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Abstract

Background: Proteases play an essential part in a variety of biological processes. Besides their importance under healthy
conditions they are also known to have a crucial role in complex diseases like cancer. In recent years, it has been shown that
not only the fragments produced by proteases but also their dynamics, especially ex vivo, can serve as biomarkers. But so
far, only a few approaches were taken to explicitly model the dynamics of proteolysis in the context of mass spectrometry.

Results: We introduce a new concept to model proteolytic processes, the degradation graph. The degradation graph is an
extension of the cleavage graph, a data structure to reconstruct and visualize the proteolytic process. In contrast to previous
approaches we extended the model to incorporate endoproteolytic processes and present a method to construct a
degradation graph from mass spectrometry time series data. Based on a degradation graph and the intensities extracted
from the mass spectra it is possible to estimate reaction rates of the underlying processes. We further suggest a score to rate
different degradation graphs in their ability to explain the observed data. This score is used in an iterative heuristic to
improve the structure of the initially constructed degradation graph.

Conclusion: We show that the proposed method is able to recover all degraded and generated peptides, the underlying
reactions, and the reaction rates of proteolytic processes based on mass spectrometry time series data. We use simulated
and real data to demonstrate that a given process can be reconstructed even in the presence of extensive noise, isobaric
signals and false identifications. While the model is currently only validated on peptide data it is also applicable to proteins,
as long as the necessary time series data can be produced.
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Introduction

Our view of proteases has changed drastically over the last two

decades. Once thought to be only associated with simple protein

degradation processes they are now recognized to play an

important role in a variety of fundamental biological processes

across species [1–3]. Furthermore, also their general importance in

complex diseases such as cancer or HIV was described [4–8] and

they were recognized as possible drug-targets [7,9]. In the last

decade, researchers also began to look more closely into the

dynamics of proteolytic processes. It was found that changing

dynamics of specific protease activity can be used to draw

conclusions about an individual’s health condition [10,11]. In fact,

it was shown that the activity could also be used to distinguish

different types of cancer [12].

Measuring and analyzing the dynamics of proteolytic processes

often relies on array-based systems (see for example [13]), which

have a high sensitivity. But this comes at the expense of high

specificity to a single proteolytic process. In contrast to this we

present a new method, that is able to reconstruct a proteolytic

process and its kinetic parameters from mass spectrometry time

series data. Mass spectrometry has become an essential tool in the

field of proteomics [14] and can be used for the analysis of

complex biochemical events, such as proteolytic processes (for a

good overview see [15]).

The basic idea in these experiments is to incubate peptides (or

proteins) with one ore many proteases and to generate mass

spectra in every chosen time step that reflect snapshots of the

proteolytic process. Figure 1 shows two snapshot spectra of such an

incubation experiment after seven and 24 hours of incubation.

One can clearly see how a large peptide of about 2680 Da

(represented by the large peak to the right in the upper spectrum)

is degraded into smaller fragments (represented by large peaks to

the left in the lower spectrum). The fragments (represented by

peaks in the lower spectrum) are generated by two different

degradation reactions: exo- and endoproteolytic cleavage. During

an exoproteolytic reaction a single amino acid is removed from

one of the free termini of a molecule, while in an endoproteolytic
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reaction the targeted molecule is cleaved at a position between the

N- and C-terminus.

Compared to similar state-of-the art approaches by Yi et al. [16]

and Kluge et al. [17] our contribution to the field is the inclusion

of endoproteolytic degradation while using differential equations

to model the full dynamics of the underlying process. In contrast to

that the work of Yi et al. was only focused on a single proteolytic

process (the degradation of fibrinopeptide A) and the method

presented by Kluge et al. only considered exoproteolytic reactions

and used a statistical model to describe the dynamics, independent

of the degraded molecules.

An example result of our method is shown in Figure 2. Here we

show a degradation graph, a data structure we will introduce later in

detail, illustrating how a small peptide is degraded during several

steps into smaller fragments. The kinetic constants of the

individual reactions are omitted for the sake of clarity. The

workflow of our method - which will be described in more detail in

the remaining part of this paper - is as follows:

N Perform incubation experiment and generate mass spectra at

every chosen time point.

N Create an initial degradation graph from the time series.

N Optimize the degradation graph structure by removing

unlikely reactions and peptides and estimate the kinetic

parameters of the generated model.

The results of our method are the sequences of all intermediate

peptides, the proteolytic reactions that connect those peptides, as

well as the dynamics of all proteolytic events.

In the result section we intensively test our approach on multiple

simulated data sets with varying conditions. It shows a good

performance in recovering the original structure as well as the

underlying reaction rates. We further prove the applicability of our

method to a real data set using a time series of a peptide incubated

with an unknown mixture of urine proteins.

Methods

Biochemical processes (such as proteolysis) can be described by

ordinary differential equations (ODEs). This allows to simulate

and analyze a process and thus to draw conclusions about its

properties, such as steady-states or changes in concentration of its

constituents over time. A simple example for such a system is

Tyson’s cell cycle model [18]. To visualize these ODE systems

oftentimes graphs are used, where nodes are the reactants and

edges between them are the reactions. Note that both represen-

tations (ODE and graph) are equivalent. For modeling and

visualizing proteolytic processes Kluge et al. introduced the cleavage

graph [17] which they used to model exoproteolytic cleavage

reactions. In the following we will extend this concept to also

include endoproteolytic reactions. We call the resulting data

structure degradation graph since it can be used to model all

degradation reactions of a proteolytic process and also allows a

convenient and comprehensible visualization.

