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ABSTRACT
Despite the advances in surface-display systems for directed evolution, variants with high affinity are not 
always enriched due to undesirable biases that increase target-unrelated variants during biopanning. 
Here, our goal was to design a library containing improved variants from the information of the “weakly 
enriched” library where functional variants were weakly enriched. Deep sequencing for the previous 
biopanning result, where no functional antibody mimetics were experimentally identified, revealed that 
weak enrichment was partly due to undesirable biases during phage infection and amplification steps. 
The clustering analysis of the deep sequencing data from appropriate steps revealed no distinct 
sequence patterns, but a Bayesian machine learning model trained with the selected deep sequencing 
data supplied nine clusters with distinct sequence patterns. Phage libraries were designed on the basis of 
the sequence patterns identified, and four improved variants with target-specific affinity (EC50 = 80– 
277 nM) were identified by biopanning. The selection and use of deep sequencing data without 
undesirable bias enabled us to extract the information on prospective variants. In summary, the use of 
appropriate deep sequencing data and machine learning with the sequence data has the possibility of 
finding sequence space where functional variants are enriched.
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Introduction

Accumulation of information on native proteins that is 
obtained by genomics and proteomics analyses may enable 
the discovery of proteins with desired functions,1 and muta-
genesis assists in generating novel functions not found in 
native proteins.2,3 In the mutagenesis approach, several 
amino acid residues in a selected native protein are randomly 
altered to make a variant library, and variants with desirable 
phenotypes are selected under evolutionary pressure. 
However, the number of possible sequences generated by 
mutagenesis (sequence space) becomes dramatically expanded 
with the increase in the number of mutated residue positions, 
so the sequence space is often too large to experimentally 
prepare the variant library or screen all the variants.3

Surface-display systems linking genotype and phenotype 
have been used to generate proteins with molecular recogni-
tion function. In this system, a genetic library is prepared from 
an immune library or a library prepared by random mutagen-
esis of a fragment of a gene encoding a scaffold protein, and the 

encoded variants are displayed on phage,4 yeast,5 ribosome,6 or 
mRNA.7 Nonfunctional variants in a display library are elimi-
nated during selection called biopanning, and the remaining 
variants are screened for their target binding affinity. At pre-
sent, libraries containing 109–13 variants can be prepared,3 and 
degenerate codons4 and trinucleotide cassettes8 are used to 
limit the expansion of library size, so that those variants with 
high affinity for the target can be efficiently obtained. 
However, the functional variants obtained are not always the 
best in the designed sequence space.

Recently, machine learning has been combined with direc-
ted molecular evolution.9–19 For improving or changing the 
function of protein interested, the sequences and functions of 
the variants in the initial mutagenesis library were evaluated 
and used as training data to construct a machine learning 
model that predicts the function from the sequence. By using 
the model, a second-round library that contains predicted 
variants to have improved or changed functions is generated. 
This method has successfully enabled us to design a library 
with high enrichment of desirable variants in the directed 
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evolution of various proteins, including fluorescent 
proteins,11–13 enzymes,8,14–17 and others.18,19 In the field of 
antibody engineering, deep sequencing data has been used as 
training data of machine learning. Deep sequencing analysis of 
the surface-display system supplies a large number of 
sequences with their antigen-binding properties, and then, 
a machine learning model trained with the deep sequencing 
data has proposed sequences with higher target affinity than 
that of the experimentally selected variants.20–24

For machine learning to successfully predict high functional 
variants, the experimental data where truly functional variants 
are distinguished is appropriate. In the case of a phage display 
approach combined with deep sequencing analysis, the var-
iants with high affinity would be preferred to be more enriched 
than nonfunctional variants. However, the phages bearing 
target-unrelated variants are often propagated in biopanning, 
which may inhibit propagation of the phages bearing target- 
related variants.25,26 This situation causes weak enrichment of 
functional variants and truly functional variants are hardly 
distinguished in the variant libraries after biopanning.

Antibody mimetics are small target-binding proteins with 
non-immunoglobulin (Ig) scaffolds.27–30 These small antibody 
mimetics can be prepared by means of Escherichia coli (E. coli) 
expression and they are advantageous to fuse with other pro-
tein domains.28,30 For example, they can be fused with full- 
length antibodies to generate multi-specific antibodies, which 
is a modality for the next generation of immunotherapy.31–33 

To functionalize a small protein, several amino acid residues 
are randomized to generate a variant library, and surface- 
display approaches are used to select the variants with target- 
specific affinity.27 However, an immune library cannot be 
prepared, and scaffold proteins are prone to destabilization 
by randomization.34 Consequently, functional variants are 
less likely to be enriched in the panned libraries of antibody 
mimetics than those of antibodies.

