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1  | INTRODUC TION

Coevolution occurs when two or more species exert a recipro‐
cal influence on one another's evolutionary trajectories (Vermeij, 
1994). These effects may be mediated by beneficial (mutualis‐
tic) or deleterious associations (e.g., parasitism, predation). For 
simplicity, we will only refer to “host” and “pathogen” species, 
although we recognize that many other roles in coevolutionary 

interactions exist in nature. A cophylogenetic study is a compara‐
tive analysis of the evolutionary relationships within sets of host 
and pathogen species, and the extent that these relationships 
are correlated back in time. Host–pathogen associations are fre‐
quently visualized by a “tanglegram,” in which the associations 
are mapped to the two phylogenies by drawing association edges 
between the respective host and pathogen taxa (Page, 1993). If 
the topologies of the two phylogenies are fully concordant, then 
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Abstract
Cophylogeny is the congruence of phylogenetic relationships between two different 
groups of organisms due to their long‐term interaction. We investigated the use of 
tree shape distance measures to quantify the degree of cophylogeny. We imple‐
mented a reverse‐time simulation model of pathogen phylogenies within a fixed host 
tree, given cospeciation probability, host switching, and pathogen speciation rates. 
We used this model to evaluate 18 distance measures between host and pathogen 
trees including two kernel distances that we developed for labeled and unlabeled 
trees, which use branch lengths and accommodate different size trees. Finally, we 
used these measures to revisit published cophylogenetic studies, where authors de‐
scribed the observed associations as representing a high or low degree of cophylog‐
eny. Our simulations demonstrated that some measures are more informative than 
others with respect to specific coevolution parameters especially when these did not 
assume extreme values. For real datasets, trees’ associations projection revealed 
clustering of high concordance studies suggesting that investigators are describing it 
in a consistent way. Our results support the hypothesis that measures can be useful 
for quantifying cophylogeny. This motivates their usage in the field of coevolution 
and supports the development of simulation‐based methods, i.e., approximate 
Bayesian computation, to estimate the underlying coevolutionary parameters.

K E Y W O R D S

coevolution, cophylogeny, host switching, kernel, tree measures, tree shape

www.ecolevol.org
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:mavino@uwo.ca


     |  6757AVINO et Al.

there exists an arrangement of their branches (by rotation around 
ancestral nodes) such that the association edges do not intersect 
– the trees are completely “untangled.” This situation implies that 
the interactions between the host and pathogen species are so 
strong that the diversification of the pathogen species is entirely 
constrained by that of their hosts. Discordant trees can also yield 
an untangled graph. Thus, the number of intersecting association 
edges is a more useful measure for optimizing visual layouts than 
for inferring biological processes.

Any single tanglegram may be explained by a large number of dif‐
ferent combinations of events in the past, including pathogen and/
or pathogen‐mediated host extinction, host (sometimes biased host) 
switching, incomplete lineage sorting (Pamilo & Nei, 1988), patho‐
gen speciation/duplication, and unobserved species; see Charleston 
and Perkins (2006) for a detailed discussion of these event types. 
Increasing numbers of events in the coevolutionary history of the 
host and pathogen species will tend to result in a lower degree of 
topological concordance between their phylogenies. Estimating the 
optimal reconstruction of such events to explain the present‐day 
associations between the tip taxa of the host and pathogen phylog‐
enies is known as reconciliation inference (Doyon, Ranwez, Daubin, 
& Berry, 2011; Doyon et al., 2010). A well‐characterized approach 
to reconciliation inference is to assign a cost to each type of event 
and to identify the most parsimonious (minimum cost) distribution 
of events. However, the resulting solution is sensitive to the investi‐
gator's choice of costs, and becomes exceedingly difficult for larger 
trees. Indeed, this approach becomes a computationally intracta‐
ble (NP‐hard) problem if time‐consistent reconciliation is required 
(Ovadia, Fielder, Conow, & Libeskind‐Hadas, 2011), so that lineage 
transfer events do not contradict the timings of internal nodes be‐
tween the trees. This problem has been addressed by Libeskind‐
Hadas and Charleston (2009), who provide algorithms for computing 
the set of Pareto‐optimal event counts and thereby estimate the best 
set of cost parameters for a particular reconciliation, and recently 
also by Ma, Smirnov, and Libeskind‐Hadas (2017), who adopted a 
combination of algorithms to efficiently find temporally feasible 
reconciliations. Probabilistic approaches to reconciliation, such as 
amalgamated likelihood estimation (Szöllősi, Rosikiewicz, Boussau, 
Tannier, & Daubin, 2013), can jointly estimate the costs of differ‐
ent cospeciation events in exchange for increased computational 
complexity and sensitivity to accurate scaling of branch lengths in 
time (Scornavacca, Jacox, & Szöllősi, 2014). Further, Bayesian rec‐
onciliation methods enable the investigator to relax the assumption 
that the host and parasite phylogenies are known without error 
(Huelsenbeck, Rannala, & Larget, 2000), and instead sample phylog‐
enies from an appropriate prior distribution such as the birth–death 
model (Arvestad, Berglund, Lagergren, & Sennblad, 2003; Sjöstrand 
et al., 2014). Sampling two phylogenies can result in an enormous 
model space, however, such that the computational time required 
for convergence to the posterior distribution may become exces‐
sive for substantial numbers of taxa. Finally, it is not uncommon to 
simply visualize the tanglegram and make a qualitative, subjective 
assessment about the extent of cospeciation. By focusing on the 

association edges, this manual approach may overlook differences in 
the internal topologies or timescales between the two trees.

We propose to introduce distance measures of tree shapes to the 
field of cophylogeny, which might occupy a middle‐ground between 
these extremes. Specifically, our objective is to assess whether such 
simple quantitative methods may be useful for estimating coevo‐
lutionary parameters from differences in tree shapes. There is an 
abundance of distance measures for comparing trees with respect 
to their topology and/or branch lengths. For example, numerous 
investigators have proposed various summary statistics that each 
extract certain characteristics of tree shapes, such as asymmetry 
(e.g., Colless’ index) and thereby reduce the tree to a single number; 
for a comprehensive review, see Mooers (1997). Summary statistics 
provide a convenient framework for comparing trees, which are oth‐
erwise statistically complex objects. However, many of these statis‐
tics are difficult to normalize to differences in tree size (Stam, 2002), 
and can be strongly influenced by sampling for rapidly evolving taxa 
(Dearlove & Frost, 2015). In addition, the inherent dimensionality re‐
duction of these summary statistics is often accompanied by a crit‐
ical loss of information about the underlying biological processes, 
which can limit the utility of any one statistic. For this reason, recent 
studies have begun to use feature selection methods to find optimal 
combinations of summary statistics (e.g., Saulnier, Gascuel, & Alizon, 
2017).

Whereas a summary statistic maps a tree to a number, a distance 
measure (sometimes referred to as a “metric”) maps two trees to a 
number that quantifies their level of discordance. One of the earliest 
distances for trees was the cophenetic correlation (Sokal & Rohlf, 
1962), in which the depth of the lowest common ancestor between 
each pair of tips in the tree is represented by a distance matrix. The 
ordinary product–moment correlation for two trees is then calcu‐
lated from the element‐wise comparison of their respective matri‐
ces. This method was rendered as a distance measure by Cardona, 
Mir, Rosselló, Rotger, and Sánchez (2013) and slightly modified by 
Kendall and Colijn (2016), referred here as KC (or KCw when consid‐
ering branch lengths). A distance described by Williams and Clifford 
(1971), denoted here as “Node” (Kuhner & Yamato, 2014), restricts 
this correlation to the internal nodes of the trees and measures path 
lengths by numbers of nodes. Similarly, “pathdist” (Steel & Penny, 
1993) is a path distance measure that substitutes the L2‐norm 
(Euclidean distance) for the L1‐norm (total absolute difference) em‐
ployed by Node. More recently, Kuhner and Yamato (2014) proposed 
a topology‐free distance “Int” that sums the differences in inter‐node 
branch lengths, proceeding from the most recent tip to the root.