Degradation Graph
A proteolytic process where single or multiple peptides are

generated by cutting peptides into smaller fragments can be

modeled as a graph G~(V ,E).

The nodes V correspond to the degraded and generated

peptides and the edges E to the proteolytic reactions. Since

proteolysis is an irreversible reaction under physiological

Figure 1. Degradation of a beta-2-microglobulin fragment observed via Mass Spectrometry. Mass spectra generated during the
degradation of a beta-2-microglobulin fragment by a mixture of urine proteins after 7 (upper) and 24 (lower) hours of incubation. Intensity is given in
percent of maximal peak intensity. In the lower spectrum all fragments were annotated that could be verified by MS/MS identifications. Details of
data acquisition and sample preprocessing are given in the results section. All raw spectra of this time series are shown in the Supporting Information
(Figure S2).
doi:10.1371/journal.pone.0040656.g001
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conditions the edges in the graph are directed from the degraded

to the generated peptides.

As mentioned above, one can distinguish two types of

proteolytic reactions, exoproteolytic reactions, where a single

amino acid is removed from one of the free termini of the peptide,

and endoproteolytic reactions, where the targeted peptide is

cleaved at a position between the N- and C-terminus. For

exoproteolytic reactions we connect two nodes with a directed

edge from node u to v if we can obtain the amino acid sequence of

v by subtracting a single amino acid from the beginning or the end

of the amino acid sequence of u. For endoproteolytic reactions this

is not that easy. Since we need to connect three nodes (the peptide

that is targeted u and the two resulting fragments v,w) we need to

break the idea of one reaction equals one edge in the graph. To

ensure that we still associate the reaction with single edge, we

introduce pseudo-nodes uc, that represent the endoproteolytic

process of cutting the peptide u at a specific position c. The pseudo-

nodes can also be seen as representation of the endoprotease that

cuts the peptide u at position c. We can now connect u to uc and

associate all reaction specific information (e.g., reaction rate) with

this single edge. We further connect uc to v and w with so called

pseudo-edges.

Both reaction types are separately shown in Figure 3. An

example with real peptide sequences and both reaction types is

shown in Figure 2.

Constructing the Graph from Mass Spectrometry Data
In the previous section we defined the degradation graph and its

relation to proteolytic processes. Now we present an approach to

construct this graph based on series of N mass spectra collected at

different time points t1 . . . tN and a seed sequence S which we will

also call base peptide from here on. Based on this input we try to

identify signals in the mass spectra, that represent fragments of S

produced by a proteolytic process. The seed sequence needs to be

provided as input. It can for instance be the sequence of a known

peptide probe that was incubated with an unknown mixture of

proteases or a sequence taken from MS/MS identifications.

We shortly introduce some notation that eases the understand-

ing of the following explanations. Given a node v in the

degradation graph, s vð Þ denotes the amino acid sequence of the

peptide associated with the node v. The length of the amino acid

sequence is given by Ds vð ÞD. s vð Þ a,b½ � with 1ƒaƒbƒDs vð ÞD is the

subsequence of the amino acid sequence from position a to

position b. m vð Þ denotes the mass of the peptide associated with

the node v. If we could identify a signal that corresponds to the

peptide associated with v, we will denote it’s intensity with Im vð Þ tið Þ.
The association between mass and intensity takes into account,

that mass spectrometers measure only mass to charge ratios and

therefore cannot distinguish peptides with equal mass. Therefore

different peptides with equal mass can be associated to the same

intensity value, without counting the signal twice in the later

analysis. The set of all peptide masses in the graph is denoted by

Figure 2. Complex proteolytic reaction visualized as graph. Example protease system acting on a single peptide (SANSNPAMAPRER-
KAGCKNFF) and the resulting degradation products. The shown reactions are all artificial.
doi:10.1371/journal.pone.0040656.g002

Figure 3. Representation of the basic degradation graph
structures. (a) Exoprotease reaction, (b) Endoprotease reaction. See
Figure 2 for an example containing both reaction types.
doi:10.1371/journal.pone.0040656.g003
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M. We further introduce a queue of nodes L, which is empty at the

beginning of the construction.

The construction of the graph is divided into two parts,

verification and extension, which are executed on each of the

input spectra. Before we can execute these steps, we need to

initialize the degradation graph. This is done by adding a node for

the seed sequence to the degradation graph. Afterwards we start

with the verification step for the first spectrum recorded at time

point t0, followed by the extension step. This is repeated for each

of the input spectra. The pseudocode for both parts is shown in the

Supporting Information (Figure S1).

Verification. The first step is the verification of the degra-

dation graph on the new spectrum. We therefore check for each

node in the degradation graph whether we can find a signal that

corresponds to this node in the spectrum. In general, we will

identify signals by peptide mass fingerprinting [19]. Our approach

is described in the Supporting Information (Text S1). Existing

MS/MS identifications [20] are solely used for validation, since

relying only MS/MS identifications during the construction phase

of the algorithm would introduce a bias towards the used

acquisition strategy. Each node v that could be identified in the

spectrum is added to L and annotated with the observed intensity

Im vð Þ tið Þ.
Extension. The extension step is performed on the current

spectrum as long as L is not empty. In each cycle a node u is

removed from L and the following procedure is executed.