Here, we present a possibility of generating functional non- 
Ig scaffold proteins from the information of the “weakly 
enriched” libraries, i.e., where functional variants are weakly 
enriched, by deep sequencing and machine learning. We used 
a series of phage pools displaying a mutated non-Ig scaffold 
protein in which no prospective variants with target-specific 
affinity were experimentally identified (weakly enriched 
library). The phage pools have been obtained in the biopan-
ning process against galectin-3, which can be a potential 

therapeutic target for cancer treatment and diagnostic biomar-
kers for several diseases, including heart failure and 
cancers.35,36 By using deep sequencing analysis to the weakly 
enriched library, we evaluated sequence frequencies at various 
timepoints in the biopanning, and appropriate data was cho-
sen for clustering analysis. The clustering analysis revealed no 
distinct sequence patterns, but a Bayesian machine learning 
model trained with the selected deep sequencing data supplied 
several clusters with distinct sequence patterns. Selection from 
the phage libraries based on the patterns led to the discovery of 
improved variants with target-specific affinity. This study 
shows the possibility of deep sequencing and machine learning 
for designing a refined library with prospective variants in the 
surveyed sequence space.

Results

Deep sequencing analysis of biopanned phage display 
libraries

Here, we used a series of phage pools displaying 
mutated second domain of human RNA-binding protein 
(Protein Data Bank ID: 2u2f), which have been previously 
biopanned.34 Two adjacent loop structures (N11–N14 and 
M66–K72) were randomized (Figure 1) with degenerate 
codons designed to mimic an amino acid frequency of anti-
body complementarity-determining regions (CDRs),37 and the 
variants were displayed on phages.34 To select the functional 
variants, the phage bearing 2u2f variants (library size: ~109) 
were biopanned against galectin-3 in four rounds. Of ~200 
clones screened from the phage pools in the last two rounds, 
only one variant with low target specificity was obtained from 
the third pool (Figure S1a). When produced in E. coli, this 
variant tended to form soluble aggregates (Figure S1b), and the 
monomeric form was partially denatured (Figure S1c). From 
the result that no target-specific variants were discovered from 
the screening of 200 clones, we considered that this panned 
library was weakly enriched.

The flow chart of the phage display biopanning is shown in 
Figure 2. In each round, we 1) selected target-bound phages, 2) 
infected E. coli with selected phages, and 3) amplified phages in 
E. coli. Besides the initial phage library, the sub-libraries of 
eluted phages, infected E. coli, and amplified phages (Figure 2) 
were used in deep sequencing analysis. Raw sequences were 

Figure 1. Three-dimensional structure of the entire sequence of 2u2f. The two randomized loops are in red.
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Figure 2. Workflow of biopanning. At each round, 1) target-bound phages were selected, 2) E. coli was infected with selected phages, and 3) phages were amplified in 
E. coli. Sub-libraries are surrounded by colored ellipses.

Figure 3. Distribution of unique sequences in each sub-library. The frequency of unique sequences is shown for single reads in gray, 2–10 reads in blue, 11–100 reads in 
green, 101–200 reads in yellow, 201–1000 reads in brown, and >1000 reads in red.
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filtered and trimmed according to their quality, and the for-
ward reads were merged with the corresponding reverse reads. 
The remaining 417,000–582,000 reads were translated, and 
sequences with any mismatches in the framework regions 
were excluded. These steps yielded 260,000–365,000 sequences 
per sub-library (Table S1). The number of sequences in the 
library of initial phages was 318,894, which is 0.03% of the 
initial library, and the coverages of deep sequencing data for 
the sub-libraries (eluted phages, infected E. coli, and amplified 
phages in each round) were 0.012–60, assuming that the 
diversity of sub-libraries corresponds to the number of output 
phages in Table S2.

The frequency distributions of variants in the sub-libraries 
in each round are shown in Figure 3. All the unique sequences 
in each sub-library were grouped by their read counts (1 read, 
2–10 reads, 11–100 reads, 101–200 reads, 201–1,000 reads, and 
over 1,000 reads), and the frequencies of each group were 
calculated. The frequency of multiple-read unique sequences 
increased in the sub-library of eluted phages in the second 
round in comparison with that of amplified phages in the first 
round, indicating the enrichment of certain unique sequences 
by the selection of target-bound phages. A similar distribution 
change was observed in the sub-libraries between eluted 
phages in the third round and amplified phages in 
the second round.

