with complex
data. If more inputs are provided (e.g., three-
key alternative responses, or measures of
inherent bias), it is not clear yet whether the
predictive ability of the model would remain
high or even improve in situations where
responses follow a similar pattern but were
trained under different histories (as with Com-
ponents 1 and 2). So far, with the limited
information provided to our model (left- and
right-key responses within a 5-s window), the
SNN approach was effective in identifying
reinforcement histories. Therefore, an artifi-
cial SNN can be used with datasets consisting
of behavioral responses alone; in other words,
it does not require the inclusion of other data
from the learning history and its use is simple
and accessible without having to implement
common training–testing procedures.

The performance metrics of the artificial
SNN model can inform the development of
new hypotheses by revisiting the actual datasets.
Artificial SNN can complement the existing
understanding of reinforcer–behavior interac-
tions. These algorithms allow us to pose new
research questions and detect relations that
shed light on the mechanisms of choice behav-
ior of individual organisms. For example, the
analysis of the moment-to-moment behavior
revealed that choices in Components 1 and
2 showed a similar pattern, with response initia-
tion being quicker when the rich key was on
the right. Moreover, we saw that, when the rich
key was on the left (Components 5 to 7),
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responses often occurred on the right key
where no reinforcement was arranged. The
pigeons tended to respond to the right key
more than expected, regardless of the arranged
reinforcement, reflecting a right-key bias
(Baum, 1974). This bias meant that choice in
left- versus right-key conditions was not symmet-
rical, which may have hindered the model’s
training and its resulting ability to differentiate
learning patterns, if any. This factor may be
critical to making a pattern discriminable with
some histories, that is, when biases are present
or reinforcer ratios are similar. Nevertheless, it
is worth reiterating that even with this bias pre-
sent, the artificial SNN model was able to
detect learning histories well using a small
amount of data. This indicates that SNN
offers an advantage beyond conventional
approaches. Future research could investigate
how biases and other sources of ‘confusion’
(e.g., smaller ranges of reinforcer ratios, contra-
dictory signals) may impact on the ability of
SNNs to accurately identify learning histories.
Artificial spiking neural network modeling

has emerged out of an interest in modeling
the behavior of the biological neuron to
understand human behavior. Its ability to pro-
vide insights into patterns of the brain by ana-
lyzing the effect of environmental stimuli on
the spatiotemporal brain data has led to sub-
stantial research interest in modeling brain
with artificial SNN (Ghosh-Dastidar & Adeli,
2009); that is, if we model how the brain
works, we could understand the behavior of a
living organism (in–out approach). Here, we
reversed this direction by analyzing spatiotem-
poral information exclusively from reinforce-
ment arrangements under which a response
occurred, thus detecting patterns that are also
helpful in understanding a living organism’s
behavior (out–in approach). Contemporane-
ous computerized machine learning tools like
artificial SNN can open avenues to more com-
plete accounts of behavior. This study, to our
knowledge, is the first to use direct measures
of behavior (choice responses) with an artifi-
cial SNN model and illustrates how analysis of
within-subject designs and small group partici-
pants can be used to answer alternative ques-
tions (i.e., by training and testing a model,
what behavioral data can tell us about learning
histories rather than vice versa).
The modeling here has advanced our

knowledge beyond what is known from

traditional analyses: We found that snapshots
of data from current learned behavior and,
importantly, data that are variable and
extracted from unpredictable environments,
contain patterns detectable by our ML model.
Experimental analysis of behavior has focused
mostly on current behavior–reinforcement
contingencies. SNN modeling’s special contri-
bution can be its capability to transform the
temporal data for us to analyze both from cur-
rent contingencies and from past experience
extremely fast and by using the same algo-
rithm. There is a need to focus on past rein-
forcement history (Freeman & Lattal, 1992;
Okouchi et al., 2014), and our reverse engi-
neering approach can augment existing
methods of looking into this. The results are
promising as they illustrate how ML modeling
can have a translational ability when using data
from highly controlled conditions to answer
applied questions. Even without us knowing
how these functional relations were established
in the environment (which is also an essential
experimental question to respond to), ML
detects past learning and gives us a basis to
anticipate how future behavior is shaped. Thus,
data from experimental studies can acquire
clinical utility. The results promise to open
some helpful avenues for translational research
as we can now make use of this additional
means of investigating learning patterns.

