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Abstract: This paper presents experimental results of both quasi-static compression and low-velocity
impact behavior for tri-axial bio-composite structural panels using a spherical load head. Panels were
made having different core and face configurations. The results showed that panels made having
either carbon fiber fabric composite faces or a foam-filled core had significantly improved impact
and compressive performance over panels without either. Different localized impact responses were
observed based on the location of the compression or impact relative to the tri-axial structural core;
the core with a smaller structural element had better impact performance. Furthermore, during the
early contact phase for both quasi-static compression and low-velocity impact tests, the panels with
the same configuration had similar load-displacement responses. The experimental results show basic
compression data could be used for the future design and optimization of tri-axial bio-composite
structural panels for potential impact applications.

Keywords: low-velocity impact; quasi-static compression; bio-composite laminate material; energy
absorption; carbon fiber fabric faces; foam core; isogrid core

1. Introduction

Structural composite panels are generally assembled using two stiff faces bonded to a lightweight
structural core. Specific configurations are engineered for strength, stiffness, or energy absorption
characteristics for many applications used in buildings, transportation, aircraft, marine, etc. [1–4].
There are many core structural options (e.g., honeycomb, foam, corrugated materials, trusses, grids,
lattices, etc.). Each type has its own unique characteristics that can be used to provide optimum
performance for different applications. Recently, an efficient interlocking grid system has been
developed. It has one set of linear ribs with single slots from one edge for part of the rib’s width, for the
other set of linear ribs, they have single or double slots from one or both edges to create an interlocking
grid system (Figure 1) [5]. With this system, it is possible to modify the construction to obtain various
grid patterns such as square, rectangular, triangular, hexagonal, or mixed structures [6]. As the number
of linear rib directions is increased, core shear stress resistance is improved for multidirectional loadings.
Researchers have shown that panels with structural core ribs aligned 60 degrees apart had better
mechanical performance than a honeycomb structure [7]. However, there are few studies regarding
impact damage investigations, so additional analyses are needed to continue the development of this
type of structure using isogrid core sandwich structures.
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Figure 1. Various designs and configurations for tri-axial engineered bio-composite panels, (a) interlocked 
tri-axial structure; (b) structural core without foam or with foam and (c) tri-axial composite panels 
with various configurations. 

Low-velocity impact can cause different types of damage and significantly affect the carrying 
capacity of structures. For example, in the aircraft industry, impact strength/resistance of exposed 
components must be sufficiently robust to prevent catastrophic failure of the structure [8]. Most of 
the previous low-velocity impact research has focused on foam or honeycomb structural panels. 
Schubel et al. performed low-velocity impact tests on sandwich structures with carbon fabric/epoxy 
laminates faces and polyurethane foam core material [9]. They analyzed the impact dynamic behavior 
using analytical and finite element model analyses to determine their effectiveness in predicting the 
impact behavior of the sandwich panel. Wang investigated the impact behavior and energy 
absorption of honeycomb sandwich panels [10]. The honeycomb cell-wall thickness and length, core 
thickness, and materials were all input factors and analyzed for their influence on panel performance. 
The results showed the thickness and length of honeycomb cell-wall had a significant effect on its 
impact behavior. However, different types of structures exhibited different impact behaviors, thus 
the results were limited to the specific structural panel being studied. Recently, the isogrid-
stiffened/syntactic-foam core sandwich structure has been investigated by Li et al. [11]. The results 
showed that the design and configuration significantly influenced the impact behavior, and the 
isogrid triangular cells within the foam showed better impact capacity than just the laminated 
composite structure without foam. Additionally, the raw material and structural configuration of 
structural composite panels had significant effects on the impact behavior and damage [9–11]. 
However, there is no literature where the isogrid structural composites were made from bio-based 
material with an interlocking isogrid structure.  

