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Previous research has demonstrated that working memory plays an important role in arithmetic.
Different arithmetical strategies rely on working memory to different extents—for example, verbal
working memory has been found to be more important for procedural strategies, such as counting
and decomposition, than for retrieval strategies. Surprisingly, given the close connection between
spatial and mathematical skills, the role of visuospatial working memory has received less attention
and is poorly understood. This study used a dual-task methodology to investigate the impact of a
dynamic spatial n-back task (Experiment 1) and tasks loading the visuospatial sketchpad and central
executive (Experiment 2) on adults’ use of counting, decomposition, and direct retrieval strategies for
addition. While Experiment 1 suggested that visuospatial working memory plays an important role
in arithmetic, especially when counting, the results of Experiment 2 suggested this was primarily due
to the domain-general executive demands of the n-back task. Taken together, these results suggest
that maintaining visuospatial information in mind is required when adults solve addition arithmetic
problems by any strategy but the role of domain-general executive resources is much greater than
that of the visuospatial sketchpad.

Keywords: Visuospatial working memory; Mental arithmetic; Addition; Mathematical cognition;
Central executive; Visuospatial sketchpad.

Solving arithmetic problems requires a variety of
cognitive processes and strategies. For simple sums
an answer may be retrieved directly from memory,
whilst more complex sums, such as those involving
double digits, may require the use of procedural
strategies, such as decomposition or counting.
Successful execution of these strategies, particularly
those of a more procedural nature, has been shown
to depend on working memory: the ability to store,

monitor, and manipulate information in mind (see
De Stefano & LeFevre, 2004; Raghubar, Barnes,
& Hecht, 2010, for reviews). Previous research has
largely concentrated on the role of verbal working
memory in arithmetic. Considerably less attention
has been paid to the role of visuospatial working
memory, despite considerable evidence of the
association between numerical and spatial represen-
tations. This is the focus of the current study.
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Previous studies have shown the importance of
verbal working memory in counting and retaining
information whilst doing arithmetic (Bull, Espy,
& Wiebe, 2008; Hecht, 2002; Imbo & LeFevre,
2010; Lee & Kang, 2002; Logie, Gilhooly, &
Wynn, 1994; Trbovich & LeFevre, 2003). It is
thought that verbal working memory resources are
used to passively store intermediate values, as well
as actively manipulate numerical information
when performing carrying operations (Fürst &
Hitch, 2000; Logie et al., 1994). These working
memory components have been found to play a
greater role in procedural than retrieval strategies.
Hecht (2002) found that loading verbal working
memory with a random letter generation or articu-
latory suppression task slowed participants’
responses when counting was used to verify an
addition problem but not when direct retrieval
was used. However, participants use different strat-
egies and processes to solve a verification task from
those that they use to generate an answer to an
arithmetical problem (Campbell & Tarling,
1996), and therefore this methodology does not
accurately assess the contribution of working
memory skills to mathematical calculation. Imbo
and Vandierendonck (2007) investigated the role
of verbal working memory in mathematical calcu-
lation by asking participants to listen to Swedish
(passive verbal task), or retain and repeat letter
strings (active verbal task) while solving single
digit addition and subtraction problems using a
range of strategies. The active verbal task interfered
with counting and decomposition, but not retrieval
strategies. This supports previous findings that
verbal working memory plays a larger role in pro-
cedural than in retrieval strategies.

There is mixed evidence concerning the involve-
ment of visuospatial working memory in arith-
metic. A number of recent investigations have
found evidence in support of links between arith-
metic and visuospatial working memory perform-
ance. For example, behavioural performance as
well as associated brain activity on a visuospatial
working memory task was correlated with sub-
sequent performance on an arithmetic task
(Dumontheil & Klingberg, 2012). Similarly,
Simmons, Willis, and Adams (2012) found that

visuospatial working memory accounted for
unique variance in judgements of symbolic magni-
tude in young children and suggested that it may be
particularly important for written addition pro-
blems. Also, Reuhkala (2001) found that visuospa-
tial working memory capacity measures, but not
verbal working memory measures, correlated with
mathematics performance in children aged 15–16
years. In contrast, Noël, Désert, Aubrun, and
Seron (2001) investigated whether visual or phono-
logical similarity between numbers would interfere
with addition performance. They found evidence
only for effects of phonological similarity and thus
concluded that verbal working memory, rather
than visuospatial working memory, was used to
store intermediate results. Similarly, Logie et al.
(1994) found minor involvement of visuospatial
working memory in arithmetic, and only when pro-
blems were presented visually. Other studies have
found roles for both visuospatial and verbal
working memory. Heathcote (1994) found that
solving multidigit sums was affected by visual and
spatial interference, with greater disruption to
more difficult problems requiring carry-overs.
More errors occurred when problems contained
visually similar numbers than with visually dissim-
ilar ones. Heathcote suggested that both verbal and
visuospatial working memory are involved in
solving multidigit sums, whilst Trbovich and
LeFevre (2003) found that the impact of loading
these subsystems was dependent on the presen-
tation format, with performance in a vertical pres-
entation condition being worse under visual load
than under verbal load. In summary, the role of
visuospatial working memory in arithmetic is
unclear, and in particular previous studies have
failed to explore whether visuospatial working
memory is differentially recruited across strategies.

There are several reasons to suppose that visuos-
patial working memory may play an important role
in arithmetic. First, a great deal of research has
explored links between mathematics ability and
general spatial skills (see Mix & Cheng, 2012, for
a review). Strong relationships between spatial
and mathematical skills have been found across a
wide range of ages and tasks. Second, semantic
information in multidigit numbers is spatially
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coded, and so positional information must be taken
into account when dealing with numbers greater
than 9. As a result, the links between visuospatial
working memory and arithmetic may be particu-
larly strong for multidigit arithmetic. Finally,
research into the way that adults and children rep-
resent and process numbers highlights the spatial
nature of numerical representations (for a review
see De Hevia, Vallar, & Girelli, 2008). It has
been suggested that numerical magnitude represen-
tations are inherently spatial in nature (Dehaene,
Bossini, & Giraux, 1993), and, in support of this,
several authors have proposed that some individuals
spontaneously rely on visuospatial processes when
solving arithmetic problems, for example by visua-
lizing the numbers involved (e.g., Seron, Pesenti,
Noël, Deloche, & Cornet, 1992). However, some
apparent spatial–numerical representational links
may in fact arise from positional encoding in
verbal working memory (van Dijck & Fias, 2011).

Mirroring the effects on verbal working
memory, it is likely that the involvement of visuos-
patial working memory varies according to the
arithmetic strategy employed. Visuospatial rep-
resentation and processing are likely to be particu-
larly important for counting, which emphasizes the
ordinal sequence of numbers. Similarly, decompo-
sition strategies, which involve partitioning,
storing, and recombining numbers, are likely to
require visuospatial involvement. In contrast, it
has been proposed that known addition facts are
stored in a verbal code (Dehaene, 1992), and there-
fore retrieval of facts from memory should not
require visuospatial working memory.

As well as strategy use, other factors such as
problem size are also likely to influence the extent
and nature of working memory involvement. A
common feature of mental arithmetic is the
problem-size effect, whereby error rates and reac-
tion times increase with problem sizes (e.g., De
Rammelaere, Stuyven, & Vandierendonck, 1999;
Seyler, Kirk, & Ashcraft, 2003). Previous research
has largely concentrated on single-digit arithmetic
(LeFevre, DeStefano, Coleman, & Shanahan,
2005), although problems involving double digits
are likely to be more dependent on working
memory because they often require holding

interim sums and carry-overs in working memory
(Imbo, Duverne, & Lemaire, 2007). The effect of
problem size on strategy has been investigated in
single-digit arithmetic (Imbo, Vandierendonck, &
Rosseel, 2007), but there have been no systematic
investigations of larger problem size effects, or the
effect that problem size has on visuospatial
working memory recruitment.