However, the distributions of unique sequences at the infec-
tion steps differed from those of eluted phages: the frequency 
of multiple-read sequences increased in the first round, 
whereas those of single-read sequences increased in 
the second–fourth rounds. In the appearance frequency 
changes of amino acids at the infection steps (Figure S2a), 
the appearance frequency at all the residue positions were 
noticeably changed in the first round, and stop codons were 
gradually enriched in the second and third rounds. The infec-
tion of phages into E. coli caused the bias unrelated to target- 
binding selection. In particular, the infection of phages 
induced the enrichment of the phages bearing no variants. In 
the comparison between the sub-libraries of infected E. coli 
and amplified phages, the frequency distribution of unique 
sequence and the frequency appearance changes of amino 
acids showed undesirable bias in the first round, but not in 
other rounds (Figure 3 and S2b). Consequently, undesirable 
bias was caused at the infection and amplification steps in the 
first round and at the infection steps in other rounds. Notably, 
the phages bearing no variants tended to be enriched in the 
undesirable bias after the first round.

Round-to-round correlation plots between sequence fre-
quencies at the infection steps in the adjacent rounds have 
been used to assess library enrichment during biopanning.20,24 

We made two types of correlation plots: conventional round- 
to-round comparison of the infection steps (Figure S3a) and 
the round-to-round comparison before and after the selection 
step without the influence of infection (Figure S3b). We 
observed no apparent enrichment in the former and a slight 
enrichment in the latter. In the correlation plot of the infection 
steps between first and second rounds, the sequences whose 
frequencies were decreased in the second round were present, 
but the decrease was not observed in other plots (Figure S3a): 
in the first round, the phages containing their sequences 

survived at the target-binding and wash steps, and they were 
infected, but they disappeared in the sub-library of infected 
E. coli in the second round. The phages with the sequences 
appearing in the unenriched area in the first round may have 
disadvantages for amplification in E. coli. These results indi-
cate that the slight enrichment at the selection step was too low 
to overcome the sequence distribution in the undesirable bias 
caused by the infection of phages into E. coli. We considered 
that the enrichment at the selection step is correlated with 
target-binding function.

The clustering analysis with the deep sequencing data of the 
input and output sub-libraries (i.e., amplified and eluted 
phages, respectively) was tried to characterize the enrichment. 
Because no positive variants had been previously identified in 
the fourth round,34 we used the sequence data of the second 
and third rounds. The blastp38 was used to compare the top 
10,000 sequences, and they were clustered by Cytoscape39 on 
the condition that the cluster size is more than three. 
Consequently, they were clustered to 748 (second) and 775 
(third), the largest cluster contains only 84 (second) and 72 
(third) sequences, and the number of unclustered sequences 
was 4,323 (second) and 3,433 (third). The number of the 
clusters containing either of the top 1,000 sequences was 194 
(second) and 302 (third), indicating that the clusters contain 
only 2 ~ 3 top 1,000 sequences on average.

Machine learning with training data

We constructed a machine learning model that predicts the 
binding affinity of 2u2f variants from their amino acid 
sequences (see Methods). A variant with higher enrichment 
in both the second and third rounds was postulated to have 
higher binding affinity. Accordingly, the performance score of 
each variant was defined based on its sequence frequencies in 
the second and third rounds and used as the regression label 
(see Methods). To calculate sequence frequencies reliably, we 
only used sequences with at least two reads in all input and 
output sub-libraries in the second and third rounds, which 
yielded 3,925 sequences for the training data. In the clustering 
analysis on the cluster size of more than three, the top 300 
sequences according to the regression label, whose perfor-
mance score was more than 0.5, were clustered to seven. The 
largest cluster of them contained only four sequences and the 
number of unclustered sequences was 277. Recently, we 
applied a Gaussian process to the directed evolution of pro-
teins and a library with high enrichment of desirable variants 
was successfully designed.8,11 The Gaussian process model was 
trained on this dataset and used to predict high score variants. 
To save calculation time, the sequence space size for prediction 
(prediction space) was limited by defining the amino acids 
appearing at each position: the amino acids whose frequencies 
increased in both the second and third rounds at each position 
were applied in the prediction space (Figure S4). The size of 
the prediction space was defined as 9.2 × 108. Consequently, in 
the training data, no sequences composed of only the amino 
acids applied for the prediction spaces were present, and there 
were three sequences where the amino acids were used at 10 of 
11 positions. Aromaphilicity index40 was applied to the amino 
acid descriptor for training the Gaussian process model.
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By using the trained model, we ranked all the variants in 
the prediction space except for the variants used as training 
data by the probability-of-improvement score (Data Table 
S1). A variety of amino acids were proposed in the top 
10,000 sequences at each position, except for the thirteenth 
position where tyrosine and glycine dominated (Figure 4a). 
The comparison of the top 1,000 predicted sequences with 
the training data by blastp (with the e-value threshold of 
0.1) showed that 375 predicted sequences resembled 13 
sequences in the training data: 62% of the top 1,000 