At the USDA, Forest Products Laboratory (FPL), new research is being conducted to develop 
bio-composite materials to enhance performance for various engineering applications including 
tactical shelters, packaging, building materials, and air pallets [6,12–22]. High stiffness characteristics 
were the primary consideration for performance. A phenolic laminated paper made from wood fibers 
was used for the tri-axial interlocked core and faces of a sandwich panel. In the initial study, both 
static and dynamic mechanical behavior for these tri-axial wood-fiber-based composite panels was 
investigated using flatwise and edgewise compression tests, four-point bending static, and fatigue 
tests [6,12,13]. The results showed that these structural panels have the potential to provide good 
mechanical performance for various engineering applications. However, impact resistance, which 
has not been investigated, is considered a critical design parameter for some applications. 

This paper investigates the impact behavior of wood-fiber-based tri-axial core composite 
sandwich panels with different core/face configurations using quasi-static compression tests and low-
velocity impact tests. The energy absorptions and contact loads of panels were analyzed through 
different materials, design configurations, and test parameters. 

Figure 1. Various designs and configurations for tri-axial engineered bio-composite panels,
(a) interlocked tri-axial structure; (b) structural core without foam or with foam and (c) tri-axial
composite panels with various configurations.

Low-velocity impact can cause different types of damage and significantly affect the carrying
capacity of structures. For example, in the aircraft industry, impact strength/resistance of exposed
components must be sufficiently robust to prevent catastrophic failure of the structure [8]. Most of
the previous low-velocity impact research has focused on foam or honeycomb structural panels.
Schubel et al. performed low-velocity impact tests on sandwich structures with carbon fabric/epoxy
laminates faces and polyurethane foam core material [9]. They analyzed the impact dynamic behavior
using analytical and finite element model analyses to determine their effectiveness in predicting the
impact behavior of the sandwich panel. Wang investigated the impact behavior and energy absorption
of honeycomb sandwich panels [10]. The honeycomb cell-wall thickness and length, core thickness,
and materials were all input factors and analyzed for their influence on panel performance. The results
showed the thickness and length of honeycomb cell-wall had a significant effect on its impact behavior.
However, different types of structures exhibited different impact behaviors, thus the results were
limited to the specific structural panel being studied. Recently, the isogrid-stiffened/syntactic-foam
core sandwich structure has been investigated by Li et al. [11]. The results showed that the design
and configuration significantly influenced the impact behavior, and the isogrid triangular cells
within the foam showed better impact capacity than just the laminated composite structure without
foam. Additionally, the raw material and structural configuration of structural composite panels
had significant effects on the impact behavior and damage [9–11]. However, there is no literature
where the isogrid structural composites were made from bio-based material with an interlocking
isogrid structure.

At the USDA, Forest Products Laboratory (FPL), new research is being conducted to develop
bio-composite materials to enhance performance for various engineering applications including tactical
shelters, packaging, building materials, and air pallets [6,12–22]. High stiffness characteristics were
the primary consideration for performance. A phenolic laminated paper made from wood fibers
was used for the tri-axial interlocked core and faces of a sandwich panel. In the initial study, both
static and dynamic mechanical behavior for these tri-axial wood-fiber-based composite panels was
investigated using flatwise and edgewise compression tests, four-point bending static, and fatigue
tests [6,12,13]. The results showed that these structural panels have the potential to provide good
mechanical performance for various engineering applications. However, impact resistance, which has
not been investigated, is considered a critical design parameter for some applications.

This paper investigates the impact behavior of wood-fiber-based tri-axial core composite sandwich
panels with different core/face configurations using quasi-static compression tests and low-velocity
impact tests. The energy absorptions and contact loads of panels were analyzed through different
materials, design configurations, and test parameters.
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2. Experimental Section

2.1. Material Properties

Phenolic impregnated laminated paper sheet (NP610, Norplex-Micarta Inc., Postville, IA, USA)
was used for both core and faces. The laminated paper had a nominal paper: resin weight ratio of
75:25. The mechanical properties of the laminates were obtained according to ASTM test methods
D638 and D695 [23,24]. The laminated paper has orthotropic properties with the primary strength
directions designated machine direction (MD) and cross-machine direction (CD).

To enhance face stiffness and strength, a tri-axially woven carbon fiber fabric (QISO, A&P
Technology, San Jose, CA, USA) was bonded to both outside faces of panels using an epoxy resin
(U.S. Composites No. 635, West Palm Beach, FL, USA). The ratio of epoxy to hardener was 3:1.
The bonded carbon fiber fabric and laminated paper were tested as a combined composite material for
the faces. This composite face material was tested along the machine direction (MD) and cross-machine
direction (CD).

