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ABSTRACT

Background: Estrogen controls the pubertal growth spurt, growth plate closure, and 
accretion of bone mineral density (BMD) of long bones after biding estrogen receptor (ER). 
There are two subtypes of ER, ERα and ERβ. If each ER subtype has different effects, we may 
control those actions by manipulating the estrogen binding intensity to each ER subtype and 
increase the final adult height without markedly reducing BMD or impairing reproductive 
functions. The purpose of our study was to compare these effects of ERα and ERβ on long 
bones in ovariectomized rats.
Methods: Thirty female rats were ovariectomized and randomly divided into 3 groups. The 
control, propylpyrazole triol (PPT), and 2,3-bis (4-hydroxyphenyl) propionitrile (DPN) groups 
were subcutaneously injected for 5 weeks with sesame oil, PPT as an ERα agonist, and DPN as 
an ERβ agonist, respectively. The crown-lump length and body weight were measured weekly. 
BMD, serum levels of growth hormone (GH) and estradiol were checked before and after 5 
weeks of injections. Pituitary GH1 expression levels were determined with quantitative real-
time polymerase chain reaction, the proximal tibias were dissected, decalcified and stained 
with hematoxylin-eosin, and the thicknesses of epiphyseal plates including proliferative and 
hypertrophic zones were measured in 20-evenly divided sites after 5 weeks of injections. 
Comparisons for auxological data, serum hormone and pituitary GH1 expression levels, BMD, 
and epiphyseal plate thicknesses among 3 groups before and after injections were conducted.
Results: There was no significant difference in body lengths among 3 groups. The body 
weights were significantly lower, but, serum GH, pituitary GH1 expression levels, and BMDs 
were higher in PPT group than the other 2 groups after 5 weeks of injections. There was 
no significant difference in the thicknesses of the total epiphyseal plate, proliferative, and 
hypertrophic zone among 3 groups.
Conclusion: ERα is more involved in pituitary GH secretion and bone mineral deposition 
than ERβ. Weight gain might be prevented with the ERα agonist.
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INTRODUCTION

Estrogen is known to have two opposite effects on the growth of longitudinal bones. It 
increases growth by increasing growth hormone (GH) and insulin like growth factor-I (IGF-I) 
secretions during the pubertal growth spurt, but it stops growth by promoting the closure of 
the growth plates with differentiating chondrocytes. It also promotes the accretion of bone 
mineral density (BMD) through the differentiation of osteoblasts and osteoclasts.1

In the classical pathway, the effects of estrogen occur after binding to estrogen receptors (ER, 
ESR). Two subtypes of ER have been identified, estrogen receptor α (ERα, ESR1) and β (ERβ, 
ESR 2).2

If each ER subtype has different effects on regulating pubertal onset, growth spurts, growth 
plate closure, acquisition of bone mineral content, and reproductive functions, we may 
control these actions by manipulating the estrogen binding intensity to each ER subtype. 
We might be able to increase the final height in adults without markedly reducing BMD or 
impairing reproductive functions, even in humans.3-6

Nowadays, the incidence of precocious puberty in children is increasing in developed 
countries. It causes short stature due to earlier pubertal growth spurt and closure of 
epiphyseal plates in long bones.7 If we can elucidate the action of each ER subtype on 
pubertal growth spurt and epiphyseal plate fusion, we may find out the method to increase 
human height more efficiently.

The aim of our study was to understand the actions of each ER subtype on the pubertal 
growth spurt, growth plate closure, and acquisition of bone mineral content.

METHODS

Animals
Thirty female Sprague Dawley rats were housed in an approved animal facility with a 12-
hour light cycle and given ad libitum access to food and water. They were ovariectomized at 4 
weeks of age under intramuscular and intraperitoneal anesthesia with 30 mg/kg of tiletamine 
hydrochloride (HCl) and zolazepam HCl (Zoletil® 10%; Virbac, Carros Cedex, France) and 5 
mg/kg of xylazine HCl (Rompun® 2%; Bayer, Leverkusen, Germany).