Given the node u, we start by removing the N- and C-terminal

amino acid separately from s uð Þ to simulate exoproteolytic

degradation and search for the corresponding signals. If we find

a signal we add the corresponding node v to the graph, annotate it

with the signal intensity Im vð Þ tið Þ, set it’s sequence s vð Þ to either

s uð Þ 2,Ds uð ÞD½ � or s uð Þ 1,Ds uð ÞD{1½ �, and connect the nodes u and v by

an edge pointing from u to v. The generated node v is appended to

the list L.

Subsequently we simulate the endoproteolytic reactions by

splitting the sequence s uð Þ in two parts at each position c with

2vcvDs uð ÞD{1. If we can identify both fragments of such a split

in the mass spectrum, we add a pseudo-node uc, annotated with

the sequence s uð Þ and the cutting position c to the graph and

connect it to the degraded node u. We then add nodes v and w for

each of the fragments to the graph, annotate it with the

corresponding signal intensities (Im vð Þ tið Þ, Im wð Þ tið Þ), the sequences

(s uð Þ 1,c½ � and s uð Þ cz1,Ds uð ÞD½ �), and connect it to the pseudo-node

uc. The generated nodes v,w are appended to the list L.

Estimation of Kinetic Parameters
After we generated the model representing the proteolytic

process, i.e., the degradation graph, the next task is to estimate the

kinetic parameters of the underlying process. To achieve this we

first generate a system of ordinary differential equations (ODE)

based on a degradation graph as described in the following section.

For this system we estimate the kinetic parameters based on the

observed signal intensities.

Generating an ODE Model for the degradation

graph. Following the ideas presented by Yi et al. [16] the

mathematical model is derived by the law of mass action and each

proteolytic reaction is modeled as a first-order reaction, i.e., the

rate of the reaction depends on the concentration of only one

reactant. In case of proteolytic reactions, this reactant is the

protein or peptide that is degraded. We neglect side effects like

saturation of the degradation products but incorporating these

would be possible by an extension of the ODE system. We write

the rate equations for an exoprotease reaction, where u is degraded

to v as follows

dCu tð Þ
dt

~{kuvCu tð Þ

dCv tð Þ
dt

~kuvCu tð Þ

where Cu tð Þ and Cv tð Þ denote the concentration of peptide u and v

at time t. kuv is the kinetic rate constant for the reaction.

Endoprotease reactions are represented in the same manner with

the slight difference that we need to model both degraded

products.

dCu tð Þ
dt

~{kuvwCu tð Þ

dCv tð Þ
dt

~kuvwCu tð Þ

dCw tð Þ
dt

~kuvwCu tð Þ

This transformation can be done for each reaction and each

reactant in the degradation graph. As an example we transformed

the degradation graph shown in Figure 2 into the following system

of differential equations.

dCa tð Þ
dt

~{kabCa tð Þ{kacd Ca tð Þ dCb tð Þ
dt

~kabCa tð Þ
Figure 4. Degradation graph of the degradation of fibrinopep-
tide A (FPA) as reported in [16].
doi:10.1371/journal.pone.0040656.g004
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dCc tð Þ
dt

~kacd Ca tð Þ{kcf Cc tð Þ dCd tð Þ
dt

~kacd Ca tð Þ{kdeCd tð Þ

dCe tð Þ
dt

~kdeCd tð Þ dCf tð Þ
dt

~kcf Cc tð Þ

Since the degradation process as well as the mass spectrometry

measurements happen ex-vivo, the base peptide (Ca tð Þ in the above

example) has a fixed starting concentration and there will be no

further production of the base peptide. In settings where this does not

hold, one would need to explicitly model the generation of the base

peptide into the equations (e.g., by a constant generation rate).

Transforming peptide concentrations to signal

intensities. The presented ODE model is based on concentra-

tions of peptides but with a mass spectrometer we can only observe

intensities associated with a specific mass. The obvious question is

what kind of relationship exists for a single peptide between its

concentration and the intensity observed with the mass spectrometer.

Moreover one cannot guarantee that two peptides with equal

concentration will have the same intensity in the mass spectrometer.

Different studies [21,22] have shown that for a single peptide a

linear relationship between intensity and concentration is a

reasonable assumption. Based on this we introduced a linear

transformation from the model concentrations to the predicted

signal intensities.

ÎIm tð Þ~fiCi tð Þ,

where ÎIm tð Þ is the intensity associated with the mass m at time

point t, m is the mass of the peptide i, fi is a peptide specific factor,

and Ci tð Þ the concentration, computed by the model, for peptide i

at time point t. Yi et al. [16] already used a similar transformation

successfully in their study. This transformation implicitly solves

also the second problem of comparability between two observed

intensities. Since each observed intensity will be transformed

individually into the common concentration domain, the resulting

concentrations can be compared afterwards. This transformation

can also be used to compensate for systematic effects that occur in

each measurement, e.g., quantification errors or incomplete

ionization.

Another problem is that it can happen that two or more different

peptides have the same or a nearly identical mass. These isobaric

peptides cannot be distinguished in a mass spectrum. We therefore

transform them into a single intensity value. For every observed

mass m, we compute a linear combination of all peptide

concentrations, of peptides with a mass equal (or nearly equal) to m.

ÎIm tð Þ~
X

i[P mð Þ
fiCi tð Þ,

where P mð Þ is the set of all peptides i which have a mass of m.