The epoxy resin properties were obtained by forming a dog-bone test coupon and tensile tested.
The shear strength of the epoxy resin was tested using a single lap joint of two laminated paper sheets.

Foam used to fill the void volume between the core ribs was self-expanding 3 lb density urethane
foam (US Composites Inc., West Palm Beach, FL, USA). Materials properties for the tri-axial structural
panel components are shown in Table 1.

Table 1. Materials properties for individual structural panel components.

Materials
Nominal
Thickness

(mm)

Comp.
Strength

MD b

(MPa)

Comp.
Strength

CD c

(MPa)

Tensile
Strength

MD b

(MPa)

Tensile
Strength
CD c

(MPa)

MOE
MD b

(GPa)

MOE
CD c

(GPa)

Shear
Modulus

(GPa)

Poisson’s
Ratio
MD

Poisson’s
Ratio
CD

Laminated papers (LP) 2.4 195.1 168.7 173.9 118.6 11.6 8.3 4.3 0.36 0.27
Carbon fiber fabric w-L a 3.2 195.1 168.7 216.6 132.2 16.3 13.6 6.0 0.36 0.46

Epoxy resin - 105.9 - 31.0 - 1.4 - 0.54 0.3 -
Urethane foam - 0.41 - 0.48 - 0.005 - 0.002 0.46 -

a Carbon fiber fabric bonded with laminated paper composite; b MD: machine direction;c CD: cross direction.

2.2. Panel Design and Fabrication

A set of panels was fabricated with various interlocked tri-axial core configurations using 2.4 mm
thick laminate material for the core and faces. Overall, the core thickness was 51 mm for all panels;
the total nominal thickness of panels without or with carbon fiber fabric was 56 mm and 59 mm,
respectively. For groups 1 to 6, the isogrid core spacing was 25.4 mm. The slot widths were cut
to accommodate for the 60-degree angle at the rib configurations (Figure 1). For groups 7 to 13,
50.8 mm core grid was used. Two panel configurations (2 and 5) had expanding foam between the ribs
(Figure 1b). Two panel configurations (3 and 6) had carbon fiber fabric bonded to the face laminates.
Quasi-static compression was used on groups 1 to 3 and low-velocity impact tests were used on groups
4 to 13. Each group had three replicates. The testing plan and mean density for the panels are shown
in Table 2.

Table 2. Test method, density, core fabrication spacing and characteristics, test ball size, impact energy,
and test location.

Group Test Panel Density
(Kg/m3)

Core Slot
Spacing (mm) Foam Carbon Fiber

Fabric Face
Load Head

Diameter (mm)
Impact

Energy (J)
Impact
Location

Panel 1 Quasi-static
compression 455.8 (7.93) a 25 - - 38 - center

Panel 2 Quasi-static
compression 530.8 (1.83) 25 + - 38 - center

Panel 3 Quasi-static
compression 470.9 (4.01) 25 - + 38 - center

Panel 4 Impact 455.8 (7.93) 25 - - 38 120 center
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Table 2. Cont.

Group Test Panel Density
(Kg/m3)

Core Slot
Spacing (mm) Foam Carbon Fiber

Fabric Face
Load Head

Diameter (mm)
Impact

Energy (J)
Impact
Location

Panel 5 Impact 530.8 (1.83) 25 + - 38 120 center
Panel 6 Impact 470.9 (4.01) 25 - + 38 120 center
Panel 7 Impact 322.3 (0.39) 51 - - 38 80 center
Panel 8 Impact 327.6 (1.17) 51 - - 38 80 rib
Panel 9 Impact 316.9 (1.93) 51 - - 38 80 node
Panel 10 Impact 317.9 (1.93) 51 - - 38 120 center
Panel 11 Impact 317.0 (5.36) 51 - - 38 40 center
Panel 12 Impact 319.7 (1.66) 51 - - 25 40 center
Panel 13 Impact 320.3 (1.28) 51 - - 13 40 center

a Standard error.