Other distance measures place greater emphasis on tree to‐
pologies. For instance, the Maximum Agreement Subtree (MAST; 
Gordon, 1980) distance is based on the largest labeled subtree 
that is common to both trees. The Robinson–Foulds distance (RF; 
Robinson & Foulds, 1981), by far the most cited tree distance in the 
literature (Table 1), provides symmetric distance between two phy‐
logenies as a sum of monophyletic groups present in one tree but 
not in the other, given that they relate the same set of taxa. The RF 
distance has been also extended to consider branch lengths, either 
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by incorporating the L1‐norm (RFL, Robinson & Foulds, 1979) or L2‐
norm (KF; Kuhner & Felsenstein, 1994), and further adapted to ac‐
commodate unrooted trees (nPH85; Penny, Foulds, & Hendy, 1982; 
Geoghegan, Duchêne, & Holmes, 2017). Moreover, Nye, Lio, and 
Gilks (2005) proposed a method similar to the RF distance that takes 
the optimal one‐to‐one mapping of branches between the trees as 
a distance “Align”. Instead of shared subtrees of any size, Critchlow, 
Pearl, and Qian (1996) described a distance (Trip) based on triples of 
related taxa, which was later extended by Kuhner and Yamato (2014) 
to utilize branch lengths (TripL). The Billera–Holmes–Vogtmann 
(BHV, Billera, Holmes, & Vogtmann, 2001) distance measure cap‐
tures both topology and branch lengths by mapping tree shapes into 
a geometric space, which can be traversed by varying branch lengths 
and resolving the polytomies that result from zero branch lengths. 
In addition, Hein, Schierup, and Wiuf (2004) proposed a distance 
“Sim” based on the probability that a random point in one tree is on a 
branch leading to the same set of tip labels in a second tree.

The majority of these distance measures can be computed effi‐
ciently, and several utilize branch lengths in addition to tree topol‐
ogies (Table 1). On the other hand, most of the distances require 
the trees to have the same numbers of tips and the same tip labels, 
e.g., relating the same taxa. Many of the distance measures can also 
be expected to be sensitive to the placement of roots in the trees. 
In previous work, we proposed a new tree distance measure (Poon 
et al., 2013) based on a kernel function from computational linguis‐
tics (Moschitti, 2006) that essentially counts the number of isomor‐
phic fragments shared by two trees, while penalizing fragments for 

their discordance in branch lengths. The resulting distance measure 
is normalized for differences in tree sizes and can optionally ignore 
tip labels, such that it can be applied to trees relating different sets 
of taxa.

A distance measure may be difficult to interpret without some 
absolute scale or reference distribution. Thus, the discordance 
between host and pathogen trees can also be quantified by an in‐
dependence test (De Vienne et al., 2013), which evaluates the prob‐
ability that an equal or shorter distance is obtained by chance given a 
null distribution. Hence, this test essentially maps the distance mea‐
sure to a more interpretable scale. The null distribution can be either 
generated at random from the simulation of trees given a parametric 
model, or by the nonparametric permutation of the host and patho‐
gen trees. Finally, we note that this is not a comprehensive review of 
distance measures on trees; we acknowledge more recent and ongo‐
ing advances in this area in the Discussion section.

Although such distance measures have been widely utilized in 
the comparison of trees in both evolutionary and broader contexts, 
there are surprisingly few references to these measures in the co‐
phylogeny literature (Table 1). We propose that tree distance mea‐
sures may provide a simple and useful complement to the visual 
assessment of tanglegrams or reconciliation methods, which require 
the investigator to either assign costs or perform intensive computa‐
tion for larger data sets. In this study, our objective is to assess how 
much information these distance measures can extract about coevo‐
lutionary events from the discordance of host and pathogen phy‐
logenies. This however requires evaluating these distances on sets 

TA B L E  1   Summary of tree distance measures examined in this study. In addition to the kernel measures kU and kL, we evaluated two 
additional measures where branch lengths were normalized by the mean (kUn and kLn). “Diff. size” indicates which distances do not require 
the trees to have the same numbers of tips. “Diff. labels” indicates which distances do not require the trees to relate the same taxa, i.e., to 
have the same labels. “Use lengths” indicates which distances utilize the differences in branch lengths when comparing trees. We 
enumerated citations in the literature by querying Google Scholar (last access date, June 31, 2017) for papers associated with the respective 
distance measures and software, and then filtered the results for coevolutionary studies (Coevol.). Measures pathdistw and KCw referred to 
pathdist and KC, respectively, with lengths enabled

Distance References
Diff. 
size

Diff. 
labels

Use 
lengths

Citations

Total Coevol.

RF Robinson and Foulds (1981) 1,561 3

nPH85 (Geoghegan et al., 2017; Penny et al., 1982) Y 227 1

Trip Critchlow et al. (1996) Y 103 0

MAST Gordon (1980) Y 69 0

Align Nye et al. (2005) 123 1

Node Williams and Clifford (1971) Y 82 0

KF Kuhner and Felsenstein (1994) Y 725 0

Sim Hein et al. (2004) Y Y 540 0

TripL Kuhner and Yamato (2014) Y 13 0

kU Poon et al. (2013) Y Y Y 22 0

kL This study Y Y n/a

pathdist/pathdistw Steel and Penny (1993) Y 253 2

BHV Billera et al. (2001) Y 384 2

KC/KCw Kendall and Colijn (2016) Y 6 0
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of trees where the underlying cophylogeny process is known with 
absolute certainty that reconciliation methods cannot provide. Thus, 
we developed a reverse‐time simulation framework for generating 
pathogen trees along a fixed host tree, from the tips toward the root, 
for given rates of cospeciation, duplication, and host switching. This 
work provides a critical quantitative assessment on the potential 
utility of distance measures for cophylogenetic studies, and provides 
detailed guidance for choosing among those measures given prior 
information on the relative importance of different coevolutionary 
events, or to focus on specific measures that are more informative 
than others about coevolutionary processes. Further, we compare 
the distance measures to the more standard approach of reconcil‐
iation through maximum parsimony, using mutual information to 
contrast these methods within a consistent quantitative framework.

2  | METHODS

2.1 | Simulation methods

To simulate pathogen trees within host trees, we implemented a 
reverse‐time simulation method with a custom Python script. The 
required inputs of this script are: (a) a Newick string representa‐
tion of the host tree, with branches scaled in units of real time; 
(b) the speciation rate of two pathogen lineages within the same 
host, Λ; (c) the migration rate for pathogen lineages between hosts 
(host switching), M, and; (d) the probability of cospeciation, P. The 
speciation of host species was a nonrandom event determined by 
the input tree. Stochastic events were simulated using the stand‐
ard Gillespie method (Gillespie, 1977). The total rate of stochastic 
events was:

where nh(t) is the number of extant host lineages at time t, np(t) is the 
number of extant pathogen lineages, and ni

p
(t) is the number of ex‐

tant pathogen lineages within the i‐th host. The speciation of patho‐
gen lineages within a host is the reverse‐time analog of a duplication 
event, i.e., the speciation of a pathogen lineage into two derived spe‐
cies within the same host lineage. We assumed that host switching 
was a random process that occurred at a constant and uniform rate 
for any single pathogen lineage. If there was only one extant host 
lineage at time t, then we assumed that the total host switching rate 
�M was effectively zero.