Estimating reaction rates. To estimate kinetic parameters

we first generated an ODE model based on a degradation graph as

described above. We now need to find the optimal set of model

parameters (ki) as well as transformation parameters (fi), so that

the difference between the computed model intensities ÎI and the

observed intensities I is minimal. Following standard practice we

use a weighted sum of least squares differences between observed

and model intensities as an error measure.

min
X
m[M

XN

i~0

ÎIm tið Þ{Im tið Þ
� �2

w m,ið Þ

 ! !

where M is the set of all observed masses, Im tið Þ is the intensity

Figure 5. Effect of the different signal variability settings on the simulated signal intensities. Shown are the extracted signal intensities
for two peptides (a) DSGEGDFLAEGGGVR (left) and (b) EGDFLAEGGGVR (right) of the fibrinopeptide A system shown in Figure 4 with increasing signal
variability values.
doi:10.1371/journal.pone.0040656.g005
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observed for mass m at time point ti, ÎIm tið Þ is intensity predicted

by ODE system for the mass m at time point ti, and w is a

weighting function. The weighting function can for instance be

used to use relative instead of absolute deviations, i.e.,

w m,ið Þ~Im tið Þ:

This is used to reduce the effect of different intensities being on

different orders of magnitude. This minimization problem can

theoretically be solved by any available optimization technique.

After testing different available techniques we decided to use

POEM, a Matlab-based version of BioPARKIN [23,24], to estimate

the model parameters as well as the transformation parameters. We

further use POEM to estimate the initial concentration of the base

peptide. POEM is based on damped Gauss-Newton techniques for

solving the above optimization problem. Lack of robustness of

damped Gauss-Newton techniques as observed often in model

discrimination contexts, see [25], can be overcome by using

dimension reduction in parameter space [26].

How to choose initial values. As the prior knowledge on the

modeled system is very limited good initial values for the

estimation of the model parameters are hard to find. We therefore

chose the initial values based on the following scheme: For each

node the edge (i.e., proteolytic reaction) is selected, which leads on

the shortest path to the root node. For the corresponding reaction

rate (ki) we assign an initial value of 1:0. For all other incoming

reactions the initial value is set to a value of 1|10{6. All

transformation parameters (fi) are set to 1:0.

Evaluation and Optimization of the Degradation Graph
Structure

The above presented approach to construct the degradation

graph is greedy, i.e., it assumes that every signal in a spectrum that

could match a subsequence of the base peptide is part of the

Figure 6. Effect of the signal variability on the score S. Effect of the variability of the signal with respect to the intensity on the score S
computed by our method. Data was generated based on the fibrinopeptide A system shown in Figure 4.
doi:10.1371/journal.pone.0040656.g006
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proteolytic process and that every possible reaction occurred. This

assumption is not always true. The signals could also originate

from peptides with equal or at least similar masses as we have

already seen in the previous section. But these peptides do not

necessarily take part in the proteolytic reactions, that we want to

model. We will call such peptides decoy peptides. Alternatively we

may have multiple reactions to explain the formation of a peptide

where only one is true. Hence, the degradation graph may contain

peptides or reactions that did not occur in the actual underlying

proteolytic process. To account for this we present a method to

rank different subgraphs of an initial degradation graph with

respect to their ability to explain observed data. Followed by a

heuristic approach to construct a series of smaller models from the

initially generated degradation graph without the need to compute

every possible subgraph.

Evaluating different models. To find the degradation

graph that optimally explains the observed data it is necessary to

rank the different graphs. Here we describe a scoring scheme that

can be used to rank the generated models.

To ease the following explanations we will introduce some

further notation. Given a degradation graph G, a subgraph G’ is

defined as G’~ V ’,E’ð Þ, where V ’(V and E’(E. We also

require that G’ is connected, i.e., for all pairs of nodes u,v[V ’
exists a path of length n in E’n that connects u and v. The

subgraph G’ also defines M ’(M as the subset of all masses m

and their associated intensities that are explained by the

subgraph M ’~ m vð Þ,v[V ’f g.
The proposed score consists of two components. The first score

component SC is the average Pearson correlation of the intensities

predicted by the model (with estimated reaction parameters) and

Figure 7. Effect of the signal variability on the the relative error of the estimated parameters. The quality is given in terms of the relative

deviation of the estimated from the real parameter
preal{pestj j

preal

� �
. Data was generated based on the fibrinopeptide A system shown in Figure 4. The

reaction parameters are numbered in the order of degradation (e.g., FPA ? FPA-1~k1) shown in Figure 4.
doi:10.1371/journal.pone.0040656.g007
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the actual observed data. This component should reflect the

goodness of fit between the measured intensities and the computed

model intensities. We compute for each explained mass m[M ’ the

Pearson correlation rm between the observed intensity values and

the predicted values from the model. rm~

1

N

XN

i~1
ÎIm tið Þ{�̂

IÎII
� �

Im tið Þ{�IIð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

ÎIm tið Þ{�̂
IÎII

� �2 1

N

XN

i~1

Im tið Þ{�IIð Þ2
vuut

Figure 8. Endothelin-1 test system. Degradation of endothelin-1 by multiple artificial endo- and exoproteases. (a) The mapping of indices to
sequences. (b) The degradation graph. package.
doi:10.1371/journal.pone.0040656.g008

Figure 9. Angiotensin test system. Degradation of angiotensin by multiple artificial endo- and exoproteases. (a) The mapping of indices to
sequences. (b) The degradation graph.
doi:10.1371/journal.pone.0040656.g009
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.