2.3. Quasi-Static Compression Test

Three different panel configurations were used for initial quasi-static compression tests. These
were used for comparison with the impact tests. The set-up for the quasi-static compression test for
groups 1 to 3 is shown in Figure 2a. The test was modified from ASTM C365 [25], where the load was
applied through a 38 mm diameter spherical head at the center of the triangular core element instead
of a flat surface. The same clamping set-up that was used for the quasi-static compression tests was
also used for the low-velocity impact tests. In order to make full use of loading table of the impact
machine and minimize the localized effect of structural panel, the clamping fixture had a 102 mm
diameter hole. Within the hole circumference included more than six full triangular lattice elements in
the core of panel for both compression and impact tests. To verify the repeatability, three replicates
were performed for each panel configuration. The cross-head compression rate was 10 mm/min.
The dimensions for the panels were 127 mm × 127 mm.
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observed as the load-head passed through the bottom face of the panel. We believe this happened 
because when the load-head contacted the top face, the load transferred immediately through the 
ribs to the bottom face causing the bottom face to simultaneously fail before the load-head penetrated 
to the bottom face. For panel 2, with foam filled core, the load increased to a maximum compressive 
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Figure 2. Testing set-up: (a) Quasi-Static compression; (b) Low-velocity impact

2.4. Low-Velocity Impact Test

Impact tests are generally divided into low-velocity and high-velocity evaluations. Each one
elicits a different structural response and structural damage. For panels used for building construction,
transportation or packaging products, low-velocity impact damage is a more common occurrence.
To analyze this damage, different energy levels were employed in the low-velocity impact test.
A Dynatup drop tower, model 8250, with a free-falling mass was used for the impact test following
ASTM D7136 [26], Figure 2b. Three different energy levels 40 J, 80 J, and 120 J were used corresponding
to drop weights of 22.5 kg at 360 mm and 170 mm and 33.3 kg at 360 mm producing impact velocities
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ranging from 2 to 3 m/s. In addition, three different diameter spherical load heads, 13 mm, 25 mm
and 38 mm were used for our tests. The clamping fixture used to hold the impact test samples during
impact had a 102 mm diameter opening. The sample was securely clamped by air cylinders. A 22.2 kN
load cell was connected to the load head to measure the impact load. Impulse software was used to
record and display load, impact speed, and displacement data.

3. Results and Discussion

3.1. Quasi-Static Compression Test

The typical test curves are shown in Figure 3a for compressive load and accumulated energy
vs. displacement. The solid curves show the typical compressive load vs. displacement for panels
1, 2, and 3, respectively. The displacement transducer recorded displacement data starting when
the load-head contacted the top face of the panels. For this initial compression test, the load-head
was positioned directly above the center of a triangular element in the core. As expected, the results
showed the three different panel configurations had different quasi-static responses as shown in
Figure 3. The compressive load for panel 1, laminated paper only, showed the load sharply increased
as a function of displacement before the initial top face failure and then gradually decreased as the
load-head penetrated into the core with only small fluctuations. There was no second load peak
observed as the load-head passed through the bottom face of the panel. We believe this happened
because when the load-head contacted the top face, the load transferred immediately through the ribs
to the bottom face causing the bottom face to simultaneously fail before the load-head penetrated to
the bottom face. For panel 2, with foam filled core, the load increased to a maximum compressive
load as a function of displacement before the top face failed, and then the load gradually decreased
until the load-head went through the top face and into the core. The foam core absorbed slightly more
energy. The foam also helped stabilize the ribs, resisting core rib buckling. Thus, the maximum
compressive load was higher than that of panel 1. For panel 3, with carbon fiber fabric faces
and no foam filled core, the results were the highest maximum compressive load than the other
two panel configurations. The carbon fabric provided increased stiffness when combined with the
laminated paper faces. Furthermore, the compressive load-displacement curve had multiple peaks as
the load-head passed through panel 3, Figure 3a.