Conclusions

This study shows how a novel machine
learning (ML) tool can inform us about
behavior–environment contingencies using a
small ‘window’ of data without using the com-
mon testing–training procedures. It also dem-
onstrates how a ML tool can be utilized as a
hypothesis generator directing us to look into
specific behavioral data for further investiga-
tion and analysis. Artificial SNN is a new subdi-
vision of neural networks that we preferred
over other ANNs because SNN can process
spatiotemporal behavioral data, an ability that
makes SNN a promising tool given the role
that elapsed time plays in changes of prefer-
ences. In sum, we found that artificial SNN
allowed us to identify learning histories of cur-
rent learned behavior within seconds, from
datasets of organisms previously unknown to
the machine. Moreover, the results confirm
previous research findings about the critical
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impact learning history has on current behav-
ior. ANN can arguably contribute to laying the
foundations for new training methodologies
using optimal training conditions for specific
learning goals and for specific individual
organisms. This knowledge (that a relation
exists rather than why it exists) also reconfirms
the reinforcement–behavior relation regard-
less of the theoretical explanation of this rela-
tion. This becomes possible with the ability of
ML for prediction (or ‘retrodiction’) of learn-
ing patterns. It was simple and not time-
consuming to train our SNN model and more
research could further optimize the model’s
training and efficiency with small datasets.
An interesting future perspective is how arti-

ficial neuronal modeling will perform in classi-
fying behavior of neurologically more complex
organisms such as mammals. If the model’s
performance is comparable to its retrodictive
ability with pigeons, that would indicate its
ability to reliably detect choice patterns in
changing environments. Such identification of
response patterns could then provide a useful
indication of brain processes underpinning
learning, a subject matter of current neurosci-
entific research.
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Figure A1

Examples of the Steps Taken to Extract Pigeon Data from the Original Study (Landon & Davison, 2001) As Generated By MED-PC®

Software

A. Appendix

A.1. An example of the stepwise process of
extracting the data from the original study

Condition 1 and 6 events in the original
experiment (Landon and Davison, 2001) were
arranged on an IBM-PC compatible computer
running MED-PC software. The computer
recorded all events and the time they
occurred within each Condition. We devel-
oped a computer code to identify all original
experimental codes from the existing files and
created four steps to extract pigeon data
(Fig. A1): (1) Searching in the data for a com-
ponent indicated by x000000 that denotes the
start of each component (1-7), was x = 0-6;
(2) searching for each of the nine reinforcers
as they were delivered in time by looking for
the 3xxxx(L-key) or 4xxxx(R-key); (3) cou-
nting and adding the responses during the fol-
lowing 7.5 s (2.5 s for the hopper raised and
5 s of recording response frequency to the L
or R key); and (4) generating the ratio event
for every 5-s period. In this way, we extracted

all data for input samples. The final outcome
was a ratio that was a frequency event, which
was created by calculating the ratio of left and
right preferences based on the time window
(5-s) and on the actual location (L or R)
where the reinforcer was delivered.

For example, let’s hypothesize that after tak-
ing steps 1-3 as presented in Figure A1, we
extracted the following information: A pigeon
was presented randomly with one of the seven
different components (i.e., 27: 1, 9:1, 3:1, 1:1,
1:3, 1:9, and 1:27) and a reinforcer was allo-
cated to the right, and after consuming the
reinforcer, the pigeon then started pecking
one time on the left-key and four times on the
right-key during a period of 5 s.

The relative response rate of the pigeon
would be 4/1 (the pigeon pecked four times
more on the right key). In the reverse sce-
nario, for example, if the reinforcer was allo-
cated on the left, and the pigeon pecked one
time on the right and three times on the left,
then the relative response rate would be 3/1
(the pigeon pecked three times on the left
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key). By using this method, all responses
extracted from the original experiment into
the samples occurred after the reinforcer was
delivered for 5 s and were dependent on the
reinforcer location in time.

Supporting Information

Additional Supporting Information may be
found in the online version of this article at
the publisher’s website.
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