To summarize, previous research into the role of
working memory in arithmetic has focused primar-
ily on the role of verbal working memory. Much
less is known about the role of visuospatial
working memory and in particular its involvement
in different arithmetical strategies. Here we
explore this question in two experiments with
adult participants.

EXPERIMENT 1

This experiment investigated the role of visuospa-
tial working memory in the performance of retrie-
val, decomposition, and counting strategies while
adults solved single- and double-digit addition pro-
blems. Participants were told which strategy to use
in order to enable the investigation of strategy
execution rather than strategy selection. Our
working memory task was designed so that partici-
pants had to continually monitor and manipulate
information while they remembered and updated
the positions of flashing red boxes. Many studies
compare conditions with a working memory load
to a control condition where no dual task is
required. However, this does not rule out the possi-
bility that it is simply completing a dual task that
interferes, rather than specifically the working
memory demands. Therefore in addition to a no-
load condition, our study also included a control
task designed to be as similar as possible to the
working memory task but without the working
memory demands. Each participant completed no
load, control load, and working memory load con-
ditions for each of the three strategies (retrieval,
decomposition, and counting).

It was hypothesized that visuospatial working
memory load would have a significant effect on
reaction times, with responses fastest and most
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accurate in the no load condition and slowest and
least accurate for the working memory condition.
An interaction was predicted between strategy type
and working memory load, with direct retrieval
being affected less than procedural strategies when
visuospatial working memory was loaded. It was
predicted that these effects would be more apparent
for problems that involved double digits as these are
more reliant on working memory resources.

Method

Participants
Thirty-five participants were recruited from the
general population (M= 43.2 years, SD= 12.1
years, 12 male). No payments were made to
participants.

Equipment and materials
A Samsung P510 laptop, running Windows XP
and E-prime Version 1, was used to present
stimuli and record latencies and accuracy.
Responses to the addition problems were made
using a USB numeric keypad, whilst responses to
the secondary visuospatial working memory task
were made using the laptop’s in-built mouse.
Participants used their right hand to use the
keypad and left hand to use the mouse.

Addition task. Participants were required to answer
arithmetic problems using three different strategies:
retrieval, counting, and decomposition. For
example, for 7+ 6 = : Retrieval—give answer
directly from memory; counting—from 7, count
upwards 6 times; decomposition—first, add 3
onto 7 to get to 10, then add remaining units to
get to the answer. Each problem contained two
numbers and was presented horizontally, with the
larger number on the left (e.g., 12+ 6 = ). Nine
sets of 20 experimental problems were used, result-
ing in 180 experimental problems. Participants
were also given eight practice trials for each strat-
egy. Within each problem set, half of the problems
comprised solely single digits (1 to 9 omitting 0),
and half comprised a double-digit number (max
29) on the left and single-digit number on the
right. The averages for sum totals were the same

across each problem set. The combination of
problem sets with strategy and working memory
conditions was counterbalanced. The full set of
addition problems can be found in Appendix.

Visuospatial task. The visuospatial working memory
task was presented at the same time as the arith-
metic task and consisted of two rows of four hori-
zontal boxes, with one row above and one row
below the presented problems. Different boxes
turned red, randomly and one at a time, for 2
seconds, and participants had to respond, using
the mouse, when a specified pattern was observed,
whilst continuing to answer the addition problems.
Three working memory load conditions were used:
no load (sum-only task), where the boxes were
present on screen, but none turned red, and partici-
pants only had to answer the sums; a low-level
visuospatial load (zero-back task), where partici-
pants had to click the mouse when the box
second from left on the top row turned red; and a
higher level visuospatial load (two-back task),
where participants had to click the mouse when
the box that turned red was the same as the box
one before last. In other words, a box turned red,
and the red then moved to a different box before
immediately going back to the box it was just on.
For both the zero-back and two-back tasks, an
event requiring a response occurred at least on
every sixth box turning red. If participants missed
an event and did not click the mouse, an auditory
“beep” was heard, to remind them to pay attention
to the working memory task.

Procedure
A within-participants design was used. Participants
answered 20 addition problems in each combi-
nation of answering strategy and working memory
load, giving a total of nine blocks (retrieval with
sum-only, zero-back, two-back; decomposition
with sum-only, zero-back, two-back; counting
with sum-only, zero-back, two-back). The way
conditions were presented is depicted in Figure 1.

Participants began by answering a set of 20 prac-
tice problems, using a free choice of strategy, before
practising the two secondary tasks. They then
began the experiment. The order in which the
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three strategies were used was assigned randomly,
and participants completed all three working
memory conditions for a single strategy (order
counterbalanced) before moving onto the next
strategy. Participants were told to give equal atten-
tion to the addition problems and the working
memory task. All participants were tested individu-
ally by the same experimenter, and each session
lasted for approximately 30 minutes.

On each trial, the arithmetic problems remained
on screen whilst participants worked out the answer

using the required strategy. Reaction time was
measured from the time the problem appeared
until the enter key was pressed. The participant
then keyed the answer to the problem using the
numeric keypad, before pressing enter again,
which triggered the appearance of the next
problem. For the zero-back and two-back con-
ditions, the secondary task started when the first
problem of each block was presented on the screen
and ended when the participant pressed the enter
key to make a response on the final problem of the

Figure 1. Task structure for Experiment 1. Participants completed all three working memory conditions for a single strategy before moving onto

the next strategy.
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block. The secondary task was paused while partici-
pants entered their response but participants were
required to remember the previous box location
across this delay. At the end of each set of 20 pro-
blems, participants were instructed to self-rate, on
a scale of 1 to 5, how many of the problems they
had used the required strategy for, where 1 was
“hardly any” and 5 was “almost all”.

Design
Mean accuracy and median reaction times for the
arithmetic task, and mean accuracy for the visuos-
patial tasks, were calculated for each participant.
Reaction times (RTs) and accuracy for the arith-
metic task were analysed in two separate 3 (strategy:
retrieval, decomposition, counting)× 3 (working
memory load: sum-only, zero-back, two-back)×
2 (problem size: single digit, double digit) repeated

measures analyses of variance (ANOVAs). Mean
latencies, mean accuracy, and standard errors are
shown in Table 1. Performance on the visuospatial
secondary task was also examined by performing a 3
(strategy: retrieval, decomposition, counting)× 2
(working memory load: zero-back, two-back)× 2
(problem size: single digit, double digit) repeated
measures ANOVA. Descriptive statistics are
shown in Table 2. For all analyses, degrees of
freedom were corrected using Greenhouse–
Geisser estimates of sphericity where necessary,
and post hoc tests were Bonferroni corrected.

Results

Of the 35 participants, six were removed from the
analysis: two participants had a self-rating of “1” at
some point on the strategy check, one found the

Table 1. Descriptive statistics for the arithmetic task in Experiment 1

Strategy Working memory load

RT (ms): Double digit RT (ms): Single digit Accuracy: Double digit Accuracy: Single digit

M (SE) M (SE) M (SE) M (SE)

Retrieval Sum-only 1463 (147) 1049 (85) .92 (.02) .97 (.01)

Zero-back 1793 (188) 1543 (118) .92 (.02) .94 (.01)

Two-back 2337 (223) 2112 (160) .88 (.02) .94 (.01)

Decomposition Sum-only 3668 (219) 2764 (188) .92 (.02) .98 (.01)

Zero-back 4002 (260) 3416 (223) .93 (.01) .94 (.02)

Two-back 4821 (331) 3897 (320) .86 (.02) .93 (.02)

Counting Sum-only 4214 (228) 2399 (134) .97 (.01) .98 (.01)

Zero-back 4591 (284) 3050 (210) .93 (.02) .96 (.01)

Two-back 5970 (321) 4124 (240) .87 (.03) .92 (.02)

Note: M = mean. SE = standard error.