The dashed curves (Figure 3a) show typical accumulated energy absorption vs. displacement
for panels 1, 2, and 3, respectively. The energy absorption was calculated by integrating the load and
displacement curves. Panels 2 and 3 had higher energy absorption thus indicating that foam and
carbon fabric significantly influenced the energy absorption. Panel 3, absorbed an average 670 J of
energy, which was 80% higher than average for panel 2 at 373 J with foam filled core and was 213%
higher than panel 1 which absorbed an average of 214 J. Panel 2, with foam filled core, had 74% higher
accumulated energy absorption than panel 1. Comparing the average specific energy absorption
(energy/density), Panel 3 was 1.42, which was 103% higher than panel 2 at 0.70 with foam filled core
and was 202% higher than panel 1 at 0.47. The carbon fiber fabric reinforced face component was the
significantly factor to improve the compressive performance of the panels.

Figure 3b shows the typical failure modes of panels 1, 2, and 3 with different panel configurations.
All panels had similar damage on the top face; however, different failures were observed on the bottom,
Figure 3b. The foam-filled core, panel 2, had the best integrity where the load had been dispersed
into the structure assisted by the foam as compared with panel 1 that had more localized damage.
For panel 3, the carbon fiber fabric that increased stiffness and strength of the faces, smaller localized
indentation damage on the bottom face was also observed in Figure 3b as compared with the other
two types of tested panels with laminated paper faces only. Similar responses were observed for each
replicate within the specific series.
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3.2. Impact Analyses

3.2.1. Impact Analyses of Panels with Different Configurations

Typical impact energy and accumulated absorbed energy vs. impact displacement results are
shown in Figure 4a from the impact load at 120 J. These showed that panel 4 made from just paper
laminate had the deepest average impact penetration, 27.8 mm. The average impact peak load for
panel 4 was 12.6 kN, the lowest of all the tested panels, because the stiffness and strength of the
laminated paper composite was significantly less than the carbon fiber fabric reinforced faces. Panel 5,
with the foam-filled core, had higher average impact peak load, 14.9 kN, with 16.7 mm average impact
penetration due to the added foam’s energy absorption and its support of both the faces and the ribs.
The average peak load for panel 5 was 18.3% higher than the average impact peak load of panel 4,
because the foam-filled core helped to absorb more of the impact load to both core and faces, thus
distributing the localized stresses and failures to more of the structure. For panel 6, it had the smallest
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average impact displacement, 12.8 mm, and had the highest average impact peak load of 17.9 kN. This
was because the carbon fiber fabric composite face had higher stiffness and strength and toughness
than either the laminated paper composite alone or with foam filled core. The carbon fiber strands
radiate in three-axes causing the fiber strands to go into tension radiating out from the center of the
impact load.

Figure 4b shows typical impact load and accumulated absorbed energy vs. impact time at 120 J
impact energy level. The panels with either foam-filled core, panel 5, or carbon fiber fabric faces,
panel 6, had shorter impact times than those for panel 4. Panel 4’s configuration resulted in further
displacement over a longer period of time. They all absorbed the total 120 J of energy, but depending
on how the panel was constructed resulted in slightly different absorption behavior. While panels 5
and 6 show shorter penetration times, these also resulted in higher deceleration rates or higher G’s.
For some cushioning applications, a lower G deceleration would be preferred. This shows that
face/core configurations can have a significant influence on engineered absorption performance
and behavior.Materials 2017, 10, 185 9 of 15 
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Figure 4. (a) Typical load and accumulated absorbed energy vs. displacement curves using 120 J impact
energy; (b) Typical load and accumulated absorbed energy vs. impact time curves using 120 J impact
energy; (c) Observed failure of three panel types after the impact test.

Figure 4c shows typical failure modes for failures of each panel tested at 120 J energy. For panel 4,
both faces and core were damaged. The core ribs also showed signs of buckling failure. For panel 5,
while it had higher peak load, it had less of impact penetration. The foam helped absorb more of the
energy and helped to prevent the ribs from breaking the bottom face. Had the impact energy been
higher, then it might have been that the load head penetration would have increased sufficiently to
push the ribs against the bottom face. Panel 6, with carbon fiber fabric bonded to the laminate faces
and no foam showed the least damage on the top face. The carbon fibers absorbed most of the energy
to prevent sufficient penetration to push the core against the bottom face and the core must have
buckled slightly. These three configurations show the effects of material characteristics on impact
loading for basic tri-axial core composite panels.