predicted sequences was not comparable to the training 
data. To characterize the highly scored sequences, we 
used blastp to compare the top 10,000 sequences 
(Figure 4a) and identified nine clusters by Cytoscape. 
Intriguingly, each of the clusters had nearly unique amino 
acid sequences in the loop of N11–N14, showing their 
distinct sequence patterns (Figure 4b). The prediction 
ranks of the sequences in the clusters were not evenly 
scattered (Figure 4c), but each cluster had a distribution 
with different averages. Since the clusters 1, 3, 4, and 6 

Figure 4. Amino acid frequencies and rank distribution of the sequences predicted by machine learning. (a) Amino acid frequencies of top 10,000 sequences predicted 
by machine learning, visualized by WebLogo.41 (b) Amino acid frequencies of clustered sequences. (c) Rank distribution of each cluster. Black arrows indicate clusters 
containing the top 1,000 sequences.
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contained the top 1,000 sequences, we decided to design 
machine-learning-guided libraries based on these clusters.

Construction of a machine-learning-guided mutagenesis 
library

We constructed the phage libraries with the 2u2f variants in 
clusters 1, 3, 4, and 6. We designed degenerate codons to reflect 
the amino acid frequency at each position in each cluster. Amino 
acids with less than 5% appearance frequency were eliminated 
(Figure S5), but the constraints of degenerate codon design led to 
the appearance of some amino acids absent in the clusters. 
Consequently, each sequence space created by the amino acids 
appearing in the designed library (~105) was more than 100 times 
the size of that of the amino acids appearing in the corresponding 
clusters (~103). Therefore, phage libraries with a number of 
variants (> ~108) sufficient to cover the sequence spaces of the 
designed library were prepared (Table S3).

Each library was biopanned against galectin-3 with three 
rounds. The number of phages recovered from each round was 
relatively large in the first round (Table S4, Figure S6). We 
considered that this result showed more enrichment of func-
tional variants in the machine-learning-guided libraries than 
in the initial library. Subsequently, 88 clones were isolated in 
the third round. Some phages bound the target in the phage 
enzyme-linked immunosorbent assay (ELISA) (20 in cluster 1, 
14 in cluster 3, 20 in cluster 4, and 9 in cluster 6). The 2u2f 
variants displayed on the phages were separately expressed in 
E. coli and named individually, e.g., variant 1A1 from cluster 1 
was in well A1 of a 96 deep-well plate. On Blue Native PAGE, 
several variants showed bands with higher molecular weight 
than that of the monomer, indicating aggregation, but 12 of 
them (6 in cluster 1, 2 in cluster 3, and 4 in cluster 4) appeared 
to be monomeric (Figure. S7). These 12 variants were purified 
by immobilized metal ion affinity chromatography (IMAC) 
and size exclusion chromatography (SEC). The SEC confirmed 
that they were mainly in a monomeric form (Figure S8) and 
the fractions of monomers were collected and the purified 
monomers were used for the further experiments. In ELISA, 
four variants of 1E2, 1H2, 3B5, and 4H5 bound specifically to 
galectin-3, but not to NeutrAvidin, which was used for immo-
bilizing galectin-3 on an ELISA microplate (Figure 5a, Table 
S5). Further, the four candidate variants showed little binding 
to other negative targets: streptavidin (pI = 5.5), lysozyme from 
chicken egg (pI = 11), bovine serum albumin (pI = 4.7), and 
receptor-binding domain of SARS-CoV-2 (pI = 8.9) (Figure 
S9). This result indicates that the binding of 2u2f variants was 
not driven by nonspecific charge interaction with negatively 
charged galectin-3 (pI = 9.4). The EC50 values were 93 nM for 
1E2, 80 nM for 1H2, 277 nM for 3B5, and 201 nM for 4H5 
(Figure 5b). The circular dichroism (CD) spectra of the four 
variants were similar to that of wild-type 2u2f (Figure 6), 
indicating similarity of the secondary structures. Thus, 
a machine learning model trained with deep sequencing infor-
mation produced from a weakly enriched library, where no 
functional variants had been experimentally identified, 
resulted in the discovery of several functional and correctly 
folded variants with target selectivity. For a more quantitative 
binding analysis, we applied SPR measurements, but little 

binding response was observed for all the selected variants, 
potentially because the immobilized form of the target on the 
sensor chip interferes with the binding to the target.