Table 2. Descriptive statistics for the visuospatial working memory secondary task in Experiment 1

Strategy Working memory load

Accuracy: Double digit Accuracy: Single digit

M (SE) M (SE)

Retrieval Zero-back .74 (.06) .90 (.04)

Two-back .54 (.07) .54 (.07)

Decomposition Zero-back .79 (.05) .79 (.05)

Two-back .43 (.04) .45 (.06)

Counting Zero-back .81 (.03) .85 (.04)

Two-back .45 (.04) .44 (.06)

Note: M = mean. SE = standard error.
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two-back visuospatial task impossible to complete,
two struggled to complete conditions containing
the zero-back or two-back tasks, and one had reac-
tion times for retrieval that were far slower than
their reaction times for decomposition and count-
ing, indicating that they did not follow the retrieval
strategy correctly. The remaining participants
reported that they had used the required strategies
on the majority of trials (retrieval: M= 4.94,
SD= 0.20; decomposition, M= 4.69, SD= 0.53;
counting: M= 4.91, SD= 0.23).

Arithmetic task
Reaction times. There was a significantmain effect of
visuospatial working memory load on RT, F(2,
56)= 62.85, MSE= 7.34× 107, p, .001. Post
hoc tests revealed that all workingmemory load con-
ditions were significantly different (all ps, .001).
There was a significant main effect of strategy,
F(2, 56)= 88.13, MSE= 2.83× 108, p, .001.
RTs for retrieval were significantly faster than
those for decomposition (p, .001) and counting
(p, .001). There was no significant difference for
RTs between counting and decomposition
(p= .456). There was also a significant main effect
of problem size, F(1, 28)= 116.13, MSE=
1.16× 108, p, .001, with slower responses for
double-digit than for single-digit problems.

A significant interaction was found between
working memory load and strategy, F(4, 112)=
6.00, MSE= 2.88× 106, p, .001, depicted in
Figure 2. This indicates that visuospatial working

memory load had different effects on RT depend-
ing on which arithmetic strategy was used. There
was a significant effect of working memory load
for each strategy [retrieval, F(2, 27)= 26.00,
p, .001; decomposition, F(2, 27)= 19.59,
p, .001; counting, F(2, 27)= 44.54, p, .001],
with significantly faster RTs in the sum-only con-
dition than in the zero-back condition, and in the
zero-back condition than in the two-back con-
dition. However, contrasts revealed that the RT
difference between the two-back and zero-back
conditions was greater for counting than for retrie-
val and decomposition (all ps, .001). The RT
difference between the two-back and zero-back
conditions was similar for decomposition and
retrieval, F(1, 28)= 0.33, MSE= 2.54× 105,
r= .11. As shown in Figure 2, these contrasts
reflect the fact that the harder, two-back visuospa-
tial working memory load (compared to the zero-
back task) increased RTs more for the counting
strategy than it did for the decomposition and
retrieval strategies. There were no significant inter-
actions between strategies when comparing the
sum-only condition to the zero-back load
condition.

There was also a significant interaction between
strategy and problem size, F(2, 56)= 93.62,
MSE= 2.31× 107, p, .001. There was a signifi-
cant effect of problem size for each strategy [retrie-
val, F(1, 28)= 14.02, p, .01; decomposition, F(1,
28)= 54.18, p, .001; counting, F(1, 28)=
185.43, p, .001). However, contrasts showed
that these effects were not equal. Double digits
slowed participants more when using counting
than with decomposition, F(1, 28)= 63.93,
MSE= 2.51× 107, r= .83, p, .001, and with
decomposition than with retrieval, F(1, 28)=
33.33, MSE= 7.48× 106, r= .74, p, .001.

Accuracy. There was no significant main effect of
strategy on accuracy rates, F(2, 56)= 0.98,
MSE= 0.01, p= .384, but there was a significant
main effect of working memory load, F(1.62,
45.28)= 19.67, MSE= 0.17, p, .001. Accuracy
was significantly higher in the sum-only condition
than in the zero-back condition (p= .009) and
was significantly higher in the zero-back condition

Figure 2. Arithmetic strategy and working memory load interaction

for Experiment 1.
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than in the two-back condition (p= .005). There
was also a significant main effect of problem size,
F(1, 28)= 24.74, MSE= 0.22, p, .001, with
more accurate responses for the single-digit
problems.

There was no significant interaction between
working memory load and strategy, F(2.82,
79.04)= 0.76, MSE= 0.01, p= .762, but there
was a significant interaction between working
memory and problem size, F(2, 56)= 3.67,
MSE= 0.02, p= .032. Participants were less accu-
rate when the sum contained a double digit for both
the sum-only and two-back conditions (sum-only,
p= .002; two-back, p, .001), but not for the
zero-back condition (p= .101).

Visuospatial secondary task
A main effect of working memory load was found,
with more accurate performance in the zero-back
condition than in the two-back condition F(1,
28)= 43.56, MSE= 9.87, p, .001. Performance
on the visuospatial task did not differ across the
different arithmetic strategies, F(1.58, 44.29)=
1.43, MSE= 0.14, p= .248, and there was no
main effect of problem size, F(1, 28)= 2.65,
MSE= 0.11, p= .115, or any significant
interactions.

Discussion

This experiment employed a novel visuospatial
working memory load task involving three different
load levels combined with counting, decompo-
sition, and retrieval strategies for answering
addition problems. The additional effect of
problem size was also assessed.

Performance on the arithmetic task was influ-
enced by the visuospatial working memory load.
Participants were slower and less accurate in the
zero-back condition than in the sum-only con-
dition, and also in the two-back condition than in
the zero-back condition. The difference in per-
formance between the sum-only and zero-back
conditions supports the inclusion of the zero-back
task as a control condition and suggests that some
of the effects reported in previous studies, which
did not include such a control, may have been

due to the general dual-task demands and not the
working memory load itself.

Critically, our findings indicate that the impact
of a visuospatial working memory load is dependent
on the arithmetic strategy used. Counting was
slowed more by concurrent visuospatial working
memory demands than by decomposition or retrie-
val. There was no interaction between strategy and
load for accuracy, or for secondary task perform-
ance, indicating that taxing working memory did
not simply lead to differential speed/accuracy or
task trade-offs between the three strategies.
Moreover, it was not simply driven by the fact
that the slowest overall condition showed the
largest decrement due to scaling effects, as counting
and decomposition strategies were of similar speeds
in the sum-only and zero-back conditions.

Although the effects of visuospatial working
memory load were greatest for the counting strat-
egy, a significant slowing in response times was
also observed when decomposition was used.
Interestingly, we also observed a significant effect
of the visuospatial working memory load for retrie-
val. This is surprising because theories of arithme-
tical cognition predict that retrieval of addition
facts should involve verbal, rather than spatial, pro-
cesses (Dehaene, 1992).

The findings of Experiment 1 suggest a role for
visuospatial working memory in arithmetic that is
recruited to different extents by different strategies.
However, the nature of the visuospatial n-back task
used means that it is unclear whether it is the
demands of simply holding visuospatial infor-
mation online, or controlling and manipulating
this information, that was interfering with solving
the addition problems. According to the Baddeley
and Hitch multicomponent model of working
memory (Baddeley, 2000, 2003; Baddeley &
Hitch, 1974), these two processes rely on different
components of working memory: Holding visuos-
patial information online is the function of the
visuospatial sketchpad, which acts as a temporary
store for visual and spatial information, whereas
controlling and manipulating information in
memory is the function of the central executive.
This is responsible for attentional control and for
the coordination of the visuospatial sketchpad and

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014, 67 (5) 943

VISUOSPATIAL WORKING MEMORY AND ARITHMETIC



the phonological loop, a phonological temporary
store refreshed through a rehearsal system. The n-
back task used in Experiment 1 places a load on
both the visuospatial sketchpad and the central
executive due to the requirement to continuously
monitor and update the box sequence in working
memory. Therefore in order to clarify the nature
of the interfering working memory demands
directly, a second experiment was carried out
using standard separate measures of the visuospatial
sketchpad and central executive as secondary tasks.