3.2.2. Impact Analyses of Panels under Different Impact Energy

The panels 7, 10, and 11 had the same face and core configuration but tested with impact loads of
80 J, 120 J and 40 J initial impact energy, respectively. Figure 5a shows the average of three absorbed
energy vs. impact displacement with standard deviation for these panels at three different intial impact
energies. The results showed that the impact energy was completely absorbed by panels 11 and 7 at
40 J and 80 J, respectively. The lower impact energy, 40 J, had a smaller displacement than for Panel 7,
as expected. Both panels 7 and 11 had top face failure, shown in Figure 5b. When the initial impact
energy increased to 120 J, Panel 10, the impact energy was not completely absorbed by the panel
thus resulting in failure to the bottom face as the load-head to passed through the panel as shown in
Figure 5b. Panel 10 absorbed an average of 91 J before the impact head passed through the panel or
just 76% of its total potential energy. The impact failure test could be used to calculate the maximum
absorbed energy of a panel under low-velocity impact. The load head impacted at the center area of
the tri-axial core without the ribs.
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3.2.3. Impact Analyses of Panels with Different Impact Locations

Figure 6 shows a gradiant map of simulated full-field displacements at the locations based on
the experimental results. The three impact displacements associated with center, mid-rib, and the rib
intersection or rib-node locations were plotted. Panels 7, 8, and 9 were all impacted with 80 J of energy.
These showed that the impact at the node had the smallest average displacement, 11.1 mm, followed
by the center where average displacement was 13.7 mm, and the greatest average displacement
was at the mid-rib with 14.7 mm. The results were expected for the rib intersection being the least
displacement since the rib density was the highest at that point and provided the greatest resistance to
penetration into the core. Panel 7 had the next highest average displacement where impact occurred at
the center, this was initially counter-intuitive. However, after further analysis of the failure mechanism,
we found that the impact head diameter was larger than the inscribed diameter between center to the
ribs. The impact energy was absorbed by portions of three ribs after the impact-head broke through
the face. For panel 8, the maximum average displacement, was located at the mid-point of only one rib.
At impact, we believe, the one rib buckled allowing more displacement than the other two locations.Materials 2017, 10, 185 11 of 15 
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3.2.4. Impact Analyses of Panels with Different Impact Heads

The effects of the spherical impact-head diameter, 13 mm, 25 mm, and 38 mm were also
investigated. Typical impact loads and accumulated absorbed energy vs impact displacement for the
40 J potential impact energy are shown in Figure 7a. For all the panels the impact was at the center
area of the ribs. The largest impact head, 38 mm, had the highest energy absorption, 40 J, for panel 11.
The results showed that the impact energy was completely absorbed by the panel. The only damage
occurred on the top face and did not penetrate enough to interact with the ribs. The next smaller
head, 25 mm diameter, showed that an average of 85% of the initial energy was absorbed by the panel
and the damage occurred at the top and bottom faces of the panel (integrated failure). The smallest
head, 13 mm diameter, had the lowest average absorbed energy, 17.3 J. Figure 7b shows the typical
failure modes of the panels by different impact heads. The damage shows that the 38 mm diameter
head did not pass through the top face, whereas both the 25 mm and 13 mm heads passed through
both faces. For the 13 mm head, the energy lost was less on the first face than for the 25 mm head,
as would be expected with the smaller head size. As the impact head diameter increased, then the
absorbed energy increased as more face and core material was damaged. The lower energy loss at the
top face, for the 13 mm head, translated into a higher impact speed when impacting the bottom face.
Thus, the evidence for the greater bottom face fracture. As expected, energy absorption was related to
impact size or area of the impactor. Energy density (J/mm2) was calculated based on initial energy
divided by the impact area. The smallest head had an average energy density of 0.30 J/mm2 which
passed through the laminate face. The 25 mm head had an average energy density of 0.08 J/mm2 and
it passed through the laminate face as well. However, since the 38 mm head did not fully penetrate the
top face, it had an average impact diameter of 13 mm resulting in an average resistance of 0.04 J/mm2.
It may be possible to measure puncture resistance based on the energy density.Materials 2017, 10, 185 12 of 15 
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3.2.5. Impact Analyses of Panels with Different Size of Core