The simulation was initialized at the most recent tips of the host 
tree (t = 0), with a single pathogen lineage assigned to each sam‐
pled host. We did not require all host species to be sampled at the 
same time. The heights (relative to the most recent tip at t = 0) of 
host species as determined by the input tree are denoted as �i≥0, 
i={1,… ,n∗

h
−1}, where n∗

h
 is the total number of tips in the host tree. 

Moreover, the sampling times of host species determined by the 
input tree are denoted �∗

j
, j={1,… ,n∗

h
}, where �∗

j
=0 for at least one 

value of j. The simulation was updated iteratively back in time with 
a random sequence of events on the timescale of the input tree. The 

waiting time until the next event was drawn from an exponential 
distribution, Δt∼exp (�). If the waiting time exceeded the time in‐
terval to the next highest host node �, then we updated the vector 
of extant host nodes and reset the simulation time. If the next high‐
est host node was a tip, then we set t= �

∗
j
 and incremented np(�j) by 

one. Otherwise if the next highest host node was an internal node, 
then we set t= �i. All pathogen lineages carried by the affected host 
lineages were transferred to the ancestral host lineage, with a co‐
speciation probability P of two randomly selected lineages from 
the respective derived hosts being speciated into a single ancestral 
lineage.

If the waiting time does not exceed the time interval to the next 
highest host node �, then we determined whether the next event 
was a host‐switch or a within‐host speciation of pathogen lineages. 
If a host‐switch event occurred with probability �M∕�, then we se‐
lected an extant pathogen lineage at random from np and reassigned 
this lineage to an extant host drawn at random from nh excluding 
the original host. We made the simplifying assumption that all host 
switching events were “complete,” in that migration to another host 
species was followed by speciation. A pathogen speciation event 
otherwise occurred with probability �P∕� (=1−�M∕�), in which we 
selected a pair of lineages occupying the same host at random to 
speciate into a single ancestral lineage. Thus, the specific migration 
and speciation events were uniform across pathogen lineages and 
pairs of lineages, respectively. Subsequently, we incremented the 
simulation time t by the waiting time Δt and drew the next waiting 
time. The simulation halts when the number of extant hosts returns 
to one and all tips in the host tree have been sampled. If there are 
multiple pathogen lineages within this ancestral host, then the sim‐
ulation proceeds back in time with speciation at a constant rate per 
pair until only one pathogen lineage remains.

We used the Python library ete3 (Huerta‐Cepas, Serra, & Bork, 
2016) to parse and construct tree objects. For each simulation we 
generated two different pathogen tree outputs: a tree in which 
branches were partitioned by nodes of degree‐size three or two to 
record all within‐host speciation and host‐switch events, respec‐
tively (ete3 format 1); and a second tree in which this information was 
removed, leaving only internal nodes with degree‐size 3 and terminal 
nodes with degree‐size 1 (ete3 format 5). Single nodes (with a single 
descendant) were subsequently removed with R package ape v5.0 
(Paradis, Claude, & Strimmer, 2004) with function collapse.single.

2.2 | Simulation analysis

To initialize our simulation experiments, we selected a tree relat‐
ing hosts of the Hepadnaviridae (HBV) family from a recent study 
of host‐pathogen coevolution among DNA and RNA virus families 
(Geoghegan et al., 2017). The authors found that the trees corre‐
sponding to HBV and its hosts, among all the virus families analyzed, 
had the highest level of concordance, based on their normalized ver‐
sion of the Penny et al. (1982) measure (nPH85). However, the host 
tree Newick file published by the authors did not include any branch 
lengths. Consequently we obtained the time‐scaled phylogenetic 

𝜆=𝜆P+𝜆M=

nh(t)
∑

i

(

ni
p
(t)

2

)

Λ+

{

np(t)M ifnh(t)>1

0 ifnh(t)=1
,
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tree relating Metazoa published at http://timetree.org, and pruned 
the tree down to the host species associated with HBV, including 
fish, reptiles, and amphibians (treated by the authors as one single 
host category), birds and mammals. Since a number of the distance 
measures evaluated in this study required the host and pathogen 
trees to share the same set of tip labels, we labeled the simulated 
pathogen trees by their host, and initialized simulations with only one 
pathogen lineage per host tip.

Using this host tree, we conducted a series of “edge case” sim‐
ulation experiments in which two of the parameters were fixed to 
extreme values, and the third parameter was varied over a broad 
range (Table S1). The purpose of these edge case simulations was to 
provide outputs that were easy to interpret for validating the sim‐
ulation model, and as a preliminary assessment of how the various 
distance measures responded to the model parameters. To visu‐
ally inspect the simulation outputs, we plotted random samples of 
edge case simulations alongside the host tree with DensiTree v2.2.5 
(Bouckaert, 2010). Next, we used Latin hypercube sampling to ran‐
domly generate 500 points that were evenly distributed in the pa‐
rameter space. Specifically, we partitioned the range Λ= [0,1] into 
500 intervals such that their midpoints were evenly spaced after 

a log‐transformation; we applied the same scheme to the range 
M = [0,1]. Since the parameter P is a probability instead of a range, 
we partitioned the range P = [0,1] into 500 intervals without any 
transformation. Next, we generated a random permutation of in‐
tervals independently along each axis, uniformly sampled one point 
within each cube defined by the intersection of three intervals, and 
simulated 100 pathogen trees using those parameter values for a 
total of 50,000 simulations. Correlations and mutual information 
(MI) tests on the performance and collinearity of measures were 
performed using the R package Entropy (Hausser & Strimmer, 2009).

2.3 | Data collection

Here, we evaluated the distance measures on phylogenies recon‐
structed from actual data sets. First, we collected published data 
sets from the literature of host and pathogen coevolution. We que‐
ried Google Scholar (https://scholar.google.ca/) on the title and ab‐
stract fields of publications with at least one of the following search 
terms “concordance,” “cophylogeny” (or “co‐phylogeny”), “host,” 
“pathogen,” “parasite,” and “symbiont.” The number of records re‐
turned by these queries precluded an exhaustive manual curation. 

TA B L E  2   Summary of cophylogeny studies and data sets collected from the literature (the “General” collection). The keys are used to 
map these entries to subsequent figures. N denotes the number of tips in the corresponding host or parasite tree

Key References Host (N) Pathogen (N) Association

High concordance

1–2 Mizukoshi, Johnson, and Yoshizawa (2012) Sika deer (11) Lice (10) Parasitic

3–4 Duron and Noël (2016) Pantoea (42) Ishikawaella (42) Mutualistic symbiosis

5–6 Kikuchi et al. (2009) Stinkbugs (14) Gut bacteria (14) Symbiosis

7–8 Arai et al. (2012) Korean crocidurine 
shrew (23)

Hantavirus (23) Pathogenic

9–10 Rector et al. (2007) Felidae (5) Papillomavirus (5) Parasitic

11–12 Merckx and Bidartondo (2008) Plants (5) Arbuscular Mycorrhizal fungus 
(14)

Symbiosis

19–20 Hughes, Kennedy, Johnson, Palma, and Page 
(2007)

Pelecaniform birds (18) Pectinopygus lice (18) Parasitic

21–22 Lanterbecq et al. (2010) Crinoids (16) Myzostomids (16) Symbiosis

27–28 Hosokawa, Kikuchi, Nikoh, Shimada, and 
Fukatsu (2006)

Stinkbugs (7) Gut bacteria (7) Symbiosis

33–34 Peek, Feldman, Lutz, and Vrijenhoek (1998) Deep sea clams (9) Chemoautotrophic bacteria (9) Symbiosis

35–36 Sauer, Stackebrandt, Gadau, Holldobler, and 
Gross (2000)