Several researchers have proposed the fraction-
ation of the visuospatial sketchpad, with two sub-
systems: one, a visual system that holds
information such as shape and colour and another
that holds information about movement and
spatial relations (Baddeley, 2003; Bull, Johnston,
& Roy, 1999; Logie et al., 1994). Moreover,
Pickering, Gathercole, Hall, and Lloyd (2001)
suggested that the visuospatial sketchpad is fractio-
nated between static and dynamic functions, rather
than by visual and spatial, as a result of the discov-
ery of a developmental dissociation in performance
in the static and dynamic conditions of their exper-
iments. Studies investigating the role of the visuos-
patial sketchpad in arithmetic have concentrated on
loading its static, visual element during dual-task
experiments (Imbo & LeFevre, 2010; Lee &
Kang, 2002; Trbovich & LeFevre, 2003), such as
remembering a pattern of asterisks. However, as
suggested here, the dynamic, spatial element of
the visuospatial sketchpad also appears to be
involved in mental arithmetic (Reuhkala, 2001).
Indeed, Hegarty and Kozhevnikov (1999) found
that the use of schematic spatial representations,
as opposed to pictorial representations, was posi-
tively correlated with achievement in mathematical
problem solving in 11–13-year-olds. To systemati-
cally address the influence of maintaining static and
dynamic visuospatial information on mental arith-
metic, half of the participants in Experiment 2
completed a visuospatial sketchpad secondary task

that involved maintaining static visuospatial infor-
mation, while the other half completed a dynamic
visuospatial sketchpad secondary task. Both
groups were also given the same central executive
secondary task.

EXPERIMENT 2

Method

Participants
Forty-five undergraduates from the University of
Nottingham were recruited and allocated to either
the static group (N= 22, M= 19.8 years, SD=
3.2 years, 6 male) or the dynamic group (N= 23,
M= 19.3 years, SD= 1.0 years, 5 male) on an
alternate basis. Participants received either a
course credit or a £6 inconvenience allowance for
taking part in the study.

Equipment and materials
A Viglen Pentium D computer, running Windows
XP and PsychoPy Version 1.73.06 (Peirce, 2007),
was used to present stimuli and record latencies
and accuracy. Responses to the sums presented
were made using a USB numeric keypad, whilst
responses to the secondary visuospatial working
memory task were made using a mouse.
Responses to the central executive secondary task
were recorded using a digital sound recorder.
Participants used their right hand to use the
keypad and their left hand to use the mouse.

Addition task. Experiment 2 used the same strat-
egies—retrieval, decomposition, and counting—
and the same sets of addition problems as those
in Experiment 1.1

Central executive task. As the central executive is a
domain-general resource, a random letter gener-
ation task was selected to allow comparison

1In order to ensure that all nine problem sets were matched for mean size of the second addend as well as mean sum total, 8 pro-

blems were removed from the analysis leaving a total of 172 experimental trials. This was not required in Experiment 1 because the

combination of problem sets with strategy/working memory condition was counterbalanced, something that was not possible in

Experiment 2 due to the experimental software.
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with previous dual-task studies. (e.g., Bull et al.,
1999; De Rammelaere et al., 1999; Logie et al.,
1994). The requirement to make a letter series
random, rather than simply producing a serial
string of letters, involves constant attention and
switching between retrieval plans, which are con-
trolled by the central executive (Baddeley, 1996).
Participants were required to say letters from the
alphabet out loud, at random, in time to a metro-
nome set to one beat per second. Letter gener-
ation was continuous from the presentation of
the first sum to the answering of the final sum
in each block. Participants were instructed to
avoid strings of letters, such as “a, b, c, d” and
were not given a starting letter. Performance on
the central executive task was measured by pro-
ducing a score for randomness of the spoken
letters, using RGCalc (Towse & Neil, 1998).
The adjacency score measures the percentage of
occasions that a spoken letter is directly followed
by one of its immediate neighbours in the
alphabet.

Visuospatial sketchpad task: Static version.
Participants were required to memorize the pos-
ition of four red dots on a 4× 4 black grid, pre-
sented in the centre of the screen. The grid and
all four dots on the grid were presented at the
same time, for a total of two seconds.
Immediately after, an addition problem was pre-
sented, which participants had to answer using
the required strategy for that block. As soon as
the problem had been answered, a blank black
grid was presented in the centre of the screen,
and participants had to use the mouse to indicate
the position of the four red dots, by clicking on
the computer screen. The position of the mouse
clicks was recorded by PsychoPy (Peirce, 2007).
Once the mouse had been clicked four times, the
next set of dots to remember was immediately pre-
sented. Performance was measured by calculating
each participant’s proportion correct score for the
number of dot positions remembered for each of
the three strategies.

Visuospatial sketchpad task: Dynamic version.
Participants in the dynamic group saw the same

grid and sets of dots, but the dots were presented
one at a time, for 0.5 seconds each. Once they
had answered the problem, participants were
required to use the mouse to indicate the position
of the dots in the order that they were presented
on a blank black grid. Performance was measured
by calculating each participant’s proportion
correct score for the number of dot positions
remembered, in the correct order, for each of the
three strategies.

Procedure
The design was similar to that of Experiment
1. Participants answered 20 addition problems in
each combination of answering strategy and
working memory load type, giving a total of nine
blocks (retrieval with sum-only, visuospatial,
central executive; counting with sum-only, visuos-
patial, central executive; decomposition with sum-
only, visuospatial, central executive). Participants
began by answering a set of 20 practice problems,
using a free choice of strategy, before practising
the visuospatial sketchpad and central executive
tasks. They then began the experiment. The order
in which the three strategies were used was assigned
randomly, and participants completed all three
working memory conditions for a single strategy
(order counterbalanced) before moving onto the
next strategy. Participants were told to give equal
attention to the addition problems and the
working memory tasks. All participants were
tested individually by the same experimenter, and
each session lasted for approximately 50 minutes.

The addition problems remained on screen
whilst participants worked out the answer using
the required strategy. Reaction time was measured
from the time the problem appeared until the first
digit of the answer was pressed. After keying the
answer to the problem, the participant pressed
enter, which immediately triggered the appearance
of the next problem, in the sum-only and central
executive conditions, or the grid in the visuospatial
condition. As in Experiment 1, at the end of each
set of 20 problems, participants were instructed to
self-rate on how many of the problems they had
used the required strategy to answer, using the
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numeric keypad, on a scale of 1 to 5, where 1 was
“hardly any”, and 5 was “almost all”.

Design
Initially, reaction times and accuracy for the arith-
metic problems in the visuospatial condition only
were analysed in two separate 3 (strategy: retrieval,
decomposition, counting)× 2 (problem size: single
digit, double digit)× 2 (visuospatial group: static,
dynamic) mixed-design ANOVAs, to examine
whether the two visuospatial groups performed
differently.

