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ABSTRACT We report the draft genomes of environmental cultures collected from
shallow sediment from the western flank of the Mid-Atlantic Ridge. The isolates were
most closely related to Idiomarina abyssalis strain KJE (100% complete), Marinobacter
salarius strain NP2017 (97.6% complete), and Marinobacter salarius strain AT3901 (98.4%
complete). Isolates identified as an Idiomarina species possess complete nitrite oxidation
and reduction pathways, and isolates identified as a Marinobacter species possess com-
plete dissimilatory nitrate reduction pathways.

The western flank of the Mid-Atlantic Ridge, also referred to as North Pond, has oli-
gotrophic sediment dominated by nitrogen-cycling microorganisms (1–3). During

an expedition aboard the R/V Atlantis (AT3901) in October 2017, we collected the top 1
m of sediment using push cores via the ROV Jason II. Aliquots (1 cm3) of sediment from
0 to 2 cm and 4 to 6 cm were placed in 10ml sterile artificial seawater on board, stored
at 4°C, and transported on ice to our home laboratory. The sediment was serially diluted
into sterile artificial seawater in preparation for sorting. Single cells were sorted into indi-
vidual wells of a 96-well plate using fluorescence-activated cell sorting (FACSJazz; BD,
Franklin Lakes, NJ) and LIVE/DEAD staining to target viable cells. Each well contained
170ml of sterile artificial seawater amended with vitamins and trace metals, including
manganese, zinc, cobalt, molybdenum, selenium, and nickel (4). Two exterior columns of
the microtiter plate contained only sterile medium to track contamination. Plates contain-
ing individual isolates were incubated at 27°C, and growth was monitored daily through
optical density measurements for 12days. Successfully growing isolates were screened
using 16S rRNA gene Sanger sequencing, and five unique isolates were selected for
whole-genome sequencing. Selected isolates were grown in triplicate in 75ml of the same
medium at 27°C for 3 to 4weeks, with agitation every 2 days. The large batch cultures
were centrifuged at 5,000 rpm for 10 min at room temperature, the supernatant was deca-
nted, and the pellet was resuspended in 200ml of PCR-grade water. Nucleic acids were
extracted from pellets by heating for 10 min at 100°C and then cleaned and concentrated
using the Zymo Clean and Concentrator kit following the manufacturer's protocols (Zymo,
Irvine, CA). Libraries were prepared using the Nextera Flex kit (Illumina, San Diego, CA) and
sequenced using an Illumina MiSeq system with 300-bp paired-end chemistry at
Integrated Microbiome Research (Halifax, Nova Scotia, Canada). Overlapping reads were
merged with FLASH v1.2.11 (-M 300) (5). Adapter sequences and low-quality bases were
trimmed from merged and unmerged sequences using Trim Galore v0.6.5 (6). Trimmed
reads were assembled using SPAdes v3.13.0 (-k 127, --careful) (7) and Velvet v1.2.10
(-k-mer range, 77–137, -k-step 10) (8). Draft assemblies were filtered by length (500-bp
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cutoff) using SeqKit v0.13.2 (9) and were optimized using QUAST v4.1 (10, 11). Velvet pro-
duced the best assemblies for all five isolates, and the assemblies were annotated
using the National Center for Biotechnology Information (NCBI) Prokaryotic Genome
Annotation Pipeline (PGAP) (12), Prokka v1.11 (13), GhostKOALA (14), and PATRIC v3.6.7
(15) (Table 1). Genome assembly contamination was assessed using CheckM (16) and
BUSCO (17). All genome assemblies showed less than 1% contamination, indicating a pure
culture for each isolate. Whole-genome assemblies for isolates NPSed_A6, NPSed_A7, and
NPSed_H4 were closely related to Idiomarina abyssalis (97.8%, 97.8%, and 97.8% similarity,
respectively) and those for NPSed_C4 and NPSed_D11 were closely related to
Marinobacter salarius (98.5% and 96.05% similarity, respectively) based on average nucleo-
tide identity (ANI) values determined using JSpeciesWS v3.6.2 (18). JSpeciesWS is a tool
that performs pairwise comparisons of ANI values and tetranucleotide signatures of
draft genome assemblies (18). Reference genome assemblies for Idiomarina and
Marinobacter genera from GenBank were used for the comparisons. Reference
genomes were selected based on genera and completeness of the genomes within
GenBank. Each isolate was phylogenetically placed via single-copy marker genes
using ezTree v0.1 (19) and IQ-TREE v1.6.7.1 with 10,000 bootstraps (20). Phylogenetic trees
were visualized using the Interactive Tree Of Life (iTOL) Web server (Fig. 1). NPSed_A6,
NPSed_A7, and NPSed_H4 genomes were 99.9% similar to each other based on ANI values,
indicating the same strain. These three isolates are identified as Idiomarina abyssalis strain
KJE. NPSed_C4 is identified as Marinobacter salarius strain NP2017, and NPSed_D11 is identi-
fied as Marinobacter salarius strain AT3901. GhostKOALA was used to determine the com-
pleteness of metabolic pathways with the KEGG-decoder.py script (21). Idiomarina abyssalis
strain KJE had complete pathways for nitrite oxidation and reduction (nxrAB, nirK, and nirS).
Marinobacter salarius strains NP2017 and AT3901 had complete pathways for dissimilatory
nitrate reduction (narGH and napAB), sulfur assimilation (sir and cysJI), and sulfur dioxygenase
(sdo). All genomes possessed complete metabolic pathways for flagellum biosynthesis
(flgABDEFGHILK, fliBGHMNOYZ, and flhAB) and motility (cheABCRVWZY andmotAB).

FIG 1 Phylogenetic trees containing all isolates from North Pond. (A) Phylogenetic tree of Idiomarina. (B) Phylogenetic tree of Marinobacter. These trees
were constructed from single-copy marker genes isolated using ezTree v0.1 (default options) (19). The single-copy marker genes were concatenated and
aligned using MUSCLE v3.8.31 (default options) (22). The alignment file was used to construct a phylogenetic tree using IQ-TREE v1.6.7.1 with 10,000
bootstraps (-B 10000) (20). The trees were visualized using the iTOL Web server (23). Genomes in blue text are metagenome-assembled genomes
previously found in North Pond basaltic fluids (24). The draft genomes from this study are shown in green text. The purple dots signify bootstrap values of
$90%. The accession number for each reference is located in parentheses after the isolate name.
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Data availability. These whole-genome assemblies were deposited in GenBank
under the accession numbers listed in Table 1. The raw sequences for each isolate
were deposited in the Sequence Read Archive (SRA) under BioProject accession
number PRJNA666193.
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