The effects of core element size were investigated using a 25 mm length triangular element core
and a 51 mm length triangular element core. The same thickness for the faces was used for both
test panels 4 and 10. The impact load and absorbed energy vs. impact displacement for the panels
with different sizes of core at 120 J initial impact energy are shown in Figure 8. The impact for both
were at the center area between the tri-axial ribs. The smaller core size had higher absorbed energy
capacity, because more ribs provided higher impact support resulting in higher stiffness to the faces
to resist the impact load. Panel 4 had complete energy absorption with damage only on the top
face. Whereas, panel 10 only absorbed and average of 74.0% of the energy in the test with failure
resulting in passing through both top and bottom faces. The peak load for panel 4 was less than that
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of Panel 10, because the ribs in panel 4 helped to dissipate some of the impact energy. The panels
with the smaller structural core had higher average impact energy absorption and less total damage to
the panel. The improvement came at the expense of higher total panel weight, 38.3% higher, due to
more material in the core. Obviously, design of any sandwich panel and its expected failure modes are
necessary when determining construction issues.
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3.2.6. Comparison of Quasi-Static Compression and Impact Tests

Load vs. displacement comparison between the quasi-static compression and impact response of
the panels were analyzed using panel sets 1, 2, 3 and panel sets 4, 5, 6. Typical responses of the panels
were made with three different configurations and were compared with the first 10 mm of load head
contact as shown in Figure 9. The solid lines indicate the quasi-static compressive responses of panels
and the dashed line and data points indicate the impact responses of the panels. The results show that
for the first 10 mm of load head contact, the low-velocity impact behavior for each panel with different
configurations was very similar to the quasi-static compression cases. The maximum load for each of
the panels in the quasi-static compressive test had good agreement with the maximum loads of related
panels for the impact tests shown in Figure 9. The carbon fiber faces panel with higher stiffness and
strength properties had higher contact loads as shown in the both tests. The foam filled core decreased
the load-displacement slope or helped to absorb the energy that dissipated the maximum load, which
resulted in longer displacement or time domain than the panel without foam in the core. Therefore, it
could be possible to correlate the ultimate compressive characteristics with similar impact behavior
and use this initial result for the future design and application.
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4. Conclusions

Experimental investigation on bio-composite structural panels has been presented and analyzed
using low-velocity impact and quasi-static compression tests. In the low-velocity impact test, the
impact behavior improved when higher stiffness or strength components of panel such as carbon
fiber fabric composite layer and higher triangular core density were used to support the face and
core. In addition, foam filled core provided improved energy absorption and better energy transfer
throughout the structure. The foam core helped to resist impact buckling in the core ribs. The impact
head size influenced impact energy density. If the energy density was high enough to cause penetration
through the top face, then the residual impact speed and energy density will influence the following
impact on the bottom face. A smaller grid element core would provide better energy absorption due to
the higher core density.

The impact failures of composite panels could be classified into three stages according to their
damage levels. The first stage is top face damage only, followed by the second stage of core buckling
failure and the third stage of whole panel penetration failure. Generally, face damage only is not
considered a critical failure, whereas damage that impacts the core and bottom face significantly
degrades mechanical performance of any panel, thus it is not accepted for most applications. These
tests show there are conditions where damage, while undesirable, could occur that only affects the
top face. The tri-axial core bio-composite structure with additional modification could be shown to
locally fail without significant impact on the other components. Depending on the design limits and
impact needs this composite panel could be designed to meet some of these challenges. These tests
also show that depending on where the impact occurs may influence the test data especially when the
rib construction and impact head are similar dimensions.

Moreover, the results from compression test showed that both quasi-static compression
and low-velocity impact tests had similar mechanical responses in the early phase of each test.
The compression results could be used as reference to evaluate the low-velocity impact performance.
For future applications, the bio-composite structural panels could be engineered to achieve various
impact performance characteristics for different applications while reducing the weight and cost by
optimizing the panel configurations. For further study, a micro-damage mechanism and finite element
model could be used to help analyze impact performance.
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