Drug injections
The rats were randomly divided into 3 groups (n = 10/group). Ten rats were injected with 
sesame oil (control group); another 10 were injected with 10 mg/kg of propylpyrazole triol 
(PPT®; Cayman Chemical, Ann Arbor, MI, USA) as the ERα agonist treated group (PPT 
group); the other 10 were injected with 10 mg/kg of 2,3-bis (4-hydroxyphenyl) propionitrile 
(DPN®; Cayman Chemical) as the ERβ agonist treated group (DPN group). The rats were 
subcutaneously injected with the same volume starting at the age of 6 weeks, 5 days per week 
for 5 weeks.

Body length and weight measurements
The body length (crown-rump length) and weight of each rat were measured weekly from the 
age of 1 through 10 weeks.
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BMD analysis
Analyses of total body and lumbar vertebral BMDs of the rats were performed at the age of 
6 and 10 weeks through dual energy X-ray absorptiometry (DXA) using the Lunar PIXImus 
mouse densitometer (Wipro GE Healthcare, Madison, WI, USA), the Norland Medical 
systems pDEXA Sabre (Norland Medical Systems, Fort Atkinson, WI, USA), and the Sabre 
Research Software (version 3.6; Norland Medical System).

Measurement of serum hormone levels
Blood samples were obtained via the tail vein of 6- and 10-week old rats, and serum levels of 
GH and estradiol (E2) were determined with the ELISA kits for GH (Millipore, Darmstadt, 
Germany) and E2 (Calbiotech, Spring Valley, CA, USA).

Quantitative real-time polymerase chain reaction (RT-PCR) analysis
After each rat was euthanized, Gh1 mRNA was extracted from the pituitary gland with 
RNeasy mini kit (Qiagen, Duesseldorf, Germany) according to the manufacturers' 
instructions. The quantitative RT-PCR analysis was performed using the ABI Power 
SYBR green PCR master mix (Thermo Fisher Scientific, Waltham, MA, USA) and the 
Step One Plus RT-PCR system (ABI). The sequences of the primer sets used for Gh1 
and 18S were as follows; sense 5′-GCTGCAGACTCTCAGACTCCCTGG-3′, antisense 
5′-CTGAGAAGCAGAACGCAGCCTG-3′, sense 5′-TGGTTGATCCTGCCAGTAG-3′, and 
antisense 5′-CGACCAAAGGAACCATAACT-3′.

Quantitative histology of growth plates
The proximal tibias of the rats were dissected, decalcified, and stained with hematoxylin-
eosin. The thicknesses of their epiphyseal plates (EP) including the proliferative (PZ) and 
hypertrophic zones (HZ) were determined on 20-evenly divided sites in the central three-
fourths of the growth plate sections using a Nikon Eclipse E800 light microscope (Nikon, 
Tokyo, Japan) with ImageJ software (version 1.5, NIH, USA) (Fig. 1).8

Statistics
The differences in auxological data, BMD, serum GH and E2 levels before and after injections 
were analyzed with the one-way analysis of variance with multiple comparisons. The Kruskall-
Wallis test was used to compare the pituitary Gh1mRNA levels and histologic data among the 

3/10https://jkms.org https://doi.org/10.3346/jkms.2020.35.e370

ERα or β Effects on Growth and BMD

EP

HZ
PZ

Fig. 1. Thickness measurement of the EP including the PZ and HZ of tibia in a rat (×100, H&E staining). 
EP = epiphyseal plate, PZ = proliferative zone, HZ = hypertrophic zone, H&E = hematoxylin-eosin.
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groups with the SPSS ver. 20.0. All the data were expressed as mean ± standard deviation. P < 
0.05 was considered as statistically significant.

Ethics statement
The procedures used and the care of animals were approved by the Institutional Animal 
Care and Use Committee in the Kyung Hee University Hospital at Gangdong (approval No. 
KHNMC AP 2013-011).

RESULTS

Change of auxological data
The body lengths of 1-week-old rats in the control, PPT, and DPN groups were 10.33 ± 0.75, 
10.79 ± 0.51, and 10.8 ± 0.5 cm (P = 0.275). At 4 weeks of age and before the injections, the 
body lengths were 15.7 ± 0.68, 16.56 ± 0.53, and 16.39 ± 0.49 cm for each group (P = 0.969); 
and at 10 weeks of age and after injections 21.0 ± 0.52, 20.44 ± 0.29, and 20.94 ± 0.4 cm for 
each group (P = 0.083). There was no significant difference in body length among 3 groups 
before and after injections (P = not significant).