Camponotus (13) Proteobacteria (13) Symbiosis

37–38 Noda et al. (2007) Termites (16) Gut bacteria (16) Symbiosis

Low concordance

15–16 Guo et al. (2013) Mammals (39) Hantavirus (41) Parasitic

17–18 Choi and Thines (2015) Plants, compositae (61) Downy mildews (61) Parasitic

23–24 Santiago‐Alarcon, Rodriguez‐Ferraro, Parker, 
and Ricklefs (2014)

Non‐passerine birds 
(35)

Haemosporidian (30) Parasitic

25–26 Hall et al. (2016) Psyllid (20) S‐endosymbionts (20) Symbiosis

29–30 Lei and Olival (2014) Bats (9) Bartonella and Leptospira (13) Pathogenic

31–32 Lim‐Fong, Regali, and Haygood (2008) Bugula (5) Candidatus Endobugula (5) Symbiosis

http://timetree.org
https://scholar.google.ca/
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Consequently, we manually evaluated records returned by this query 
that were ranked both according to the default ordering (where ar‐
ticles are ranked by “relevance”, the occurrence of search terms and 
the number of citations in the database), and with respect to publi‐
cation dates. The purpose of this dual‐ordered approach was to re‐
duce the inherent bias of ranking articles by the number of citations, 
which tends to favor articles with earlier publication dates. Next, we 
manually reviewed, filtered, and sorted a selection of article records 
into two categories (Table 2): (a) studies where the reported degree 
of cospeciation/codivergence, based on authors’ assessment, was 
moderate to high, and; (b) studies where the degree was low, with 
phylogenies considered too difficult to reconcile due to extensive 
host switching, duplication, or extinction events. For each study, we 
obtained the sequence data using a batch query of the Genbank ac‐
cession numbers. The resulting collection of 36 trees are summa‐
rized in Table 2 and are referred herein as the “General” collection.

Second, we obtained all of the 19 host‐virus data sets from 
Geoghegan et al. (2017), which we refer to as the “Viral” collec‐
tion. Because the host trees in Geoghegan et al. (2017) were not 
available with branch lengths, we reconstructed these lengths by 
extracting them from time‐scaled trees published at http://www.
timetree.org (Hedges, Dudley, & Kumar, 2006). We retrieved the 
Metazoa (n = 1,456 tips) and Viridiplantae (n = 373 tips) trees from 
this database at the taxonomic resolution of families. We mapped 
host species annotations from the virus phylogenies to these fam‐
ily‐level trees using the NCBI BLAST taxonomy (Sayers et al., 2009). 
When more than one tip in a virus phylogeny mapped to the same 
host family, we collapsed those tips into a single terminal branch as 
in Geoghegan et al. (2017). To maintain consistency with the original 
study, we applied midpoint rooting to the pathogen trees; however, 
we also evaluated outgroup rooting and placement of the root to 
minimize the distance to the host tree, but we found no significant 
effect on our results (for simplicity we restricted these tests to the 
kUn and kLn measures, since we would not expect scaling of branch 
lengths to affect sensitivity to the root).

2.4 | Data processing

Because sequence alignments were not available from the studies 
in the “General” collection, we reconstructed alignments of nucleo‐
tide or amino acid sequence data using MUSCLE (version 3.8.425, 
Edgar, 2004) with the default settings. The resulting alignments 
were visually inspected and refined using AliView (Larsson, 2014). 
We determined the optimal substitution model for each alignment 
using jModelTest 2.0 (Darriba, Taboada, Doallo, & Posada, 2012) 
for nucleotide sequences and prottest3 (Darriba, Taboada, Doallo, 
& Posada, 2011) for amino acid sequences, both of which employ 
the Akaike information criterion for model selection. Phylogenetic 
trees were reconstructed by maximum likelihood using PhyML 3.0 
(Guindon & Gascuel, 2003) and, for the “General” dataset, rooted 
on the branches determined by the respective studies. These trees 
were visually inspected in FigTree (Rambaut, 2012) to verify that the 
result was consistent with the source publications.

2.5 | Distance measures and MP reconciliation

We used the implementation of the Robinson–Foulds (RF) distance 
in the R library phangorn v2.4.0 (Schliep, 2011) with following pa‐
rameters: normalize = TRUE, rooted = TRUE, check.labels = FALSE. 
An extension of RF (KF) incorporates branch length information 
into the comparison of tree topologies. We used the function 
KF.dist in phangorn to calculate this extended measure under the 
default parameters, and the function path.dist with the use.weight 
(branch lengths) option toggled to calculate the pathdist or path‐
distw measures, respectively. In addition, we used the function 
nPH85 in R library NELSI v0.2 (Ho, Duchêne, & Duchene, 2015) to 
calculate the related normalized Penny‐Hendy measure. The Billera 
Homes Vogtmann (BHV) measure was calculated using GeoMeTree 
v1.1 (Kupczok, Haeseler, & Klaere, 2008). Sokal and Rohlf's meas‐
ure as Kendall and Colijn (2016) (KC) was computed with the func‐
tion treeDist in the R library treespace v1.1.3, setting the optional 
lambda parameter to 1 to incorporate branch lengths (KCw). To 
calculate the measures Align, Node, MAST, Trip, and TripL in the 
same framework, we ported the respective implementations from 
the Python script published by Kuhner and Yamato (2014) into a 
custom R package (https://github.com/PoonLab/Kaphi). Maximum 
Parsimony (MP) reconciliation analyses were calculated under 
Duplication‐Transfer‐Loss (DTL) model, where four types of events 
(cospeciation, duplication, transfer, and loss) are considered and rec‐
onciliation of pathogen tree on host tree happens in forward‐time. 
We performed MP reconciliation analysis on the 50,000 simulated 
pathogen trees and HBV tree by using the software package called 
Cheeta (Ma et al., 2017).

A kernel function computes the inner product between two ob‐
jects that have been mapped to a high‐dimensional feature space 
(Aizerman, Braverman, & Rozonoer, 1964). It is a highly efficient 
method for comparing complex objects for which there is a poten‐
tially enormous number of features in each object, because the ker‐
nel restricts its calculation to the comparable tiny subset of features 
that occur in at least one of the two objects. A larger inner prod‐
uct indicates that the objects share a greater number of features; 
hence, the kernel can be used as a measure of similarity. Poon et al. 
(2013) previously adapted a kernel function that operates on tree‐
like objects in natural language processing (Collins & Duffy, 2002) to 
compare phylogenetic trees. The features counted by this kernel are 
subset trees. A subset tree is a fragment of a tree that is rooted at 
an ancestral node and extends down toward its descendants. It does 
not necessarily extend all the way to the tips of the tree – if it does, 
however, then it is referred to as a “subtree” (Moschitti, 2006). The 
tree shape kernel essentially counts the number of times that subset 
trees with the same topology appear in both phylogenies, and then 
penalizes this number by the discordance in branch lengths (Poon 
et al., 2013). This kernel does not utilize tip labels, so we refer to it 
here as the unlabeled kernel distance (kU).

 Furthermore, we extended the kernel method to compare sub‐
set trees on the basis of shared tip labels. We modified the recur‐
sive function used to calculate the kernel score, by substituting an 

http://www.timetree.org
http://www.timetree.org
https://github.com/PoonLab/Kaphi
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indicator function 1n1,n2 in place of the constant 1 when the two 
nodes being compared are both tips (Collins & Duffy, 2002; Poon 
et al., 2013). The function 1n1,n2 assumes the value 1 if n1 and n2 
have the same labels, and otherwise returns 0. We refer to the re‐
sulting distance as the labeled kernel (kL). To generate kernel simi‐
larity matrices for the “General” and “Viral” data sets in this study, 
we first imported the Newick tree strings using the BioPython 
phylo module (Talevich, Invergo, Cock, & Chapman, 2012). Branch 
lengths were subsequently normalized by the mean branch length 
in each phylogeny to facilitate the comparison between host and 
pathogen trees with different overall rates of evolution (indicated 
by “n” suffix for unlabeled and labeled kernels, or kUn and kLn). 
The kernel scores were also normalized, using the cosine method, 
to adjust for differences in the overall size (number of nodes) of 
the respective trees (Collins & Duffy, 2002). Kernel principal com‐
ponents analysis and projections for the resulting matrices were 
generated using the kernlab package in R (Karatzoglou, Smola, 
Hornik, & Zeileis, 2004).