The four variants with specific affinity to the target were 
not contained in the top 10,000 sequences predicted by 
machine learning because 2 ~ 4 residue positions in the 
variants had the amino acids that do not appear in the 
sequence space of each cluster predicted by machine learning. 
However, the variants where the amino acids at the positions 
are altered to those that appear in the identified clusters (left 
in Figure S5) were contained in the top 10,000, and they 
showed relatively high performance scores (Table S6, Figure 
S10). The five variants highly ranked among the variants 
resembling 4H5 (predicted rank: 1, 4, 9, 20, and 42, Figure 
S11a) could be prepared in monomeric form (Figure S11b), 
and they bound to the target, but less specific affinities than 
4H5 were observed (Figure S11c). These results suggest that 
variants with less specific affinity might be predominant in 
the sequence space predicted by machine learning. 
Enlargement of the sequence space of the designed library 
by the constraints of degenerate codon design resulted in the 
discovery of the variant with specific affinity to the target. In 
the correlation plot between measured affinity strength and 
top % in the performance score ranking for all the variants in 
the sequence space of the designed libraries (Figure S12), the 
four variants did not show high performance score, but the 
affinity strength showed a positive correlation with the order 
of performance score. The machine learning approach with 
deep sequencing data may be influenced by the factor of 
nonspecific binding, but the scores of the variants that have 
specific binding to targets might show a correlation with 
affinity strength.

Discussion

Library size is critical for the probability of discovering 
a variant with high target affinity in a surface-display 
system.3 Depending on the system, 109–13 phenotypes can be 
prepared in a library, so a variant library can cover all possible 
variants with 7–10 residues being randomized. The use of 
degenerate codons and trinucleotide cassettes in genetic 
library preparation enables us to decrease the number of 
amino acids at mutagenized positions,4,9 which limits library 
size expansion by excluding undesirable variants.

These advances increase the probability of obtaining 
a variant with high affinity for the target. However, the pre-
pared library does not always cover the size of the surveyed 
sequence space, so the selected variant may not be the one with 
optimal affinity, or no variant may be selected at all. Machine 
learning has been applied to surface-display systems to predict 
the sequence–function landscape.10,11 This approach can 
potentially discover the variant with optimal affinity in the 
surveyed sequence space. The round-to-round enrichment 
data from the biopanning of a phage pool displaying Fab 
fragments with a randomized CDR3 region in the heavy 
chain has been used to train an ensemble of neural network 
models.24 The use of training data with 10-fold enrichment led 
to the identification of a target-specific variant with an EC50 of 
0.29 nM, which was 1.7-fold stronger than the affinity of 

6 T. ITO ET AL.



a variant obtained from deep sequencing analysis. A Fab frag-
ment with low target affinity has been matured by using a long 
short-term memory network trained with the deep sequencing 
data of round-to-round comparison;21 machine learning dis-
covered variants with affinity 10 times that of a matured var-
iant found experimentally by using only deep sequencing 
analysis.

Although an appropriately enriched library offers potential 
for discovering the optimal variant, in our study undesirable 
variants were amplified at the infection and amplification steps 
(Figure 3); consequently, no enrichment in the round-to- 
round comparison was observed (Figure S3) and no functional 
variants were identified (Figure S1). In this situation, the 
variants with binding function may be less efficiently enriched 

during selection than the undesirable variants that tend to be 
strongly enriched at the infection step. Here, we used the 
round-to-round comparison before and after the selection 
step to avoid the influence of infection. The enrichment 
observed in the comparisons between selection steps was so 
low that it was masked by that at the infection and amplifica-
tion steps. Although machine learning with the training data 
based on the comparisons between selection steps did not 
show a strong correlation between affinity strength and per-
formance score, it successfully led to the design of a library 
containing functional variants. Our deep sequencing analysis 
showed gradual enrichment of stop codons (Figure S2). The 
use of variant library excluding stop codons may supply the 
training data where the influence of undesirable bias is 