The body weights of 1-week-old rats in the control, PPT, and DPN groups were 42.52 ± 3.11, 
50.85 ± 4.78, and 50.92 ± 4.48 g (P = 0.172). At 4 weeks of age and before injections, the body 
weights were 161.05 ± 10.71, 169.94 ± 15.3, and 168.54 ± 8.19 g for each group (P = 0.637); and 
at 10 weeks of age and after injections, 309.46 ± 22.65, 267.49 ± 16.82, and 297.66 ± 16.25 g for 
each group (P = 0.012). The mean body weight after 5 weeks of injections in the PPT group 
was significantly lower than that in the other 2 groups (P < 0.05) (Fig. 2).

Bone mineral density
The total body BMD in the control, PPT, and DPN group at 6 weeks of age was 0.101 ± 0.004, 
0.108 ± 0.008, and 0.105 ± 0.008 g/cm2 (P = 0.083), and at 10 weeks of age was 0.121 ± 0.006, 
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Fig. 2. Comparison of auxological changes among 3 groups of rat subjected to treatment with sesame oil, PPT, or DPN. (A) Changes of the crown-rump length in 
3 groups. (B) Changes of the body weight in 3 groups. 
PPT = propylpyrazole triol, DPN = 2,3-bis (4-hydroxyphenyl) propionitrile. 
*P < 0.05.
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0.146 ± 0.009, and 0.124 ± 0.009 g/cm2 (P = 0.003). The lumbar vertebral BMD in the control, 
PPT, and DPN group at 6 weeks of age was 0.093 ± 0.001, 0.099 ± 0.001, and 0.098 ± 0.002 
g/cm2 (P = 0.075), and at 10 weeks of age was 0.135 ± 0.006, 0.155 ± 0.009, and 0.138 ± 0.009 
g/cm2, respectively (P = 0.038). Therefore, the total body and lumbar vertebral BMD were 
significantly increased in PPT group than those in the other 2 groups (P < 0.05) after 5 week-
injections (Table 1).

Serum hormone levels
There was no significant difference in serum levels of GH and E2 in 6-week-old rats among 3 
groups. The serum GH level in 10-week-old rats was 3.36 ± 0.18, 7.29 ± 0.58, and 3.84 ± 0.37 
pg/mL in the control, PPT, and DPN groups, respectively. Therefore, the serum GH level in 
the PPT group was significantly increased compared with those in the other 2 groups (P < 
0.05). The serum E2 level in 10-week-old rats was 6.11 ± 0.92, 5.45 ± 1.38, and 5.94 ± 1.23 µg/
mL in the control, PPT, and DPN groups, respectively. There was no significant difference in 
serum E2 levels among the groups (P = 0.602) (Table 2).

Gh1 expression levels in the pituitary gland
The relative expression level of the Gh1 gene was 0.94 ± 0.14, 1.44 ± 0.66, 1.23 ± 0.2 in the 
control, PPT, and DPN groups, respectively. The Gh1 expression was significantly increased in 
the PPT and DPN group (P < 0.05) (Fig. 3).

Quantitative histology
The thicknesses of the proliferative zones were 45.77 ± 1.7, 45.12 ± 2.98, and 41.78 ± 1.2 μm 
in the control, PPT, and DPN group after injection, respectively, and there was no significant 
difference among the groups (P = 0.332); those of the hypertrophic zones were 35.48 ± 2.09, 
34.4 ± 1.62, and 30.58 ± 1.03 μm, respectively, and there was no significant difference among 
the groups (P = 0.226). The thicknesses of total epiphyses were 91.25 ± 2.41, 89.51 ± 2.66, and 
82.36 ± 2.85 μm, respectively, and there was no significant difference among the groups (P = 
0.251) (Fig. 4).
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Table 1. The changes of bone mineral density before and after injections in three groups
Age, wk Site, g/cm2 Control PPT DPN P value (one-way ANOVA)
6 Total body 0.101 ± 0.004 0.108 ± 0.008 0.105 ± 0.008 0.083

L-spine 0.093 ± 0.001 0.099 ± 0.001 0.098 ± 0.002 0.075
10 Total body 0.121 ± 0.006 0.146 ± 0.009ab 0.124 ± 0.009 0.003

L-spine 0.135 ± 0.006 0.155 ± 0.009ab 0.138 ± 0.009a 0.038
Data are expressed mean ± standard deviation.
L-spine = lumbar spine, PPT = propylpyrazole triol, DPN = 2,3-bis (4-hydroxyphenyl) propionitrile, ANOVA = analysis of variance.
aP < 0.05 vs. control; bP < 0.05 vs. DPN.