Reaction times and accuracy for the full arith-
metic task were then analysed in two separate 3
(strategy: retrieval, decomposition, counting)× 3

(working memory type: sum-only, visuospatial,
central executive)× 2 (problem size: single digit,
double digit) repeated measures ANOVAs. Mean
latencies, mean accuracy, and standard errors are
shown in Table 3. Accuracy on the secondary
tasks was also analysed. For the visuospatial sec-
ondary task, a 3 (strategy: retrieval, counting,
decomposition)× 2 (problem size: single digit,
double digit) mixed ANOVA, with visuospatial
task (static, dynamic) as a between-subjects factor,
was performed. For the central executive task, a
one-way ANOVA was carried out to compare per-
formance for each of the three strategies (retrieval,
decomposition, counting). Due to the design of
the central executive task, performance could not

Table 3. Descriptive statistics for the arithmetic task in Experiment 2

Strategy

Working memory

load

RT (ms): Double digit RT (ms): Single digit Accuracy: Double digit Accuracy: Single digit

M (SE) M (SE) M (SE) M (SE)

Retrieval Sum-only 1556 (84) 1176 (47) .90 (.02) .94 (.01)

Visuospatial 1954 (126) 1683 (113) .87 (.02) .94 (.01)

Central executive 3452 (187) 2662 (150) .82 (.03) .89 (.02)

Decomposition Sum-only 2916 (192) 2656 (183) .92 (.02) .94 (.01)

Visuospatial 3691 (349) 2786 (240) .94 (.01) .97 (.01)

Central executive 6054 (486) 4277 (377) .90 (.02) .95 (.01)

Counting Sum-only 4351 (183) 2358 (125) .89 (.02) .97 (.01)

Visuospatial 4557 (276) 3006 (202) .93 (.02) .98 (.01)

Central executive 9655 (1511) 5833 (883) .86 (.03) .95 (.01)

Note: M = mean. SE = standard error.

Figure 3. Percentage accuracy for the secondary visuospatial task in Experiment 2 for both dynamic and static groups, whilst answering (a)

single-digit and (b) double-digit sums.
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be compared for single- and double-digit trials
separately. Descriptive statistics for secondary tasks
are depicted in Figure 3. For all analyses, degrees
of freedom were corrected using Greenhouse–
Geisser estimates of sphericity where necessary. All
post hoc tests were Bonferroni corrected.

Results

Mean accuracy and median reaction times were cal-
culated for each participant. Of the 45 participants,
two were removed from the static group (one male,
one female) and three from the dynamic group (all
female) as they had a self-rating of “1” at some
point on the strategy check. The remaining partici-
pants reported that they had used the required
strategies on the majority of trials (retrieval, M=
4.68, SD= 0.67; decomposition, M= 4.35,
SD= 0.72; counting, M= 4.44, SD= 0.62).

Comparison of static and dynamic visuospatial
groups
There was no main effect of visuospatial group on
either RT, F(1, 38), 1, ns, or accuracy, F(1,
38)= 1.07, ns, nor any significant interactions
involving visuospatial group. The data were there-
fore collapsed across group for the analysis of arith-
metic task performance.

Arithmetic task
Reaction times. There was a significantmain effect of
working memory type on RT, F(1.11, 43.34)=

33.30, MSE= 9.93× 108, p, .001. Post hoc
tests revealed that problems were solved more
quickly in the sum-only condition than in the
visuospatial condition (p= .007), which in turn
was faster than the central executive condition
(p, .001). There was a significant main effect of
strategy on RT, F(1.33, 51.72)= 34.28, MSE=
7.56× 108, p, .001. Problems were solved more
quickly using retrieval than using decomposition
(p, .001), which was faster than counting
(p= .002). There was also a significant main effect
of problem size, F(1, 39)= 134.82, MSE=
3.07× 108, p, .001, with slower responses for
double-digit than for single-digit problems.

There was a significant interaction between
working memory type and strategy, F(1.08,
41.91)= 5.71, MSE= 1.97× 108, p= 0.019,
suggesting that the secondary tasks had different
effects on RT depending upon which arithmetic
strategy was used. Tests of simple main effects
demonstrated that there was a significant effect of
working memory load type for each arithmetic
strategy [retrieval, F(2, 38)= 83.54, p, .001;
decomposition, F(2, 38)= 29.43, p, .001; count-
ing, F(2, 38)= 7.43, p= .002]. For all strategies,
problems were solved faster in the sum-only con-
dition than in the visuospatial condition,
(ps≤ .05) and faster in the visuospatial condition
than in the central executive condition
(ps, .001). However, contrasts revealed a greater
difference between the central executive and visuos-
patial conditions for counting than for retrieval,
F(1, 39)= 6.59, MSE= 2.97× 108, r= .38,
p= .014, and decomposition, F(1, 39)= 4.92,
MSE= 1.62× 108, r= .33, p= .032, and for
decomposition than for retrieval F(1, 39)= 7.39,
MSE= 1.90× 107, r= .40, p= .010. As shown
in Figure 4, these contrasts reflect the fact that
the central executive condition increased RTs
more for the counting strategy than it did for the
decomposition and retrieval strategies. There was
no three-way interaction between strategy,
working memory, and problem size, F(1.35,
52.45)= 3.31, MSE= 1.71× 107, p= .063.

Accuracy. There was a significant main effect of
working memory load type, F(2, 78)= 11.95,

Figure 4. Arithmetic strategy and working memory condition

interaction for Experiment 2.
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MSE= 0.13, p, .001. Post hoc tests revealed that
arithmetic problems were solved more accurately in
the sum-only (p= .001) and visuospatial
(p= .001) conditions than in the central executive
condition but that there was no difference in accu-
racy between sum-only and visuospatial (p= .82)
conditions.

There was also a main effect of strategy, F(1.54,
59.98)= 12.52, MSE= 0.17, p, .001. Post hoc
tests revealed that both counting (p= .009) and
decomposition (p, .001) were more accurate
than retrieval and that there was no difference in
accuracy between counting and decomposition
(p= .92). A significant main effect of problem
size, F(1, 39)= 42.54, MSE= 0.58, p, .001,
demonstrated that single-digit sums were solved
more accurately than double-digit sums. There
were no significant interactions.

Central executive secondary task
Mean adjacency scores (standard errors) for the
random letter generation task when using each
arithmetic strategy were as follows: retrieval, .22
(.02); decomposition, .20 (.01); counting, .21
(.02). There was no main effect of strategy,
F(1.51, 57.20)= 0.38, MSE= 0.00, p= .626,
showing that participants performed similarly on
the central executive task irrespective of which
addition strategy they were using.

Visuospatial secondary task
There was a main effect of visuospatial task group,
with participants in the static group performing sig-
nificantly more accurately than those in the
dynamic group, F(1, 38)= 42.71, MSE= 4.52,
p, .001. There was also a significant main effect
of strategy, F(2, 76)= 24.28, MSE= 0.32,
p, .001. Post hoc tests revealed that performance
in the visuospatial task was better whilst using
retrieval than whilst using decomposition
(p, .001) and counting (p, .001), but that
there was no difference between performance
whilst using decomposition and counting (p=
1.00). There was also a main effect of problem
size, F(1, 38)= 40.79, MSE= 0.50, p, .001,
with performance less accurate when answering
problems containing double digits.

Although there was a main effect of visuospatial
task group, this did not interact with strategy, F(2,
76)= 1.51, MSE= 0.20, p= .227, showing that
participants in the dynamic group found the visuos-
patial task harder than those in the static group, no
matter which arithmetic strategy was used. There
was no Visuospatial Task× Problem Size inter-
action, F(1, 38), 1, ns. There was, however, a
Visuospatial Task× Strategy× Problem Size
interaction, F(2, 76)= 4.60, MSE= 0.04,
p= .013. As shown in Figure 3, this was driven
by a smaller difference in accuracy between the
visuospatial task groups when retrieving single
digit sums.