�̂
IÎII~

1

N

XN

i~1

ÎIm tið Þ,�II~
1

N

XN

i~1

Im tið Þ:

We then use the mean of all Pearson correlation values as

measure for the goodness of fit.

SC~
1

DM ’D

X
m[M ’

rm:

The second component of the score SV is the part of the

standard deviation of the original degradation graph, that is

conserved by the specific subgraph.

SV ~

P
m[M ’ smP
m[M ’ sm

where sm is the standard deviation of the signal corresponding to

the mass m. SV reflects the ability of the subgraph to explain the

important parts of the originally collected signals.

To compute a single score S from these two components we

build the weighted sum of both scores.

S~wCSCzwV SV

To determine good weights wC and wV we carried out several

experiments on simulated data. A weight of wC~0:9 for the

correlation score SC and wV ~0:1 for the variability score SV

showed the best separation of the correctly and wrongly identified

models. For datasets with low quality (e.g., due to high amounts of

noise or too few sampling points) weights of wC~0:8 and wV ~0:2
have shown a good performance. For such datasets we expect a

less reliable fit for the time series and therefore decreased the

weighting factor for the quality of the fit.

Heuristic search for the optimal graph. Constructing all

possible subgraphs, generate the associated ODE system, and

estimating the corresponding reaction and transformation param-

eters is possible for small graphs. With increasing size in terms of

number of nodes and reactions, estimating the reaction and

transformation parameters for all subgraphs gets more computa-

tionally intensive. If we want to generate each possible combina-

tion of reactions we would get 2DED possible subgraphs. Even if we

filter out some of the subgraphs (e.g., those who do not contain the

root node or are not connected) we would still have to consider

exponentially many subgraphs. For each of these subgraphs we

would then need to derive the associated ODE system and

estimate the reaction and transition parameters.

To speed up this procedure we present a heuristic approach.

Preliminary tests have shown that the presented graph score

improves, if the structure of the degradation graph gets closer to

the original one. This can be explained based on the composition

of the score. The first component reflects the goodness of fit

between model and observed data. This should improve if we

remove peptides and reactions, that do not belong to underlying

process. The second component reflects the variability of the

signals. If we remove only nodes that do not participate in the

Figure 10. Somatostatin-28 test system. Degradation of somatostatin-28 by multiple artificial endo- and exoproteases. (a) The mapping of
indices to sequences. (b) The degradation graph. package.
doi:10.1371/journal.pone.0040656.g010
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reaction, i.e., whose variability is low compared to the signals of

peptides which are degraded and produced, this score component

should still be near to the optimal value.

Based on the construction algorithm we know that the identified

degradation graph is maximal in the sense that it contains all

signals that were produced by the assumed process and possibly

also parts that do not belong to the process. To find the optimal

subgraph we start by removing all terminal reactions of the graph

(i.e., reactions that produce at least one leaf) separately. For each

of these subgraphs we estimate the kinetic parameters as described

earlier. Subsequently we rate all subgraphs according to the

criteria presented above. Then we take the best N models and

again remove all leafs separately. We continue with this procedure

as long as we can find at least one graph whose score is under the

top N of all so far computed subgraphs and that was not trimmed

in a previous iteration.

With this approach we can drastically reduce the amount of

parameter optimizations that need to be carried out by still finding

the originally embedded graph.

Preliminary tests have shown that setting N to either 2 or 3 is

sufficient to effectively bound the number of unnecessary model

evaluations while still identifying the original degradation graph.

Run-time Considerations
The above presented combination of degradation graph

construction, parameter estimation and structure optimization

requires a considerable amount of time, if the initial degradation

graph is large. Therefore we now describe an approximation of the

running time in the worst case. The run time of the initial

degradation graph construction is determined by the number of

verifications needed. Under the assumption that we would

construct the complete degradation graph, i.e., all peptides are

degraded in every possible way, one would create a degradation

graph, which contains all possible substrings of the initial peptide

sequence. Since we would need to verify each of this substrings

once, the running time is in the worst case bounded by the

maximal number of possible substrings of the initial peptide

sequence. Given a seed sequence of length n we can construct at

most
n n{1ð Þ

2
possible fragments, which could be checked in the

spectrum. If we now analyze N spectra we will have at most

N
n n{1ð Þ

2

� �
verifications.

The complexity of the parameter estimation procedure can be

approximated by 2N DED3, where N is the number of time points,

i.e., the number of evaluated mass spectra, and DED is the number

of unknown parameters, i.e., the number of edges in the graph

minus the number of edges connecting pseudo- and real nodes.

Given this the time required for the parameter estimation will

decrease with the subgraphs getting smaller. Under the assump-

tion that even the proposed heuristic could require the compu-

tation of each subgraph, we would need to trigger 2DED

optimizations in the worst case.

Results

To evaluate the ability of the presented approach we have to

consider two parts: (1) reconstruction of the correct sequence of

proteolytic events and (2) estimation of the reaction rates. The

influence of different parameters like the complexity of the

degradation graph or the variations of the signals in the mass

spectrometer have to be assessed. This can only be done if enough

data is available in terms of number of samples in varying quality.

Both is not always given.