Figure 5. Binding function of wild-type 2u2f and obtained 2u2f variants. (a) Enzyme-linked immunosorbent assay of the candidate 2u2f variants after purification on 
galectin-3 (Gal), NeutrAvidin (NAV), or blocking buffer (Skim). (b) EC50 values of wild-type 2u2f and four functional variants with affinity to galectin-3. The plots show 
the absorbance of galectin-3 minus that of NAV. The EC50 values were determined by using Hill equation.
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decreased. The result that the 4H5-resembling variants highly 
ranked in the machine learning result showed less specific 
affinity than 4H5 might indicate that the factor of nonspecific 
affinity influences the prediction by machine learning. 
Although a complete removal method for nonspecific binding 
has not been reported, the use of an improved removal method 
should be considered.

The five variants (predicted rank: 1, 4, 9, 20, and 42, Figure 
S11a), which are highly ranked in the prediction space and 
resemble 4H5, bound to targets, but they showed less specific 
affinity. In contrast, the four variants (1E2, 1H2, 3B5, and 
4H5), which were not contained in the clusters predicted by 
machine learning but were found in the sequence spaces 
expanded by degenerate codon design, bound to target and 
showed specific affinity. The library designed by degenerate 
codon design was needed to allow for more sequence variation 
in a focused sequence space. This suggests that the introduc-
tion of purposeful variation in the prediction of machine 
learning possibly better informs future library designs.

There are reports on machine learning-assisted directed evo-
lution for discovering optimized or suboptimized variants in the 
affinity landscape.10,42 In this study, the top 10,000 sequences 
predicted by our machine learning model produced nine clus-
ters (Figure 4); as a result, four functional variants were identi-
fied from three of the clusters. This result suggests that machine 
learning is able to explore more than one local region contain-
ing functional fitness in a multi-peak landscape.10,42

In conclusion, we tried to generate functional variants from 
the sequence information from a series of weakly enriched 
libraries where few functional variants were experimentally 
identified. The selection and use of deep sequencing data 
from appropriate steps enabled us to extract the information 
on functional variants, so four functional variants with target- 
specific affinity (EC50 = 80–277 nM) were obtained from the 
libraries designed by machine learning. Despite the advances 
in surface-display systems, desirable variants are often not 
obtained. Our machine learning approach increases the 

possibility of obtaining a functional variant that may be 
matured to high-affinity variants.

Materials and methods

Preparation of galectin-3

E. coli BL21(DE3) cells harboring the plasmid coding biotin 
ligase BirA were transformed with pET22b vector that contains 
the gene coding Avi-tag and His6-tag labeled galectin-3. Cells 
were grown overnight at 28°C on LB agar media containing 
100 µg/ml of ampicillin and 34 µg/ml chloramphenicol. With 
five colonies grown on the plates, 50 ml of LB broth containing 
ampicillin and chloramphenicol was inoculated and cultured 
overnight at 28°C. Five mL of the culture was transferred to 
500 mL of 2 × YT broth containing 100 µg/mL of ampicillin 
and 34 µg/ml chloramphenicol. Once the optical density of the 
culture reached OD600 = 0.8, IPTG and biotin were added to 
the flask to a final concentration of 1 mM and 50 µM, respec-
tively. The cells were shaken at 160 rpm at 20°C overnight. The 
cells were harvested by centrifugation, resuspended in 50 mM 
Tris-HCl, 200 mM NaCl, 1 mM EDTA (pH 8.0), and soni-
cated. The insoluble matter was removed by centrifugation. 
Variants were purified from the supernatants by IMAC (Ni 
Sepharose™ 6 Fast Flow; Cytiva, IL, USA) and SEC (HiLoad 26/ 
600 Superdex 75 pg; Cytiva, IL, USA) (Figure S13). Purified 
Galectin-3 was dialyzed in phosphate-buffered saline (PBS).