The behavior of the kernel function is controlled by several 
parameters. First, the branch length penalty is determined by a 
Gaussian radial basis function centered at zero with variance param‐
eter �, where a smaller � results in a more severe penalty for subset 
trees with different branch lengths. Second, the kernel function in‐
cludes a decay parameter � that penalizes matching subset trees that 
are too large, which is useful to avoid the “large diagonal problem” 
(Collins & Duffy, 2002). Third, Moschitti (2006) introduced a param‐
eter � to control for subset tree matching, which we renamed s to 
avoid confusion with the Gaussian parameter. If s = 0, then matched 
subset trees must extend to the tips (subtrees) to be counted by the 
kernel. Since our trees have labels only on the tips, we fixed s = 0 
for kL or kLn. Otherwise, the effect of labels was overwhelmed by 
subset tree shapes. Thus, with s = 1, the subset trees do not have to 
include all tips (kU or kUn). This parameter has especially significant 

importance for comparisons of labeled trees, because trees with 
congruent shapes and different sets of labels on their tips may be 
scored as highly similar when s = 1, and completely dissimilar when 
s = 0. Based on previous work (Poon et al., 2013), to evaluate the 
effect of these tuning parameters on the kernel function's sensitivity 
and specificity for simulated data, we initiated our analyses with the 
default unlabeled kernel settings �=0.2, �=2 and s=1. For “General” 
and “Viral collection” experiments, we also evaluated other combi‐
nations of the tuning parameters at the following values: �={0.1,0.3}

, �={0.5,1,5,10,50,100}, and s={0.5}.

3  | RESULTS

3.1 | Edge case simulations

We implemented a reverse‐time model to simulate pathogen trees, 
given a fixed host tree and coevolutionary parameters: the within‐
host speciation (lineage duplication) rate, Λ; migration rate, M; and 
cospeciation probability, P. To examine the response of different dis‐
tance measures (Table 1) to variation in these coevolutionary param‐
eters, we initially adjusted each parameter individually while holding 
the others constant (Table S1). The purpose of these edge case simu‐
lation experiments was to verify the expected effect of each model 
parameter under extreme conditions where their expected influence 
on pathogen tree shape was unambiguous. We also used these ex‐
periments to establish the potential for various distance measures to 
extract information about cospeciation processes by comparing the 
shapes of host and pathogen trees. To examine how pathogen tree 
shapes responded to changes in each model parameters, we plotted 
pathogen and host trees together for a small number of parameter 
values per edge case scenario (Figure 1).

Under the “speciation only” scenario, we varied the speciation 
rate Λ while fixing the migration rate M and cospeciation probability 

F I G U R E  1   Effect of varying model parameters on simulated pathogen trees under edge case scenarios. The host phylogeny is displayed 
with broad gray branches. (left) Decreasing speciation rates Λ={1,0.04,0.001} for green, yellow, and red, respectively; P = 0, M = 0) results 
in a greater frequency of deep speciation events. (center) Increasing migration rates M={0.00055,0.004375,1} for green, yellow, and red, 
respectively; Λ=1, P=1) results in a greater frequency of host switching events. (right) Decreasing cospeciation rates P={1,0.50,0.25} for 
green, yellow, and red, respectively; Λ=10−6, M = 0) results in a greater frequency of deep speciation events. Here, the host tree has been 
purposely left out of the plot because of much shorter timescale compared to the pathogen trees
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P to 0. Decreasing Λ led to a greater chance of duplication events 
where multiple pathogen lineages coexist in an ancestral host spe‐
cies (Figure 1, left panel). Conversely, high values of Λ resulted in 
high concordance between pathogen and host trees. In the “migra‐
tion only” scenario, we varied M and fixed P to 1 and Λ to 1, the 
highest rate that we evaluated in this study. Increasing M resulted in 
greater discordance in shape between the host and pathogen trees 
as pathogen lineages switched into other hosts and immediately spe‐
ciated with the extant pathogen species, which also compressed the 
timescale of the pathogen tree (Figure 1, central panel). Finally, we 
varied P in the “cospeciation only” scenario with M set to 0 and Λ 
set to 10−6. Setting Λ to the lowest value exaggerated the effect 
of reducing P, since any pathogen lineages that did not cospeciate 
with the host became free to speciate on a much longer timescale 
(Figure 1, right panel).

Next, we evaluated the response of the various distance mea‐
sures to individually varying the parameters within each of these 
three scenarios, taking into consideration the means of the distance 
measures for the 100 simulated pathogen trees per combination of 
parameters (Figure 2). We observed substantial variation among the 
different tree distance measures (each scaled to their respective 
empirical range) in response to the within‐host speciation rate, Λ 
(Figure 2, left panel), migration rate (Figure 2, central panel), and co‐
speciation rate (Figure 2, right panel). We characterized this variation 

by the approximate Λ, M, and P values where the trends crossed a 
scaled distance of 0.5 (Λ50, M50, P50, respectively). For the majority 
of distance measures (RF, nPH85, MAST, Align, Node, kLn, kUn, 
pathdist, KC), the Λ50 was about 0.02/pair/Ma (hereafter Ma=million 
years ago). The unnormalized kernel measures kU and kL were more 
responsive at higher speciation rates (Λ50≈0.4). Trip and Sim were 
responsive to lower rates (Λ50≈0.003) and TripL, BHV, KF, KCw, 
and pathdistw changed only when Λ was very low (Λ50≈3.5×10−6

). Most of the distances displayed an approximately monotonic rela‐
tionship with Λ except for Node and Align, which both increased in 
distance as Λ approached 1. Node, Align, KF, and BHV were more 
responsive to slightly lower rates of migration (M50=10−4) than the 
other distances. All the distance measures displayed a monotonic 
relationship with M, with the exception of TripL, BHV, Align, Node 
and KF, which switched around M = 0.01/lineage/Ma. Finally, all 
measures were more responsive to higher values of P (0.8–1.0) but 
with more variation in their response to this parameter than M. For 
example, kUn and BHV sharply declined as P approached 1, whereas 
the other measures displayed a more gradual decline with P. kL was 
the only measure that displayed a roughly linear decrease of scaled 
distance with P. In case, the mean response of measures to model 
parameters masked excessive variation among replicate simulations, 
which would compromise the informativeness of the measure, we 
quantified the coefficient of variance (CV, ratio of standard deviation 

F I G U R E  2   Summary of associations between tree distance measures and model parameters. Each point represents the mean distance 
measure (text label) for 100 replicate simulations, rescaled to range from 0 to 1 to facilitate comparisons between different measures. In the 
left panel, BHV, KF, pathdistw, KCw, and TripL almost perfectly overlap making it difficult to be distinguished
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to the mean) from the same data (Figure S4). First, we observed that 
CVs were near zero for migration rates above 10‐3 and increased ex‐
ponentially below this value for all measures. This was likely caused 
by the low values obtained by all distance measures in the absence 
of migration destabilizing the CV ratio. We tended to obtain low CV 
values for cospeciation probabilities below 0.8, although the dis‐
tance measures TripL, BHV, KF, KCw, and pathdistw (which incor‐
porate branch lengths) resulted in substantially higher CVs in this 
range. Again, a sudden increase in CVs associated with cospeciation 
probabilities near 1 was associated with low distances across mea‐
sures. We obtained similar results for the edge cases varying specia‐
tion rates, except that the CVs tended to destabilize at rates above 
0.01/lineage pair/Ma.