To overcome this problem we designed a series of simulated

mass spectrometry data sets. The mass spectra were simulated

using the software MSSimulator [27], a comprehensive simulator

for mass spectrometry data. A detailed description of the software

is given by Bielow et al. [27]. MSSimulator generates mass spectra

based on a set of amino acid sequences and a configuration file,

which contains all parameters necessary for the simulation, like

ionization type or instrument resolution. In the following

experiments all configuration parameters are hold fix, expect the

signal variability. The signal variability is an intensity dependent

deviation of the signal intensity of a single peptide signal, i.e., if we

set an intensity noise value of 10% of the total signal intensity (area

under the curve of the simulated peak) will vary with a standard

deviation of 10% of the original signal intensity.

The time series for the simulated proteolytic process is

generated based on the associated ODE system. The produced

peptide concentrations are combined with the peptide sequences

and are then put into MSSimulator.

All input and configuration files can be found in the Supporting

Information (File S1, File S2). All generated mass spectra are post-

Table 1. Parameter estimation error for the endothelin 1
system.

Parameter preal pest Dpreal{pest D Dpreal {pest D
preal

kjk 1:30 0:949 0:351 0:270

kij 1:90 2:496 0:596 0:314

khi 2:10 2:369 0:269 0:128

kbh 1:05 0:955 0:095 0:091

kabc 3:50 5:025 1:525 0:436

kfg 2:30 1:351 0:949 0:414

kcd 4:30 4:284 0:016 0:004

kef 0:30 0:380 0:080 0:265

kde 2:10 2:015 0:085 0:040

Relative and absolute deviations of the estimated parameter values for the
endothelin 1 system. The indices for the parameter names are taken from
Figure 8. preal denotes the parameter values used for the initial simulation and
pest the value estimated by the presented approach. The last two columns
contain the absolute and the relative deviation of the estimated from the real
parameter value.
doi:10.1371/journal.pone.0040656.t001

Table 2. Parameter estimation error for the angiotensin
system.

Parameter preal pest Dpreal{pest D Dpreal {pest D
preal

kfh 0:50 0:498 0:002 0:004

kabc 3:20 3:733 0:533 0:167

kafg 1:80 2:226 0:426 0:236

kde 1:05 1:111 0:061 0:058

khi 1:30 1:225 0:076 0:058

kcd 1:50 1:320 0:180 0:120

Relative and absolute deviations of the estimated parameter values for the
angiotensin system. The indices for the parameter names are taken from
Figure 9. preal denotes the parameter values used for the initial simulation and
pest the value estimated by the presented approach. The last two columns
contain the absolute and the relative deviation of the estimated from the real
parameter value.
doi:10.1371/journal.pone.0040656.t002
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processed by the OpenMS PeakPicker [28] to transform the raw

spectra into manageable pairs of mass-to-charge ratio and

intensity.

We evaluate our approach on four different simulated models

and one real data set. The first one is the degradation of

fibrinopeptide A presented in [16], which is used to show the

general performance under varying noise conditions. The later

three are artificial systems constructed to show the applicability of

the method to complex proteolytic processes. The real data set is a

series of mass spectra collected during the incubation of a peptide

probe with urine proteins.

Study 1 (Simulated Data): Validation Using the ex vivo
Degradation of Fibrinopeptide A (FPA)

To demonstrate that our approach is able to recover the correct

sequence of proteolytic events, i.e., the degradation graph and the

corresponding kinetic parameters, we simulated a data set based

on the fibrinopeptide A (FPA) (Swiss-Prot:P02671[20–35]) degra-

dation, as described in [16]. It consists of a series of exoproteolytic

cuts at the N-terminus of FPA. The corresponding degradation

graph is shown in Figure 4. For the proteolytic reactions we used a

slightly modified version of the kinetic parameters as published in

[16]. The modified parameters can be found in the ODE

formulation of the Supporting Information (File S1).

The proteolytic system was simulated over a time of 5 h. We

generated 10 sampling points for the time series, five during the

first hour of the incubation and the other five distributed equally

over the remaining 4 hours. For these 10 time points we generated

five sets of mass spectra with increasing signal variability of 5, 10,

20, 30, and 40% of the original signal intensity. The impact of the

signal variability on the time course of the peptide intensities is

shown in Figure 5. Thereafter we applied our new method to

estimate the model structure as well as the kinetic parameters for

each of the five time series.

Our method succeeded to reconstruct the original degradation

graph as it is shown in Figure 4. The scores computed for the

reconstructed systems show a clear dependency on the noise added

during the mass spectra simulation (see Figure 6). The relative

error for the individual parameters of the system in relation to

noise on the simulated data is shown in Figure 7. These

experiments show that even in the presence of extensive noise a

valid reconstruction of the original process is possible. Also the

estimated parameter values have an acceptable agreement with

the original parameters. With a signal variability of 30% the

quality of the estimated parameters starts to decrease drastically.

This could possibly be mitigated by increasing the number of

sampling points.

Study 2 (Simulated Data): Complex Degradation of
Human Plasma Peptides

To test our method in a complex setting where also

endoproteolytic reactions occur, we simulated the degradation

of several human plasma peptides (and peptide fragments) by

multiple artificial endo- and exoproteases. The targeted peptides

were fragments of endothelin 1 (Swiss-Prot:P05305[53–73]),

angiotensin (Swiss-Prot:P01019[34–43]), and somatostatin-28

(Swiss-Prot:P61278[89–116]). The full set of reactions and the

corresponding peptide sequences are shown in Figures 8, 9, and

10.