Discussion

Through the inclusion of both central executive and
visuospatial load conditions, Experiment 2 enabled
us to better understand the findings of Experiment
1. Results showed that the central executive load
produced a greater impairment on arithmetic per-
formance than the visuospatial sketchpad load in
terms of both slower and less accurate responses.
Moreover, the effect of central executive load
slowed performance to a greater extent for counting
than for decomposition and retrieval, and this was
not due to a differential speed/accuracy or task
trade-off across strategies. This clarifies the find-
ings of Experiment 1 and indicates that the
slowed counting in the two-back condition was
likely to be due to increased load on the central
executive, rather than the visuospatial nature of
the task.

The visuospatial task did not influence accuracy
on the arithmetic task compared to the sum-only
condition, but it did slow performance, albeit to a
lesser extent than the central executive condition.
It is not possible to completely rule out that this
slowing was due to the general demands of per-
forming a secondary task. However, it appears
that maintaining visuospatial information in the
visuospatial sketch pad plays a small role in
solving addition problems whatever the strategy.

Similar patterns of performance on the arith-
metic task were observed for both the static and
dynamic visuospatial task groups; however, the
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dynamic group performed worse on the visuospatial
task itself. This may reflect the fact that the
dynamic task is more difficult, requiring mainten-
ance of the order as well as location of the
stimuli. Better secondary visuospatial task perform-
ance for the retrieval strategy may reflect the fact
that the visuospatial information did not have to
be maintained for as long in this condition.

Experiment 2 also confirmed that working
memory load decreases performance more in sums
involving double digits than in those only involving
single digits, suggesting it plays a greater role in
more complex sums. This was true for both visuos-
patial and central executive load.

GENERAL DISCUSSION

The experiments reported here increase our under-
standing of the role of working memory in mental
arithmetic. Experiment 1 used a dynamic spatial n-
back task to explore the role of visuospatial working
memory in different arithmetic strategies. The
results from this experiment suggested that visuos-
patial working memory plays a key role in solving
arithmetic problems. However, the results of
Experiment 2 indicated that it was the central
executive demands of monitoring and updating
sequences in the n-back task that was critical for
mental arithmetic performance, rather than its use
of dynamic spatial stimuli. Simply maintaining
visuospatial information in mind plays a much
lesser role in mental addition.

The present results show the central executive to
be involved in counting, decomposition, and retrie-
val strategies, but to be particularly important for
counting. This is consistent with a number of
studies demonstrating that procedural strategies
rely on the central executive to a greater extent
than retrieval strategies (Hecht, 2002; Imbo &
Vandierendonck, 2007). The role of the central
executive in counting is probably due to the need
to store, switch between, and update several differ-
ent pieces of information. For example, to solve the
problem 9+ 4, it is necessary to store the size of the
first addend, to increment this total as each count-
ing step is performed (10, 11, 12, 13), and to

maintain and update a record of the number of
count steps made (1, 2, 3, 4). The coordination of
information in memory such as this is known to
be a key function of the central executive.

Evidence that cognitive systems that control
attention and memory are involved in counting
demonstrates that, rather than being a simple strat-
egy, counting can be a complex procedure that is
challenging for children. At the early stages of
learning mathematics, children rely on counting
strategies before progressing, eventually, onto
decomposition and retrieval for known facts.
However, adults continue to use counting in
some situations even when they are given a choice
of strategies (Campbell & Austin, 2002).
Children who have difficulties with mathematics
have been found to rely on counting strategies to
a greater extent than children who are proficient
with mathematics (e.g., Jordan, Hanich, &
Kaplan, 2003), and their counting strategies are
more error prone (e.g., Hanich, Jordan, Kaplan,
& Dick, 2001). Given the heavy involvement of
the central executive, it is possible that it is the
domain-general demands of counting that cause
difficulties for some children.

The central executive and n-back secondary
tasks impaired performance on decomposition
strategies, but to a lesser extent than counting.
On the one hand this might be surprising
because, like counting strategies, decomposition
also involves the temporary storage and manipu-
lation of several pieces of numerical information.
However, it is possible that some elements of a
given decomposition strategy relied on the recall
of known facts and thus may have been less
reliant on executive processes. Moreover, partici-
pants reported using different decomposition
methods in the study, including estimating to the
nearest 10 then subtracting, adding to the nearest
10, then adding units to get to the answer and
also, where the initial addend was double digit,
adding the units of the two addends first, before
adding the product to the initial decade number.
Thus, the use of these somewhat different strategies
may have served to mask the overall effects of
working memory that were observed. Although
the study was designed to investigate strategy
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execution, there appears to have been an element of
strategy selection within the decomposition con-
dition, and this use of different methods should
be investigated further, as decomposition strategies
may differ in their reliance on working memory
resources.

In contrast to previous research (Hecht, 2002;
Imbo & Vandierendonck, 2007), this study
suggested that even direct retrieval of numerical
facts relied on central executive processes to some
extent. It is plausible that our use of more difficult
two-digit addition problems may have caused par-
ticipants to use strategies other than retrieval for
these problems. However, we found that there
was a significant impact of n-back and central
executive load for both the single- and double-
digit problems. Single-digit addition problems are
well learned, and educated adult participants, such
as those involved in this study, should be able to
directly retrieve these solutions. Retrieval of
known facts involves more than just looking up
an answer in long-term memory. Although there
are some differences among models, it is generally
believed that number facts are stored in a network
of associations, such that a number pair (e.g., 6+
7) will be associated with several possible solutions,
with differing strengths (Ashcraft, 1992; Campbell,
1995; Siegler & Shrager, 1984). For individuals
who are able to retrieve an answer correctly, the
correct answer will have the strongest association;
however, other surrounding answers may have
weaker associations. Therefore in order to retrieve
an answer to a known fact, it is necessary to select
the appropriate fact and suppress others. In particu-
lar it is known that the answers to multiplication
facts (i.e., 6× 7= 42) will interfere with retrieving
the correct answer to known addition facts (i.e.,
6+ 7= 13) and vice versa. It is likely that suppres-
sing incorrect responses will be one process that
requires central executive involvement in solving
problems by retrieval.

In contrast to the large impact of executive
working memory load on mental arithmetic, the
visuospatial sketch pad only appeared to play a
small role. This contribution was similar across all
three strategies, which suggests that the visuospatial
sketch pad may have been involved in holding the

sum in mind, rather than in performing the differ-
ent strategies themselves. Given the links between
mathematics ability and general spatial skills (e.g.,
Mix & Cheng, 2012), it is perhaps surprising that
there was such a small effect of maintaining visuos-
patial information on arithmetic performance. This
finding contrasts with previous evidence showing
relationships between arithmetic performance and
visuospatial working memory tasks (Dumontheil
& Klingberg, 2012; Heathcote, 1994; Reuhkala,
2001; Simmons et al., 2012; Trbovich &
LeFevre, 2003). We see two possible explanations
for the limited involvement of visuospatial
storage. First, in contrast with previous studies,
our participants were well-educated adults rather
than children, and we asked them to solve addition
problems involving adding a single digit. It is poss-
ible that these problems were simple enough for
participants to be able to solve them without
recourse to visuospatial working memory. Perhaps
more complex problems or those involving differ-
ent operations may have required more visuospatial
working memory involvement. Lee and Kang
(2002) have suggested that different operations
may rely on the use of different working memory
subsystems. They found that multiplication
slowed with phonological load and subtraction
with static visual memory load. Studies involving
multiple arithmetical operations and allowing par-
ticipants to use a wider range of strategies would
be needed to better understand the involvement
of all components of working memory in
arithmetic.

A second possible explanation of the apparent
lack of involvement of visuospatial storage is that
adult participants have available alternative
methods for solving arithmetic problems. So
while participants may use visuospatial storage for
holding numerical information in some situations,
verbal storage may be available as an alternative.
Thus when participants are prevented from using
visuospatial storage, due to the dual task, they fall
back onto using verbal storage. It is possible that
there are individual differences between which
storage system is the preferred and which is the
backup. Similarly, Seron et al. (1992) found that
there are wide individual differences in the extent
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to which participants report visualizing numbers.
Contrasting participants’ performance on arith-
metic problems with different types of load would
be a valuable avenue to explore these possible indi-
vidual differences.