3.2 | Simulation – hypercube sampling

For 500 different points sampled evenly from the parameter space 
defined by Λ, M and P, we used the nested speciation model to simu‐
late 100 pathogen trees on the phylogeny relating hosts of viruses 
in the HBV family, for a total of 50,000 simulations. We emphasize 
that unlike the previous set of experiments, these simulations jointly 
varied all three model parameters. Next, we computed the distance 
measures in Table 1 for every simulated tree to the “observed” 
host tree, and averaged the distances for each of the 500 param‐
eter settings. Figure 3 summarizes the nonparametric (Spearman's 
rank‐order) correlation tests for all pairs of distance measures. We 
observed strong correlations (ρ > 0.95) among a group of the dis‐
tances comprising KC, Trip, MAST, pathdist, kLn, nPH85, and RF, 
and a second group of distances comprising TripL, pathdistw, BHV, 
KF, and KCw. The first group, characterized by an emphasis on tree 
topologies, was strongly correlated with kL as well (0.82< ρ < 0.90). 
Conversely, the second group was characterized by an emphasis on 
branch lengths. We also observed very high correlations between 
Align and Node (ρ = 0.94) and the two unnormalized kernel meas‐
ures kU and kL (ρ = 0.94). Interestingly, Trip and Sim, which had the 
same response in edge case experiments for Λ and M, did not have a 
strong positive correlation (ρ = 0.62).

We used the mutual information to quantify the information 
content of each measure with respect to the three model param‐
eters. Mutual information (MI) quantifies the information that we 
gain about a variable given that can only observe a second variable 
that may be associated with the first. For instance, it is commonly 
used to detect coevolution in genetic sequences (e.g., Dunn, Wahl, 
& Gloor, 2007). Based on our preliminary results with the edge case 
scenarios, we also calculated a second set of MI values where the 
parameter space was constrained to P > 0.8 for M and Λ; and by M < 
10‐4/lineage/Ma for Λ and P (Figure 4). Overall, Sim was the most in‐
formative measure for Λ, while kU and kL were the most informative 
for P. Several measures obtained similar levels of MI for M, including 
kL, RF, and nPH85. Here, we included MP reconciliation analysis as 
well to compare it with the other distance measures; MP number 
of cospeciation events where evaluated with our cospeciation event 
P, MP number of transfer events was evaluated against M and MP 

number of duplication events against Λ. MP reconciliation obtained 
a relatively low level of informativeness for all the parameters.

To examine the response of kU to variation in P and M more closely, 
we generated contour plots for this measure and the popular RF dis‐
tance for comparison (Figure 5). These plots clearly illustrate that the 
information content of either measure on P is dependent on the mi‐
gration rate, and decays as M becomes too high. We note that un‐
like Figure 1, where the speciation rate was fixed, these contour plots 
mask extensive variation in Λ among simulations. Similarly, Figure 6 
illustrates the response of the measures Sim and kUn to variation in Λ 
and M. Again, the information content of either measure on Λ decays 
when M becomes too high; this effect is more conspicuous for Sim.

3.3 | Application to real data sets

Our simulation experiments reveal that the different distance meas‐
ures respond differently to variation in speciation, migration and 
cospeciation rates. Furthermore, none of the distance measures is 
independently capable of conveying substantial information about 
all three cospeciation parameters. Although the simulated data pro‐
vide a “ground truth” to these parameters, the underlying model 
relies on unrealistic assumptions (see Discussion section) that limit 
the biological realism of these data. To assess the response of these 
distance measures to phylogenies reconstructed from actual data, 
we collected published trees or sequences for matched sets of host 
and pathogen species from the literature. We searched the literature 
for studies of host‐pathogen cospeciation where the system was 
qualitatively described as having high or low levels of phylogenetic 
concordance due to cospeciation (the “General” collection, Table 2). 
We used these descriptions to partition the “General” collection into 
two categories.

F I G U R E  3   Summary of correlation matrix of tree distance 
measures. Spearman's rank correlations were calculated for 10,000 
trees simulated under varying model parameter settings, narrower 
and blue‐darker is the bubble, higher is the correlation
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This transition from simulated to actual data highlighted sig‐
nificant obstacles in the use of distance measures to cophylogeny 
studies. First, the measures often require the trees to be the same 
size, i.e., to have equal numbers of tips (Table 1). Distance mea‐
sures that utilize labels, such as the RF distance, also require that 
the trees have the same labels, e.g., that the trees are alternative 
models for relating the same taxa. When simulating the data sets, 
it was trivial to generate pathogen trees that matched the labels 
of the host tree by initializing a single pathogen lineage in each 

host species. The biological reality of host–pathogen associations 
is frequently more complex, however. A pathogen species may be 
found in more than one host species, and a host species may be 
associated with multiple pathogen species. These cases may be 
accommodated by grafting additional branches with zero lengths 
to tips with multiple associations, to enforce a one‐to‐one map 
between the host and pathogen phylogenies (Geoghegan et al., 
2017). Similarly, we grafted zero‐length branches to equalize the 
numbers and labels of tips in each pair of trees in the “General” 
data collection, and then calculated tree distance measures for 
each pair. When examining each distance measure individually, we 
did not observe any clear separation between high‐ and low‐co‐
divergence tree sets in the “General” collection (Figure S1). This 
is consistent with findings from our simulation analysis that the 
distance measures vary substantially in their response to different 
cospeciation parameters. We next used a principal components 
analysis to examine the joint distribution of the general collection 
as a biplot. Because the number of dimensions (distance measures) 
equaled the number of observations (Lee, Zou, & Wright, 2010), 
we excluded distances with consistently low mutual information 
(<0.1) in our simulation experiments over the focused parameter 
space (P > 0.8, M < 10−4), viz., KF, TripL, BHV, KCw and pathdistw. 
The resulting projection (Figure 7) appeared to separate cases of 
low and high codivergence, respectively, with the exception of a 
cluster of high‐divergence cases (1–2, 9–10 and 21–22) and one 
low‐divergence case outlier (31–32). We note that the trees in 31–
32, located in the midst of high‐divergence cases, had the fewest 
tips of any case (n = 5 for both hosts and parasites, Table 2), which 
suggests this outcome was affected by sampling variation. The 
alignment of loadings among the different distance measures in 
the biplot was consistent with our correlation analyses (Figure 3). 
Similarly, the high variable loadings on the first component of the 
biplot – combined with our simulation results – suggest that the 
characterization of phylogenetic concordance in these studies is 
strongly influenced by host switching (migration) events.