All three systems were again simulated over a time of 5 h. We

generated 15 sampling points from the time series. More sampling

points were generated in the first hour of each time series, since

during this time the systems change most. For all time points we

generated mass spectra with a signal variability of 20%. During the

mass spectrometry simulation of the systems we added decoy

peptides that have masses similar to possible fragments of the base

peptides. Therefore we also applied our method to iteratively

optimize the structure of the degradation graph.

Our method generally succeeded to reconstruct the originally

simulated degradation graphs. In case of the angiotensin system

the peptide (e) was misinterpreted as IHPFH. Since both terminal

amino acids of its predecessor (Leucin and Isoleucin) have equal

mass they cannot be distinguished by the mass spectrometer hence

both solutions are equally good.

For all three systems the estimated parameters in comparison to

the original parameters are shown in Tables 1, 2, and 3. In

general, the recovered parameters are quite well estimated. The

average relative deviation between the estimated and the real

parameters is between 10 and 20% for the different experiments. It

can be observed that the largest errors occur towards the end of

the degradation process (e.g., kef for the somatostatin 28 system).

This can be due to the late formation of the later products and

with this the lack of enough data points to effectively estimate the

reaction parameters. An extension of the sampling range beyond

5 h or an increased sampling rate could possibly solve this issue.

Figure 11 shows the extracted intensities of two characteristic

somatostatin-28 fragments compared with predicted model

intensities. As one can see the predicted model intensities and

the simulated intensities show a good agreement in their dynamic

behavior.

Study 3 (Real Data): Validation on MALDI Time Series
Data

To demonstrate the applicability of our method to experimental

data, we analyzed a data set where a fragment of beta-2-

microglobulin (Swiss-Prot:P61769[77–97]) was incubated with

different urine proteins. Manual inspection of the mass spectra

combined with the analysis of MS/MS spectra lead to the

assumption, that four endoproteolytic reactions at positions 7–10

Table 3. Parameter estimation error for the somatostatin 28
system.

Parameter preal pest Dpreal{pest D Dpreal {pest D
preal

kde 0:70 0:719 0:019 0:027

kmn 2:80 3:125 0:325 0:116

klm 1:20 1:145 0:055 0:046

kcl 3:10 3:312 0:212 0:068

kjk 2:40 1:998 0:402 0:167

kij 1:60 1:951 0:351 0:219

kef 1:24 2:032 0:792 0:639

kbd 3:20 2:648 0:552 0:172

kbhi 3:40 2:158 1:242 0:365

kabc 4:3 3:760 0:540 0:126

kfg 2:54 0:940 1:600 0:630

Relative and absolute deviations of the estimated parameter values for the
somatostatin 28 system. The indices for the parameter names are taken from
Figure 10. preal denotes the parameter values used for the initial simulation and
pest the value estimated by the presented approach. The last two columns
contain the absolute and the relative deviation of the estimated from the real
parameter value.
doi:10.1371/journal.pone.0040656.t003
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occurred. We applied the presented method to the dataset to

validate this assumption.

The mass spectra for two time points (t = 7 h and t = 24 h) are

shown in Figure 1. In the mass spectrum for t = 24 h the peaks for

the fragments generated by the four endoproteolytic reactions as

well as the base peptide are annotated. A figure showing all mass

spectra is included in the Supporting Information (Figure S2).

Data acquisition and preprocessing. For the immobiliza-

tion of urine proteins from haemolytic urine of renal transplan-

tation patients CNBr-activated SepharosebeadsH 6 MB were used.

The SepharosebeadsH were incubated in 0.1 M hydrochloric acid

(HCl) on a mixer (Horizontal Shaker, Rotator Drive STR4 Stuart

Scientific, Redhill, England) for 30 min and washed with HPLC-

grade water. The immobilization of urine proteins onto the

SepharosebeadsH was done in coupling-buffer (100 mM

NaHCO3, 500 mM NaCl, pH 8:3) during an incubation period

of 2 h on a mixer. Per preparation 50 ml urine and 30 ml
SepharosebeadsH were used. After immobilization the Sephar-

osebeadsH were washed with HPCL-grade water. Free binding

capacities were saturated by over night incubation at 4uC in

blocking-buffer (100 mM NaHCO3, 500 mM NaCl, 0:2 M
Glycin, pH 8:3). Afterwards the blocking-buffer was removed by

washing with HPLC-grade water repeatedly.

Figure 11. Intensity course for different fragments of the somatostatin-28 test system. Shown is the intensity course of two peptide
fragments compared with the predicted model intensities for the best somatostatin-28 degradation graph.
doi:10.1371/journal.pone.0040656.g011

Figure 12. Initial degradation graph for the beta-2-microglobulin fragment estimated from real data. Shown is the degradation graph
for the beta-2-microglobulin fragment which was initially estimated from a MALDI time series. (a) The mapping of indices to sequences. (b) The initial
degradation graph. The dashed edges and nodes represent those reactions, that were not validated manually.
doi:10.1371/journal.pone.0040656.g012
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Incubation of immobilized urine proteins took place in sodium

acetate buffer at pH 4:9 and was started by addition of the beta-2-

microglobulin fragment to the immobilized proteins with a final

concentration of 10{4M in a reaction volume of 50 ml. At nine

distinct time points aliquots were taken from the reaction mixture

and diluted in a ratio of 1 : 10 in 0:2% (v/v) formic acid (Fluka/

Sigma-Aldrich, Steinheim, Germany) for MALDI-TOF/TOF

analysis on a 4700 Proteomics Analyzer (Applied Biosystems).