Biopanning with phage display

The biopanning procedure was described previously.34 Briefly, 
N11–N14 and M66–K72 in 2u2f were randomized using 
degenerate codons reflecting an amino acid frequency of anti-
body CDRs37 for training data. M13 phage libraries displaying 
2u2f variants with a size of ~109 were prepared. Colony- 
forming units (5.0 × 1011) from an M13 phage library display-
ing 2u2f variants were exposed to magnetic beads (Dynabeads 
MyOne Streptavidin T1 or C1; Thermo Fisher Scientific, MA, 
USA) for 60 min at room temperature (Negative selection in 
Figure 2). For target preparation, 2 µM galectin-3 in PBS was 
incubated with magnetic beads for 60 min at room tempera-
ture such that the amount of targets on beads was 9 µg, which 
was calculated from the amount of supernatants measured by 
means of BCA assay using bovine serum albumin as a standard 
(Pierce™ BCA Protein Assay Kit; Thermo Fisher Scientific, 
MA, USA). The supernatant containing unbound phages was 
collected and incubated with galectin-3–immobilized mag-
netic beads for 60 min at room temperature. The beads were 
washed 10 times with PBS with 0.05% Tween-20 for 5 min each 
wash. Bound phages were eluted with 100 µL of triethylamine 
and neutralized with 300 µL of 1 M Tris–HCl (pH 6.8). Log- 
phase E. coli TG-1 cells were incubated overnight at 37°C with 
200 µL of the eluted phages in 2× YT agar medium containing 
100 µg/mL ampicillin and 1% (w/v) glucose. Cells grown on 
the plates were used to prepare phage particles for the next 
round. For the training data, phage pools were collected at 
each step (eluted phages, infected E. coli, and amplified 
phages) for deep sequencing analysis.

Figure 6. CD spectra of the functional 2u2f variants. Wild-type 2u2f is shown in 
blue, 1E2 in Orange, 1H2 in red, 3B5 in gray, and 4H5 in magenta.
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For machine-learning-guided libraries, N11–N14 and 
M66–K72 were randomized using degenerate codons reflect-
ing an amino acid frequency in each machine learning pro-
posed cluster. M13 phage libraries displaying 2u2f variants 
with a size of ~108 were prepared and biopanned as described 
above. The targets were immobilized on magnetic beads at the 
same amount as be applied for the first biopanning.

Sample preparation and deep sequencing

After each round of biopanning, polyclonal plasmid DNAs 
were prepared by using a GenElute Plasmid Miniprep Kit 
(PLN350; Sigma Aldrich, MO, USA) for sub-libraries of 
infected E. coli and then extracted with phenol–chloroform 
from sub-libraries of eluted and amplified phages. The 
extracted plasmids were used for the first polymerase chain 
reaction (PCR) to amplify 2u2f library fragments with the 
primers containing an annealing region for the second PCR 
primers. The PCR products were purified by using 1.5% agar-
ose gel and a Qiaex II Gel Extraction Kit (20051; Qiagen, 
Hilden, Germany) and subjected to the second PCR to attach 
adapter sequences containing TruSeq DNA CD Indexes. The 
resulting fragments were purified as above, quantified by using 
a QbitTM 1× dsDNA HS Assay Kit (Q33231; Thermo Fisher 
Scientific) and pooled in equal amounts. The quality of the 
libraries was checked by using an Agilent 2100 Bioanalyzer 
(G2939B; Agilent Technologies, CA, USA). The prepared sam-
ple was sequenced on a MiSeq platform (Illumina, CA, USA) 
by using a MiSeq Reagent Kit v3 (15043895; Illumina) with 
2 × 300 bp paired-end reads.

Evaluation of performance scores

The performance score of each 2u2f variant was evaluated on 
the basis of its round-to-round enrichment (sub-libraries of 
eluted phages in the second and third rounds vs. those of 
amplified phages in the first and second rounds, respectively). 
The enrichment ratio of a variant i (ERi) was defined as 

ERi ¼ log2
FreqElutedphage 2nd ið Þ

FreqAmplifiedphage 1st ið Þ
þ log2

FreqElutedphage 3rd ið Þ
FreqAmplifiedphage 2nd ið Þ

(1) 

where Freqj ið Þ is the frequency of the variant i in the sub- 
library j. By using the ER, the performance score was 
defined as: 

Scorei ¼ a� ReLU ERið Þ (2) 

where ReLU (·) is a rectified linear unit and a is a normalizing 
constant to make the highest value in each sub-library equal 
to one.

Machine learning model and clustering analysis

We used a machine learning method based on COMBO, a fast 
implementation of Bayesian optimization, as described 
previously.8,11 We defined the feature vector of a 2u2f variant 
by concatenating the precomputed feature vectors of amino 
acids at the 11 mutated sites. For the feature vector of each 
amino acid, we tested a variety of amino acid descriptors based 
on physicochemical properties or structural topology and 

found that the Aromaphilicity index40 achieves the best accu-
racy for our problem by benchmark experiments (Figure S14). 
The dimensionality of the Aromaphilicity descriptor is one per 
a residue. Thus, the number of features used in our final model 
was 11 (i.e., 1 dimension × 11 mutated residues). By using the 
trained model, all the variants in the prediction space except 
for the variants used as training data were ranked by the 
probability-of-improvement score as described in the previous 
report.11 The top 10,000 sequences were compared with each 
other by all-versus-all blastp search with the e-value threshold 
of 0.1. We constructed the similarity network where two 
sequences have edges when one sequence was listed in the 
other sequence’s blastp search result. Sequence clusters were 
identified as connected components in this similarity network. 
The connected component extraction (cluster identification) 
was performed by Cytoscape 3.7.2.