One of the unique features of the kernel methods compared to 
the other distance measures in this study is that they can be applied 
to unlabeled trees. This enables us to not only compute a distance 
between a pair of host and pathogen trees, but we can also compute 
distances between a host tree and pathogen trees from other pair‐
ings. In other words, it is not possible to compute the RF distance be‐
tween the trees relating crinoids (sea lilies, Lanterbecq, Rouse, and 
Eeckhaut (2010), from couple 21–22) and the gut bacteria of termites 
(Noda et al. (2007), from couple 37–38) even though these trees are 
the same size. We can therefore embed all the trees into a common 
feature space defined by a given kernel (Figure S2). We exploited this 
characteristic to test whether pairs of trees in the general collection 
were significantly closer together in this feature space than expected 
by chance with a randomization test. We drew 18 random pairings 
of host and pathogen trees from the “General” collection, calculated 
the mean unlabeled kernel score (kU), and repeated this procedure 
to obtain 1,000 replicate means to approximate a null distribution. 
The mean kernel score for the actual tree pairs (E(kU) = 0.90) was 

F I G U R E  4   Barplots summarizing the mutual information of 
distance measures on the cophylogeny model parameters. The 
mutual information I was calculated by discretizing each distance d 
and model parameter � into 10 bins respectively, for a total of 100 
bins in the joint distribution p(d,�), and then computing the sum 
∑

i

∑

j p(di,�j) log (p(di,�j)∕(p(di)p(�j))). If I=0, then d is independent of 
�. Two values of I were computed for each distance. The left values 
were computed from the entire parameter space, whereas the right 
values were constrained as follows: (Λ) low speciation, M < 10−4; 
(M) high cospeciation P > 0.8, and; (P) low migration, M < 10−4. MP, 
Maximum Parsimony reconciliation
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located in the 99.9 percentile of this distribution, indicating that the 
actual pairs were significantly closer in the kU‐defined space than 
expected by chance (p=2.0×10−4).

Finally, we examined a second collection, the “Viral,” of host and 
pathogen trees corresponding to 19 different virus families from a 
previous study (Geoghegan et al., 2017). Since the host trees were 
derived from a common time tree, we generalized the host tip labels 
to the family taxonomic level, making it feasible to compare nonas‐
sociated trees with both unlabeled and labeled kernels. In addition, 
branch lengths in the host trees were scaled in time to millions of 
years, whereas the pathogen trees were scaled to evolutionary time 
(expected numbers of nucleotide substitutions). This difference 
made it necessary to renormalize branch lengths in both host and 
pathogen trees (dividing by mean branch length) for kernel‐mediated 
comparison (kUn and kLn). Figure S3 comprises two PCA plots from 
the analysis of the similarity matrices using the unlabeled (kUn, left 
panel) and labeled (kLn, right panel) kernel functions, respectively. 
Again, we ran randomization tests for this collection using either 
kUn and kLn. When we ignored labels in comparing tree shapes, the 
mean kernel score for the actual tree pairs was E(kUn)  = 0.78 and 
located in the 33.1 percentile (p=0.67) of a randomized null distri‐
bution, indicating that the actual pairs were not significantly closer 
in the kUn‐defined space than expected by chance. We obtained 

substantially different results with a labeled kernel: the mean score 
(E(kLn)=0.19) was located at the 99.9 percentile of the randomized 
distribution (p=7.0×10−4), indicating that the actual pairs were 
significantly closer in this feature space than expected by chance. 
Geoghegan et al. (2017) previously reported that the phylogenies 
of DNA viruses and their hosts tended to be more concordant than 
RNA viruses, which was attributed to their relatively higher rates of 
cospeciation and lower rates of migration. Here we observed the 
same trend for families of DNA viruses, especially Hepadnaviridae, 
Poxviridae and Papillomaviridae. However, we also observed signif‐
icant clustering for the RNA virus families Orthomyxoviridae and 
Potyviridae. In the latter case, clustering was most likely driven by 
the unique distribution of these viruses in plant host species. Using 
nonparametric Wilcoxon tests, we found no significant difference 
in kUn distances separating DNA or RNA virus trees from their re‐
spective host trees (p = 0.17), but significantly greater labeled (kLn) 
distances for RNA viruses (p = 0.02).

4  | DISCUSSION

There is a deep literature on developing distance measures for the 
comparison of phylogenetic trees in order to quantify biological 

F I G U R E  5   Contour plots summarizing 
the response of the unlabeled kernel 
(kU) and Robinson‐Foulds distance (RF) 
to variation in cospeciation probability 
(P) and migration rate (M). Each point 
represents the average of 100 replicate 
simulations for a given parameterization 
of the cophylogeny model. The area and 
coloring of points is proportional to the 
distance measure
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processes such as speciation (Kuhner & Yamato, 2014; Mooers, 
1997). Multiple quantitative frameworks for the comparison of 
phylogenetic trees have also been developed for the study of co‐
phylogeny, to determine whether the two sets of organisms share a 
coevolutionary history (e.g., Doyon et al., 2011; Huelsenbeck et al., 
2000). We therefore anticipated extensive applications of tree dis‐
tances in the literature for analyzing cophylogeny or coevolution. 
However, our survey on papers citing the tree distance measures 
found only eight studies that have made use of measures for coevo‐
lutionary studies (0.002% of all studies reviewed, Table 1), which is 
a surprising outcome given the similar objectives of the respective 
fields. Instead, the comparison of trees in coevolutionary studies 
had frequently relied on other methods where a tanglegram is either 
assessed qualitatively by the investigator, or analyzed with a recon‐
ciliation method, which is computationally complex for probabilistic 
reconciliation or requires a subjective assignment of cost functions 
to the respective coevolutionary events (e.g., cospeciation, host 
switching, and extinction) for parsimony‐based reconciliations. The 
general objective of our study was to assess the potential utility of 
distance measures for cophylogenetic studies by comparing differ‐
ent measures on simulated and real data sets.

In this study, we did not attempt to evaluate a comprehensive 
set of all available distance measures; however, we endeavored to 
evaluate measures in relatively common use, augmented with a small 
number of kernel‐based measures recently proposed by our group. 

In addition to the measures in our study, there is a large number of 
distance measures that can be constructed from summary statistics 
such as Sackin's index (Blum & François, 2005). A summary statistic 
reduces a tree down to a single number that quantifies a biologically 
significant aspect of tree shape such as asymmetry (Mooers, 1997). 
Thus, we can obtain a distance from a summary statistic by taking 
its difference between the host and pathogen trees. However, these 
summary statistics usually do not incorporate tip labels, placing 
greater emphasis on similarity in tree shapes, and they can be dif‐
ficult to normalize for comparing pairs of trees with different sizes 
(Pompei, Loreto, & Tria, 2012). In addition, there are several spectral 
methods that can be applied to trees by interpreting these objects 
as graphs (Hendy & Penny, 1993; Lewitus & Morlon, 2015) and the 
further development of tree distances continues to be an active area 
of research (Colijn & Plazzotta, 2017; Kendall & Colijn, 2016). It is 
therefore not feasible to evaluate all possible distances and for our 
purposes, we have only evaluated a representative subset of dis‐
tance measures, including commonly used measures such as the RF 
distance.

Simulation experiments are an essential step to evaluate the 
response of a measure to variation in the data because the under‐
lying parameters are known without ambiguity. However, the in‐
herent assumptions of the simulation model may limit our ability 
to extrapolate from that analysis to real applications. In this study, 
we have taken the unusual approach of simulating the pathogen 
trees backwards in time along a fixed host tree. Our motivation for 
this approach is that it is more efficient to start from “sampled” lin‐
eages and converge back in time to their common ancestors, then 
to simulate forward from a single ancestor and discard cases that 
are not compatible with the expected endpoints. Simulating the 
pathogen tree forward in time requires the model to parameterize 
lineage extinction events, and requires the user to discard a poten‐
tially large number of simulations that do not match the observed 
number of lineages in the present or simply go extinct before any 
lineages can become sampled. We decided to use a reverse‐time 
simulation approach to avoid the computational cost of running 
simulations that would eventually be discarded. In addition, our 
speciation parameter (lineage duplication) is effectively the net rate 
of speciation minus extinction, in comparison to their forward‐time 
equivalents. However, this approach makes it difficult to incorpo‐
rate unobserved extinction events, although inferring these events 
is already difficult due to the sensitivity of extinction rate estimates 
to model misspecification (Rabosky, 2010). In addition, we made a 
simplifying assumption that a single pathogen lineage was sampled 
per host. This assumption constrained host switching events in our 
model to be complete, such that the parasite lineage in the new host 
species becomes a distinct species from the original lineage by the 
sampling time (Johnson, Adams, Page, & Clayton, 2003). Although 
it is straight‐forward to model the sampling of multiple pathogen 
lineages in a host species within our reverse‐time framework, we 
sought to minimize the complexity of the parameter space to eval‐
uate in our simulation experiments. Similarly, we assumed complete 
sampling of all extant pathogen lineages.