The distinct time points were after 0, 10, 20, and 30 minutes, and

1, 2, 4, 7, and 24 hours.

All mass spectra were preprocessed as described in the

simulation studies. To account for the variability of the overall

intensity between different mass spectra we applied a customized

normalization strategy to the intensities of the collected signals,

which is described in detail in the Supporting Information (Text

S2).

Results
The preprocessed spectra were analyzed by our method to

identify the optimal degradation graph for the given mass spectra.

The initially constructed degradation graph contains all four

manually confirmed endoproteolytic cuts as well as four addition-

ally not manually annotated exoproteolytic and one additional

endoproteolytic cut. The complete degradation graph is shown in

Figure 12. The unvalidated proteolytic reactions and fragments

are represented as dashed nodes and lines.

It can further be seen from Figure 12 that the fragments

generated by the validated endoproteolytic cuts are interconnected

by exoproteolytic reactions. Although these reactions are possible,

they are very unlikely and hence should be removed during the

optimization. To reflect this the previously described selection of

initial values was applied. Due to the lack of sampling points for

the actual reactions, which took place between the last two

sampling points, we have chosen the low quality weighting factors

for this analysis (wC~0:8 and wV~0:2).

Optimizing the degradation graph structure results in a list of

subgraphs ranked by their scores. The scores varied widely with

the different generated structures. A figure showing the develop-

ment of the score is included in the Supporting Information

(Figure S3). Since the correct solution is unknown, we need to

inspect the list and the different proposed solutions. As expected,

based on the manual validation (see above), the degradation graph

with the highest score contains the four endoproteolytic cuts at

positions 7{10. The unvalidated side reactions (see the dashed

nodes and edges in Figure 12) were mostly removed, just two

exoproteolytic reactions (fragment i to g and g to d) are still

included, but have an estimated reaction rate of 1|10{6.

Although these reactions are still included in the degradation

graph they have effectively no influence on the system and thereby

can be neglected.

Figure 13 shows the observed and the predicted intensities for

a subset of the peptide fragments of the degradation graph with

the best score. The time courses of all peptides are shown in the

Supporting Information (Figure S4). It can be seen that the

measured intensities not always agree with the predicted intensity

course, but they seem to show a comparable behavior. More

time points especially in the time from 7 to 24 hours and an

improved quantification (e.g., via a spiked in control sample)

could further improve the results.

Conclusion
In this paper we presented a new method to model any

proteolytic process as a degradation graph including an algorithm

to construct the degradation graph based on mass spectrometry

time series data. The degradation graph can easily be translated

into a system of ordinary differential equations, which can be used

to estimate the kinetic parameters of the proteolytic process. We

further proposed an approach to optimize the initially constructed

graph in the presence of decoy and overlapping signals. It is based

on a score, that is used to rank the optimized and the original

Figure 13. Intensity course for different fragments of the manually validated degradation graph. Intensity course for different fragments
of the manually validated degradation graph. See text for more details.
doi:10.1371/journal.pone.0040656.g013
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degradation graphs in their ability to explain the actually observed

data. Using simulated data we have shown that our approach is

able to compute good estimates for the kinetic parameters of the

ODE systems even in the presence of noise and decoy signals.

With a careful preparation of the samples using accepted standard

operating procedures [29] the variability of the mass spectrometry

data is below the observed boundary of the presented method.

Applied to real data our approach reconstructed manually

validated endoproteolytic reactions and removed unvalidated

reactions and peptides from the graph.

We are aware of other biochemical approaches that give a

much more robust and exact estimate for the reaction rates, but

most of these methods rely on a much more time consuming

measurement of the reactants and their concentration and, more

importantly, often require prior knowledge of all reactants, which

is not necessary for our method.

Applications for this method can be to identify and characterize

unknown proteases and the estimated reaction kinetics can

possibly be used to classify between different sample categories

as it was done in [17]. With the ability to handle also false

identifications the method can even be used in complex samples.

Future directions are an extensive validation of the proposed

approach on real data. Another by now unsolved issue is the

handling of unobserved peptides, i.e., peptides that participate in

the reactions, but are not observable in the mass spectra. This can

be due to different reasons e.g., the peptide cannot be ionized by

the mass spectrometer or the degradation process is so fast, that

the generated peptide is degraded before it can be measured. This

problem can be handled by a modification of the construction

algorithm for the degradation graph, as long as a downstream

peptide is again observable. Also the handling of more than one

seed sequence would be favorable. Finally a robust integration of

MS/MS identifications into the method could further improve its

performance. This could be done in two ways: One could use MS/

MS identifications during the initial construction of the degrada-

tion graph in combination with the already used PMF approach,

as an additional and more reliable way to identify possible

fragments of the peptide probe. Furthermore one could integrate

the MS/MS identification and its score into the scoring function

by penalizing the removal of highly scored identifications.

The proposed score could also be improved in future

development. The approach would benefit from a score that does

not require specific scaling parameters for the different compo-

nents. It would remove the step of optimizing the scaling

parameters. First experiments using a scaled least-squares residual

were carried out on simulated data sets. Those have shown

promising but not yet comparable results.

The presented method is available on request. The whole

approach is integrated into the proteomics.net platform [30]. The

estimation procedure requires POEM which is available, for

academic use, on request from the Computational Systems

Biology Group, Konrad-Zuse-Zentrum für Informationstechnik

Berlin (ZIB) (http://www.zib.de/en/numerik/csb.html).
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