Table 2. The changes of serum hormone levels before and after injections in three groups
Age, wk Hormone Control PPT DPN P value (one-way ANOVA)
6 GH, pg/mL 3.42 ± 0.38 3.99 ± 0.47 3.38 ± 0.63 0.154

Estradiol, µg/mL 6.05 ± 0.98 5.04 ± 1.58 5.65 ± 1.58 0.631
10 GH, pg/mL 3.36 ± 0.18 7.29 ± 0.58ab 3.84 ± 0.37 0.002

Estradiol, µg/mL 6.11 ± 0.92 5.45 ± 1.38 5.94 ± 1.23 0.602
Data are expressed as mean ± standard deviation.
GH = growth hormone, PPT = propylpyrazole triol, DPN = 2,3-bis (4-hydroxyphenyl) propionitrile, ANOVA = analysis of variance.
aP < 0.05 vs. control; bP < 0.05 vs. DPN.
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DISCUSSION

Estrogen affects the growth, differentiation, and development of a broad range of target 
tissues, such as those of the reproductive, skeletal, neuroendocrine, adipogenic, and 
cardiovascular systems. It is also an important factor in controlling the pubertal growth 
spurt, growth plate closure, and accretion of BMD of long bones.9-11

Many mechanisms or theories attempting to explain these effects have been suggested. First, 
estrogen binds to ER in the pituitary somatotrope and activates the GH-IGF-I axis and it is 
believed to be a major factor for the pubertal growth spurt.12 Second, estrogen is involved in 
the stimulation of osteoblastogenesis, reduction of mature osteoblast apoptosis, suppression 
of osteoclastogenesis, and inhibition of osteoclastogenic cytokine production, and these 
actions are thought to be related with the control of BMD in long bones.13,14 But, the effect 
of estrogen on the mechanism of growth plate closure is still unclear. There are only a few 
theories, including apoptosis, autophagy, hypoxia, and transdifferentiation of chondrocytes 
in the epiphyseal plate that maybe promoted by estrogen.15
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If we could elucidate the precise process of growth plate closure and delay it without severe 
side effects, we may increase the final height of children more efficiently.

The most effects of estrogen are mediated by binding to ERs in the classical pathway. ER is a 
member of the nuclear receptor superfamily and functions as a ligand-inducible transcription 
factor4. There are two major subtypes, ERα (ESR1) and ERβ (ESR2) that are distributed 
in various tissues and function in distinct ways in several target tissues. ERα is mainly 
distributed in the uterus, breast, testis, hypothalamus, liver, heart, and skeletal muscles 
and ERβ is mainly distributed in the ovary and prostate. Both subtypes are present in bone, 
epididymis, thymus, adrenal, brain, and other parts of the body.16-18

ER is also present in the epiphyseal plate, and there are 3 distinctive zones according to 
the distribution of different types of chondrocytes: the resting zone which is composed of 
stem cells of chondrocytes, the proliferative zone with increasing number of cells, and the 
hypertrophic zone composed of larger chondrocytes in the growth plate of long bones.19 
ERα and ERβ are largely distributed in the resting and proliferative zones, although ERβ is 
slightly more prominent in the hypertrophic zone, which is involved in the transition of the 
chondrocyte to osteocyte in the epiphyseal plate.20

Börjesson et al.21 and Chagin et al.22 suggested that low E2 levels increase skeletal growth 
during the early sexual maturation and the pubertal growth spurt, whereas high E2 levels 
during late puberty result in growth plate fusion. If a higher E2 serum concentration is 
needed to activate ERβ than to activate ERα, it can be inferred that the activation of ERβ is 
essential for the growth plate fusion, and the activation of ERα is more important for the 
stimulation of the GH-IGF-I axis under low E2 levels. ERβ inhibits bone growth in mouse 
only when activated through increased estrogen serum levels, and the ERβ activation has the 
ability to induce growth plate fusion in old female mice. Therefore, we hypothesized that the 
selective inhibition of the ERβ activation might be a preferred method to delay the growth 
plate closure with lesser side effect on the pubertal growth spurt or BMD.