Enzyme-linked immunosorbent assay (ELISA)

ELISA was performed as described by Ito et al.34 Target-bound 
phages were detected with horseradish peroxidase–conjugated 
mouse anti-M13 monoclonal antibody (1:1000; sc-53,004, 
Santa Cruz Biotechnology, TX, USA). Purified proteins were 
detected with horseradish peroxidase–conjugated mouse anti- 
FLAG monoclonal antibody (1:10,000; A8592, Sigma Aldrich). 
The EC50 values were determined by using Hill equation. In 
the case of measuring target specificity shown in Figure S9, 
50 µL of 4 µg/mL galectin-3, streptavidin, lysozyme, bovine 
serum albumin, and receptor-binding domain of SARS-CoV-2 
were incubated in the wells of a 96-well polystyrene ELISA 
microplate before skim milk blocking and addition of 2u2f 
variants.

Small-scale protein expression

The gene fragments of the 2u2f variants selected from the 
machine-learning-guided libraries were amplified by PCR, 
and the products were ligated into the pET22b vector. Each 
plasmid was transformed into E. coli BL21(DE3), and the cells 
were incubated overnight at 28°C on LB agar plates (100 µg/ 
mL ampicillin). The colonies were randomly transferred to 
1 mL of LB broth (100 μg/mL ampicillin) in deep-well plates 
(Axygen, CA, USA) and incubated overnight. Harvested cul-
ture (100 μL) was inoculated into 900 μL of 2× YT broth 
(100 µg/mL ampicillin) in deep-well plates and incubated at 
28°C with shaking. Isopropyl-β-D-thiogalactopyranoside was 
added at a final concentration of 1 mM, and the cells were 
incubated for 6 h. The cultures were centrifuged, the harvested 
cells were resuspended in 150 μL of PBS, sonicated, and cen-
trifuged to remove insoluble matter.

Blue native PAGE

Cell lysates prepared by sonication and a NativePAGETM Sample 
Prep Kit (BN2008; Thermo Fisher Scientific) were used. 
Electrophoresis was performed in an SDS-free gel (HON-150- 
13; Oriental Instruments Co., Ltd., Japan) by using 
NativePAGETM Running Buffer (BN2001; Thermo Fisher 
Scientific) for 60 min at 150 V. Cathode buffer contained 0.02% 

MABS 9



Coomassie Brilliant Blue G-250 (dark blue buffer) for the first 
15 min and 0.002% Coomassie Brilliant Blue G-250 (light blue 
buffer) for the following 45 min. Proteins were transferred to 
PVDF membranes at 20 V for 7 min in an iBlot 2 Blotting System 
(Thermo Fisher Scientific). Membranes were blocked with 5% 
skim milk and incubated with horseradish peroxidase–conju-
gated mouse anti-FLAG tag monoclonal antibody (1:15,000; 
A8592, Sigma Aldrich) in PBS with 0.05% Tween-20 for 
30 min at room temperature. Chemiluminescence was detected 
with a LAS 4000 instrument (Cytiva, IL, USA).

Preparation of candidate proteins

E. coli BL21(DE3) cells were transformed with the pET22b 
vectors carrying fragments encoding 2u2f variants, grown 
overnight at 28°C on LB agar, and then cultured in 2× YT 
broth; both media contained 100 µg/mL ampicillin. Isopropyl- 
β-D-thiogalactopyranoside was added to a final concentration 
of 1 mM at OD600 = 0.8, and the cells were shaken at 160 rpm 
for 6 h at 28°C. The purification of the 2u2f variants from the 
cell was the same as galectin-3.

Circular dichroism spectra

CD spectra were measured with a J-820 CD spectrometer (Jasco, 
Japan) in a 1.0-mm-long quartz cuvette, as follows: band width 
1.0 nm, resolution 0.1 nm, response 8 s, scan speed 2 nm/min. 
The concentrations of purified 2u2f variants were 10 µM.
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