F I G U R E  7   Biplot of a principal components analysis on distance 
measures for the general dataset. Each label represents a pair of 
host and pathogen trees that were characterized in the respective 
sources as cases of high (red) or low (blue) codivergence (see also 
Table 2). The gray vectors represent the variable loadings for the 
respective distance measures
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Our simulation experiments neglect the uncertainty in recon‐
structing phylogenetic trees from observed data. In other words, we 
have applied the distance measures directly to the “true” phylogenies 
generated under varying model parameters. This was a necessary 
simplifying assumption to reduce the number of simulation parame‐
ters, including the length of the sequence alignment, extent of miss‐
ing data, rate of evolution, and models of nucleotide substitution, 
insertions, and deletions. Our primary objective was to evaluate the 
relative utility of different distance measures under idealized con‐
ditions. One should expect that this additional uncertainty should 
generally reduce the information that any given distance measure 
contains about the underlying model parameters. The problem of 
reconstructing accurate phylogenies affects all reconciliation meth‐
ods, although Bayesian methods are expected to be more robust by 
sampling trees from the posterior distribution. Thus, a possible and 
simple method to ameliorate phylogenetic uncertainty would be to 
apply distance measures to random samples of host and parasite 
trees from a Bayesian analysis, although this approach would face 
the same problem of slow convergence for large data sets.

Another significant drawback to using distance measures is that 
they are too simple, reducing the information content of phyloge‐
netic trees down to numbers and thereby discarding potentially 
useful information. However, this drawback makes it even more 
important to determine which distance measures are more useful 
and how different measures can be most effectively combined to 
complement each other's strengths and weaknesses. Our simulation 
analyses of tree distance measures demonstrated that some mea‐
sures were more informative than others with respect to specific co‐
evolutionary parameters. For example, the Sim measure (Hein et al., 
2004) was the most responsive to variation in speciation rates, and 
the unlabeled kernel (kU) to variation in cospeciation probabilities. 
In addition, we tended to observe lower levels of mutual information 
between the model parameters and the numbers of corresponding 
events reconstructed by maximum parsimony, in contrast to those 
obtained with distance measures. Of the three parameters, the high‐
est mutual information obtained with maximum parsimony recon‐
ciliation was obtained for the cospeciation probability, which was 
comparable to the distance‐based methods on average.

The measures evaluated in this study were frequently correlated 
with each other, but the correlations were seldom so extreme that 
the measures were essentially redundant, e.g., the group comprising 
BHV, KF, pathdistw, KCw, and TripL, which compare both topolo‐
gies and branch lengths (Figure 3). We also determined that distance 
measures were more informative about the model parameters when 
the underlying parameter values were not so extreme that the host 
tree has essentially no influence on the shape of the pathogen tree; 
i.e., when the migration (host switching) rate was too high, or when 
the cospeciation probability was substantially less than one and the 
pathogen speciation rate was near zero (Figure 1). These scenarios 
would make it difficult to meaningfully quantify cophylogeny by 
any method. If the host switching rate is exceedingly high, then the 
pathogen species are “cosmopolitan” and freely utilize whichever 
host species they encounter, which would negate any influence of 

cophylogenetic effects on the pathogen phylogeny. In the second 
scenario, the pathogen speciation rate is so low that pathogen lin‐
eages speciate on a much longer timescale than their hosts, making 
the distribution of speciation events independent of the host phy‐
logeny. This scenario may arise when pathogen gene flow is unre‐
stricted among host species (Johnson et al., 2003).

Next, we applied these measures to two collections of phylog‐
enies that were reconstructed from actual biological data. In the 
“General” collection of coevolutionary studies across all taxonomic 
groups, we retrieved a total of 18 studies – including parasitic and 
symbiotic associations – where authors described the trees as hav‐
ing a high or low degree of concordance. Only six of these studies 
reported low concordance. These assignments were largely based 
on a subjective qualitative assessment of phylogenetic concordance, 
and there are no quantitative criteria that have been applied gener‐
ally across taxa. Given the broad diversity of taxonomic groups being 
studied, it is unlikely that any one of the coevolutionary processes 
is consistently determining either outcome. It is also not feasible to 
determine with complete certainty how each process contributed 
to the varying levels of concordance across these empirical studies. 
Nevertheless, the projection of these trees into a parameter space 
defined by the distance measures revealed some clustering of stud‐
ies reporting high concordance. This result suggests that investiga‐
tors are describing concordance in a consistent way across different 
biological systems, and that these subjective assessments can be at 
least partly quantified using distance measures.

Reconciliation methods implicitly assume that the pathogen 
phylogeny is the outcome of a stochastic process that has unfolded 
along the host phylogeny, shaped by events such as cospeciation or 
migration that have occurred at different rates. The distance‐based 
approach that we have evaluated in this paper is analogous to fitting 
a nonparametric model to the shape of the pathogen phylogeny, con‐
ditional on the host phylogeny – none of these processes is explicitly 
modeled by any of the distances evaluated in this study. Although 
many methods employ maximum parsimony to infer these events, 
the problem of reconciliation lends itself to probabilistic inference 
through maximum likelihood (Huelsenbeck, Rannala, & Yang, 1997) 
and Bayesian (Huelsenbeck et al., 2000) frameworks, which have al‐
ready been developed for restricted scenarios, e.g., no speciation 
within hosts (Paterson & Banks, 2001).

The ideal Bayesian approach would be to jointly sample the 
host and pathogen phylogenies and reconstructions of coevolu‐
tionary events given the sequence and associational data – how‐
ever, the enormous model space this would entail would likely limit 
this approach to small data sets. There is growing interest across 
disciplines in using simulation‐based methods, e.g., approximate 
Bayesian computation (ABC), to estimate parameters instead of 
directly calculating model likelihoods (Tavaré, Balding, Griffiths, 
& Donnelly, 1997). The basic premise of ABC is that fitting can 
proceed by adjusting the parameters of the model until it yields 
simulations that resemble the observed data. Although ABC is intu‐
itively appealing and relatively straight‐forward to implement, it is 
challenging to find similarity measures for comparing simulated and 
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observed trees that are efficient to compute and sufficiently infor‐
mative to estimate the parameters. Baudet et al. (2014) recently 
used an ABC approach to cophylogeny using forward‐time simula‐
tion of pathogen trees on a fixed host phylogeny, and employed a 
single distance measure based on the number of tip labels shared 
between the largest isomorphic subtrees. Their results indicated 
a general lack of parameter identifiability, such that a given pair 
of trees can be explained equally well by a broad range of event 
combinations. In another recent paper, Alcala, Jenkins, Christe, and 
Vuilleumier (2017) applied multiple network statistics (e.g., degree 
size) to simulated tanglegrams to estimate host switching and co‐
speciation rates using a rejection ABC method. We anticipate that 
the analysis of distance measures presented here will provide an 
important foundation for the further development of ABC‐based 
methods as a promising approach to the study of cophylogeny. 
However, ABC is but one potential application of distance measures 
in this context. Studies of cophylogeny that involve sets of host 
and pathogen species often make a qualitative statement about 
whether the corresponding trees are concordant or discordant. 
Using distance measures to quantify the extent of discordance can 
provide an objective and reproducible framework to measure dis‐
cordance that is comparable across systems and studies.
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