To test our hypothesis, we used synthetic ERα or ERβ agonist to stimulate each ER subtype 
selectively. It has been previously demonstrated that PPT is a potent ERα agonist, with a 
400-fold preference for ERα over Erβ.23,24 In contrast, DPN is a selective ERβ agonist with a 
70-fold higher affinity to ERβ than to ERα.25,26

In our study, after injections for 5 weeks, there were no significant differences in crown-rump 
length among 3 groups, but there was a significant decrease in the weight for the PPT group. 
This may mean that ERα mediates estrogen's anorexigenic effect or plays a role in suppressing 
white adipose tissue development in subcutaneous fat, and those effects are consistent with 
previous studies showing increased adipose tissue in an ERα knockout (KO) female mouse.27,28

We also measured serum GH levels and pituitary Gh1 gene expression in each group. GH 
secretion was increased in PPT group and Gh1 expression was significantly increased in both 
PPT and DPN groups, but it was more prominent in the PPT group. This result suggested that 
the ERα activation is related with the stimulation of GH-IGF-I axis and the pubertal growth 
spurt, and is in agreement with a previous report by Avtanski et al.29

BMD was increased in PPT group without estrogenic effect after ovariectomy. Therefore, 
ERα stimulation is believed to be important for bone mineral deposition. This finding is 
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consistent with the previous studies that the reduced BMD induced by estrogen deficiency 
by ovariectomy in animal models was recovered by E2 or ERα agonists. Khalid and Krum30 
reported that signaling via ERα protects against ovariectomy-induced trabecular bone loss, 
and ERα activity can be modulated by ERβ in female bones. Lindberg et al.31 found that the 
ovariectomized wild or double ER knockout mice had the phenotype of increased cortical and 
trabecular bone dimension after E2 injection and it may mean the bone mineral deposition 
is mainly ERα mediated. Hertrampf et al.32 reported that the injections of the ERα-specific 
agonist (16α-LE2) increased BMD and serum bone formation markers but the ERβ-specific 
agonist (8β-VE2) did not in female rats.

In the studies about the growth and epiphyseal plate fusion of long bones, Chagin et al.33 
reported that young adult ERβ−/− mice demonstrated an increased axial- and appendicular-
skeletal growth, supporting that ERβ inhibits skeletal growth and has the capacity to mediate 
growth plate fusion. But, Iravani et al.34 reported that E2- and PPT-treated ovariectomized 
female mice had shorter tibia and femur bones, and their growth plate and hypertrophic zone 
height were decreased, which means the ERα is more important for growth plate fusion. 
Like these previous reports, some data are conflicting, which could be explained by strain 
differences or low numbers of animals.

In our study, neither ERα nor ERβ stimulation significantly affected the growth plate thicknesses. 
Perhaps, this is because the growth plates do not fuse directly after sexual maturation in rodents 
or the physiology of longitudinal bone growth is different between humans and rodents.

A few limitations of our study are the low number of individuals in the sample, the failure 
of getting the 24-hour growth hormone secretion profile and the fact that the physiological 
mechanism of growth plate senescence may be different between humans and rodents.

In conclusion, we evaluated the growth of the body length and weight, secretion of GH, 
acquisition of BMD, and fusion of epiphyseal plate after ERα and ERβ stimulation in 
ovariectomized female rats. Our study showed that the ERα activation is more important than 
the ERβ in the pubertal growth spurt with activation of the GH-IGH-I axis. ERα stimulation 
is also believed to be important for bone mineral deposition and prevention of weight gain. 
Therefore, the ERα agonists are thought to be effective for height growth, bone mineral 
deposition and weight loss.

But, the effects of activation of each ER subtype on bone growth are considered to be 
complex and mediated by multiple signaling pathways. Therefore, more studies are necessary 
to elucidate the mechanisms of action of each ER subtype in regulating the pubertal growth 
spurt and growth plate closure. In addition, in vitro studies on signaling pathways of each ER 
subtype and in vivo studies in other ERα or ERβ KO animal models are needed.
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