Aside from debates surrounding the type of
storage involved in arithmetic, our results have
shown clearly that the working memory system in
general is heavily involved in the performance of
even simple arithmetic. Research exploring the dif-
ficulties that some children have in learning math-
ematics has tended to focus on the domain-specific
problems they have, such as poor representations of
number or use of less sophisticated strategies. It is
important, however, not to overlook the important
role that working memory plays in arithmetic, as
deficits in this area may instead underpin the diffi-
culties that some children and adults have with
mathematics. Current theories of mathematical
cognition tend not to integrate models into a
broader system of domain-general cognitive pro-
cesses and skills. However, it is essential to consider
both the domain-specific and domain-general
systems together in order to understand the
complex interactions between them. For example,
individuals may be able to compensate for poor
knowledge of mathematical strategies with good
working memory capacity, and executive function
skills such as inhibition may mediate the relation-
ship between basic numerical representations and
mathematics outcomes (Gilmore et al., 2013).
There is a need to integrate across research into
both the domain-specific and domain-general cog-
nitive systems involved in mathematics perform-
ance in order to understand this complex skill and
the reasons why many individuals struggle with it.

In summary, we found that the central executive
load had a greater impact on the performance of all
addition strategies than visuospatial storage load.
Counting placed more demands on this aspect of
working memory than other strategies, posing par-
ticular issues for children and adult learners of
arithmetic who tend to rely on this strategy the
most. While visuospatial storage load does not
appear to be important for mental addition, it
may play a role in other types of arithmetic such
as subtraction (Lee & Kang, 2002), particularly

when the answer is a negative number (Robert &
LeFevre, 2013). Future experiments should investi-
gate the effects of central executive and visuospatial
load on subtraction, multiplication, and division to
gain a fuller understanding of the roles of the differ-
ent elements of working memory across other types
of arithmetic.

Original manuscript received 5 March 2012

Accepted revision received 16 August 2013

First published online 17 October 2013

REFERENCES

Ashcraft, M. H. (1992). Cognitive arithmetic: A review
of data and theory. Cognition, 44(1–2), 75–106.
doi:10.1016/0010-0277(92)90051-I

Baddeley, A. D. (1996). Exploring the central executive.
The Quarterly Journal of Experimental Psychology

section A: Human Experimental Psychology, 49(1),
5–28. doi:1080/027249896392784

Baddeley, A. D. (2000). The episodic buffer: A new
component of working memory? Trends in Cognitive

Sciences, 4, 417–423. doi:10.1016/S1364-6613(00)
1538-2

Baddeley, A. D. (2003). Working memory: Looking
back and looking forward. Nature Reviews

Neuroscience, 4, 829–839. doi:10.1038/nrn1201
Baddeley, A. D., &Hitch, G. J. (1974).Workingmemory.

In G. A. Bower (Ed.), Recent advances in learning and

motivation (Vol. 8, pp. 47–90). New York: Academic
Press.

Bull, R., Espy, K., & Wiebe, S. A. (2008). Short-term
memory, working memory, and executive functioning
in pre-schoolers: Longitudinal predictors of math-
ematical achievement at age 7 years. Developmental

Neuropsychology, 33, 205–228. doi:10.1080/
87565640801982312

Bull, R., Johnston, R. S., & Roy, J. A. (1999). Exploring
the roles of the visual-spatial sketch pad and central
executive in children’s arithmetic skills: Views from
cognition and developmental neuropsychology.
Developmental Neuropsychology, 15(3), 421–442.
doi:10.1080/87565640801982312

Campbell, J. I. D. (1995). Mechanisms of number-fact
retrieval: A modified network-interference theory
and simulation. Mathematical Cognition, 1, 121–164.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014, 67 (5) 951

VISUOSPATIAL WORKING MEMORY AND ARITHMETIC



Campbell, J. I. D., & Austin, S. (2002). Effects of
response time deadlines on adults’ strategy choices
for simple addition. Memory and Cognition, 30(6),
988–994. doi:3758/BF03195782

Campbell, J. I. D., & Tarling, D. P. M. (1996). Retrieval
processes in arithmetic production and verification.
Memory and Cognition, 24(2), 156–172. doi:3758/
BF03200878

Dehaene, S. (1992). Varieties of numerical abilities.
Cognition, 44, 1–42. doi:10.1016/0010-0277(92)
90049-N

Dehaene, S., Bossini, S., & Giraux, P. (1993). The
mental representation of parity and number magni-
tude. Journal of Experimental Psychology: General,
122(3), 371–396. doi:10.1037/0096-3445.122.3.371

De Hevia, M. D., Vallar, G., & Girelli, L. (2008).
Visualizing numbers in the mind’s eye: The role of
visuo-spatial processes in numerical abilities.
Neuroscience and Biobehavioural Reviews, 32, 1361–
1372. doi:10.1016/j.neubiorev.2008.05.015

De Rammelaere, S., Stuyven, E., & Vandierendonck, A.
(1999). The contribution of working memory
resources in the verification of simple arithmetic
sums. Psychological Research, 62, 72–77. doi:10.1007/
5004260050041

De Stefano, D., & LeFevre, J-A. (2004). The role of
working memory in mental arithmetic. European

Journal of Cognitive Psychology, 16(3), 353–386.
doi:10.1080/09541440244000328

Dumontheil, I., & Klingberg, T. (2012). Brain activity
during a visuospatial working memory task predicts
arithmetical performance 2 years later. Cerebral

Cortex, 22, 1078–1085. doi:10.1093/cercor/bhr175
Fürst, A. J., & Hitch, G. J. (2000). Separate roles for

executive and phonological components of working
memory in mental arithmetic. Memory and

Cognition, 28, 774–782. doi:10.3758/BF03198412
Gilmore, C., Attridge, N., Clayton, S., Cragg, L.,

Johnson, S., Marlow, N., … Inglis, M. (2013).
Individual differences in inhibitory control, not
non-verbal number acuity, correlate with mathemat-
ics achievement. PLoS ONE, 8(6), e67374.
doi:10.1371/journal.pone.0067374

Hanich, L. B., Jordan, N. C., Kaplan, D., & Dick, J.
(2001). Performance across different areas of math-
ematical cognition in children with learning difficul-
ties. Journal of Educational Psychology, 93, 615–626.
doi:101037//10022-O663.93.3.615

Heathcote, D. (1994). The role of visuo-spatial working
memory in the mental addition of multi-digit
addends.Current Psychology of Cognition, 13, 207–245.

Hecht, S. A. (2002). Counting on working memory in
simple arithmetic when counting is used for
problem solving. Memory & Cognition, 30, 447–
455. doi:10.3758/BF03194945

Hegarty, M., & Kozhevnikov, M. (1999). Types of
visual-spatial representations and mathematical
problem solving. Journal of Educational Psychology,
91(4), 684–689. doi:10.1037/0022-0663.91.4.684

Imbo, I., Duverne, S., & Lemaire, P. (2007). Working
memory, strategy execution, and strategy selection
in mental arithmetic. The Quarterly Journal of

Experimental Psychology, 60(9), 1246–1264.
doi:10.1080/17470210600943419

Imbo, I., & LeFevre, J.-A. (2010). The role of phonolo-
gical and visual working memory in complex arith-
metic for Chinese- and Canadian-educated adults.
Memory & Cognition, 38(2), 176–185. doi:10.3758/
MC.38.2.176

Imbo, I., & Vandierendonck, A. (2007). The develop-
ment of strategy use in elementary school children:
Working memory and individual differences. Journal
of Experimental Child Psychology, 96, 284–309.
doi:10.1016/j.jecp.2006.09.001

Imbo, I., Vandierendonck, A., & Rosseel, Y. (2007). The
influence of problem features and individual differ-
ences on strategic performance in simple arithmetic.
Memory & Cognition, 35(3), 454–463. doi:10.3758/
BF03193285

Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A
longitudinal study of mathematical competencies in
children with specific mathematics difficulties versus
children with comorbid mathematics and reading dif-
ficulties. Child Development, 74(3), 834–850.
doi:10.1111/1467-8624.00571

Lee, K.-M., & Kang, S.-Y. (2002). Arithmetic operation
and working memory: Differential suppression in
dual tasks. Cognition, 83, B63–B68. doi:10.1016/
S0010-0277(02)00010-0

LeFevre, J.-A., DeStefano, D., Coleman, B., &
Shanahan, T. (2005). Mathematical cognition and
working memory. In J. I. D. Campbell (Ed.),
Handbook of mathematical cognition (pp. 361–378).
Hove, UK: Psychology Press.

Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994).
Counting on working memory in arithmetic
problem solving. Memory & Cognition, 22, 395–
410. doi:10.3758/BF03200866

Mix, K. S., & Cheng, Y.-L. (2012). The relation
between space and math: Developmental and edu-
cational implications. Advances in Child Development

and Behavior, 42, 197–243.

952 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014, 67 (5)

HUBBER, GILMORE, CRAGG



Noël, M.-P., Désert, M., Aubrun, A., & Seron, X.
(2001). Involvement of short-term memory in
complex mental calculation. Memory & Cognition,
29, 34–42. doi:10.3758/BF03195738

Peirce, J. W. (2007). PsychoPy-Psychophysics software
in Python. Journal of Neuroscience Methods, 162(1–
2), 8–13. doi:10.1016/j.neumeth.2006.11.017

Pickering, S. J., Gathercole, S. E., Hall, M., & Lloyd, S.
A. (2001). Development of memory pattern and path:
Further evidence for the fractionation of visuo-spatial
memory. The Quarterly Journal of Experimental

Psychology, 54A(2), 397–420. doi:10.1080/02724980
042000174

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010).
Working memory and mathematics: A review of
developmental, individual difference, and cognitive
approaches. Learning and Individual Differences, 20
(2), 110–122. doi:10.1016/j.lindif.2009.10.005

Reuhkala, M. (2001). Mathematical skills in ninth-
graders: Relationship with visuo-spatial abilities and
working memory. Educational Psychology, 21(4),
387–399. doi:10.1080/01443410120090786

Robert, N. D., & LeFevre, J.-A. (2013). Ending up
with less: The role of working memory in solving
simple subtraction problems with positive and
negative answers. Research in Mathematics Education,
15(2), 165–176. doi:10.1080/14794802.2013.797
748

Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., &
Cornet, J.-A. (1992). Images of numbers, or “when
98 is upper left and 6 sky blue”. Cognition, 44, 159–
196. doi:10.1016/0010-0277(92)90053-K

Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003).
Elementary subtraction. Journal of Experimental

Psychology: Learning, Memory & Cognition, 29,
1339–1352. doi:10.1037/0278-7393.29.6.1339

Siegler, R. S., & Shrager, J. (1984). Strategy choices in
addition and subtraction: How do children know
what to do. In C. Sophian (Ed.), Origins of cognitive
skills (pp. 229–293). Hillsdale, NJ: Erlbaum.

Simmons, F. R., Willis, C., & Adams, A.-M. (2012).
Different components of working memory have
different relationships with different mathematical
skills. Journal of Experimental Child Psychology, 111,
139–155. doi:10.1016/j.jecp.2011.08.011

Towse, J. N., & Neil, D. (1998). Analyzing human
random generation behaviour: A review of methods
used and a computer program for describing perform-
ance. Behaviour, Research Methods, Instruments, &

Computers, 30(4), 583–591. doi:10.3758/BF03209475
Trbovich,P.L.,&LeFevre, J.-A. (2003). Phonological and

visual working memory in mental addition.Memory &

Cognition, 31, 738–745. doi:10.3758/BF03196112
Van Dijck, J.-P., & Fias, W. (2011). A working memory

account for spatial–numerical associations. Cognition,
119(1), 114–119. doi:10.1016/j.cognition.2010.12.013

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014, 67 (5) 953

VISUOSPATIAL WORKING MEMORY AND ARITHMETIC



APPENDIX

Addition problems

Retrieval Counting Decomposition

Sum Only

1. 6+2

2. 5+2

3. 5+3

4. 5+4

5. 6+3

6. 7+5

7. 9+7

8. 8+7

9. 8+2

10. 9+3

11. 13+8

12. 14+3

13. 19+4

14. 21+5

15. 23+6

16. 24+3

17. 25+6

18. 25+8

19. 27+4

20. 28+7

Sum Only

1. 7+2

2. 5+2

3. 4+2

4. 8+4

5. 5+3

6. 6+2

7. 8+7

8. 8+5

9. 8+4

10. 9+5

11. 11+8

12. 12+7

13. 17+6

14. 19+9

15. 19+7

16. 21+8

17. 22+7

18. 23+6

19. 28+8

20. 28+9

Sum Only

1. 6+3

2. 5+3

3. 6+4

4. 8+5

5. 6+3

6. 7+5

7. 7+6

8. 8+6

9. 8+7

10. 9+4

11. 16+7

12. 17+9

13. 18+4

14. 19+3

15. 21+6

16. 22+5

17. 22+8

18. 23+6

19. 24+4

20. 26+3

Visuospatial

1. 6+2

2. 5+4

3. 7+4

4. 4+3

5. 5+2

6. 8+5

7. 6+3

8. 7+5

9. 9+8

10. 8+3

11. 12+7

12. 17+3

13. 18+6

14. 19+5

15. 21+6

16. 22+7

17. 26+4

18. 27+8

19. 27+5

20. 29+6

Visuospatial

1. 6+2

2. 7+2

3. 8+3

4. 4+3

5. 9+5

6. 5+3

7. 6+3

8. 7+4

9. 8+2

10. 9+7

11. 12+6

12. 14+5

13. 16+5

14. 18+7

15. 24+4

16. 25+4

17. 25+9

18. 27+6

19. 28+7

20. 28+6

Visuospatial

1. 6+3

2. 5+4

3. 4+3

4. 8+5

5. 6+3

6. 7+6

7. 9+7

8. 7+2

9. 8+3

10. 9+4

11. 13+7

12. 14+5

13. 16+4

14. 17+9

15. 19+7

16. 23+6

17. 24+6

18. 24+7

19. 26+8

20. 27+8

(Continued)

Continued.

Retrieval Counting Decomposition

Central executive

1. 6+2

2. 4+2

3. 9+5

4. 5+4

5. 6+4

6. 6+2

7. 8+7

8. 7+5

9. 9+8

10. 9+4

11. 13+7

12. 15+3

13. 16+3

14. 18+5

15. 19+7

16. 21+7

17. 23+7

18. 28+6

19. 28+7

20. 29+5

Central executive

1. 4+3

2. 6+3

3. 7+2

4. 5+4

5. 6+5

6. 6+2

7. 6+4

8. 8+5

9. 9+7

10. 9+3

11. 11+4

12. 12+5

13. 16+8

14. 19+7

15. 22+7

16. 23+5

17. 24+7

18. 26+6

19. 28+9

20. 28+8

Central executive

1. 6+3

2. 4+3

3. 5+4

4. 8+4

5. 9+5

6. 5+3

7. 7+2

8. 6+2

9. 7+5

10. 9+7

11. 13+6

12. 14+9

13. 18+8

14. 19+6

15. 19+9

16. 21+4

17. 22+7

18. 24+5

19. 27+8

20. 28+8
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