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A Hybrid Flux Balance Analysis and Machine
Learning Pipeline Elucidates Metabolic
Adaptation in Cyanobacteria

Supreeta Vijayakumar,1 Pattanathu K.S.M. Rahman,2,3 and Claudio Angione1,4,5,6,*
SUMMARY

Machine learning has recently emerged as a promising tool for inferring multi-
omic relationships in biological systems. At the same time, genome-scale meta-
bolic models (GSMMs) can be integrated with such multi-omic data to refine
phenotypic predictions. In this work, we use a multi-omic machine learning pipe-
line to analyze a GSMM of Synechococcus sp. PCC 7002, a cyanobacterium with
large potential to produce renewable biofuels. We use regularized flux balance
analysis to observe flux response between conditions across photosynthesis
and energy metabolism. We then incorporate principal-component analysis, k-
means clustering, and LASSO regularization to reduce dimensionality and extract
key cross-omic features. Our results suggest that combining metabolic modeling
withmachine learning elucidates mechanisms used by cyanobacteria to copewith
fluctuations in light intensity and salinity that cannot be detected using transcrip-
tomics alone. Furthermore, GSMMs introduce critical mechanistic details that
improve the performance of omic-based machine learning methods.
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INTRODUCTION

In the field of systems biology, several approaches have been proposed to capture the enormous

complexity of biological systems by utilizing mathematical modeling and computational methods, with

the goal of amalgamating the information required to build and refine predictive models. The challenges

presented by such an undertaking are numerous and persistent owing to the size, format, scale, and vari-

ation of the disparate data types. Among these, metabolism is currently the only biological layer that can

be modeled genome-wide (O’Brien et al., 2015; Haas et al., 2017). Constraint-based reconstruction and

analysis methods are commonly used to express metabolic flux through biochemical reactions based on

knowledge of reaction stoichiometry. Flux balance analysis (FBA) is particularly suitable for modelingmeta-

bolic networks at the genome scale, as the definition of kinetic parameters and metabolite concentrations

is not a key requisite.

In recent years, genome-scale metabolic models (GSMMs) have been integrated with multiple data types,

including omics, codon usage, enzyme costs, and limited resource availability (Abedpour and Kollmann,

2015; Opdam et al., 2017; Kashaf et al., 2017; Wortel et al., 2018; Tian and Reed, 2018; Angione, 2019).

This serves to exploit the large volume of experimental data being generated from high-throughput omics

technologies. In doing so, additional constraints can be applied during FBA to shrink the solution space

(Reed, 2012), thus providing a more accurate representation of metabolic capability as a greater number

of factors can be considered to explain cellular behavior. This can prove useful in refining phenotypic pre-

dictions across various environmental conditions (Vijayakumar et al., 2017; Sánchez et al., 2017; van der Ark

et al., 2017; Angione, 2018) and can predict steps to engineer an organism in a way that optimizes the pro-

duction of certain metabolites, which is highly applicable in many fields of industrial biotechnology

including the production of biofuels, biosurfactants, and pharmaceuticals (Angione et al., 2015; Dougherty

et al., 2017; Huang et al., 2017; Fatma et al., 2018; Occhipinti et al., 2018).

Modeling and Metabolic Engineering in Cyanobacteria

Cyanobacteria is a phylum of oxygenic, phototrophic microalgae that need to adapt to constant fluctua-

tions in temperature, salinity, light intensity (or irradiance), and nutrient availability, among other factors
iScience 23, 101818, December 18, 2020 ª 2020 The Author(s).
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(Montgomery, 2017; Blanco-Ameijeiras et al., 2018; Gunde-Cimerman et al., 2018). Metabolic engineering

is helping to develop cyanobacteria into photoautotrophic biofactories that can act as production hosts

(chassis) for alcohols, carbohydrates, organic acids, fatty acid derivatives, isoprenoids, and many other

chemicals (Noreña-Caro and Benton, 2018). However, as such approaches are generally designed with het-

erotrophic organisms inmind, themetabolic features unique to photoautotrophsmust be considered, e.g.,

pathways relating to photosynthesis and CO2 fixation (Carroll et al., 2018).

Synechococcus sp. PCC 7002 is a fast-growing cyanobacterium that flourishes in both freshwater and ma-

rine environments, owing to its ability to tolerate high light intensity and a wide range of salinities. Harness-

ing the properties of cyanobacteria has become an important goal in recent years owing to their potential

to serve as biocatalysts for the production of renewable biofuels (Hendry et al., 2016). Metabolic modeling

of two cyanobacteria, Arthrospira and Synechocystis, has successfully characterized the use of photosyn-

thetic electron transport components in different light conditions (Toyoshima et al., 2020).

In an industrial setting, Synechococcus sp. PCC 7002 has been recommended as the ideal chassis for the

mass cultivation of microalgae for biotechnological applications owing to its ease of genetic manipulation

as well as its tolerance for high salinity, light intensity, and temperature (Pade and Hagemann, 2014; Clark

et al., 2018). These are highly desirable traits in microalgae as they enable cultures to maintain a rapid

growth rate in open raceway ponds as well as in photobioreactors, which operate at high temperatures

(Ruffing et al., 2016). Within the Synechococcus genus, a comparative analysis of slow- and fast-growing

strains in terms of their active reactions under phototrophic conditions has been proposed to better inform

their development into production hosts (i.e., strain optimization), primarily through maximizing their

growth rates (Hendry et al., 2019). In a recent study, Song et al. (2015) completed an integrative analysis

of metabolic and gene co-expression networks in Synechococcus sp. PCC 7002 by integrating expression

data from either continuous cultures or existing studies into a GSMM and deriving fluxes using E-Fmin flux

minimization (Song et al., 2014) and MOMA (Segre et al., 2002). Further studies have examined temporal

variations in response to varying light intensity and associated conditional dependencies (Rügen et al.,

2015; Reimers et al., 2016). These need to be accounted for as constraints in GSMMs designed to simulate

the phototrophic growth in cyanobacteria over diurnal cycles and tackle issues associated with resource

allocation (Vijayakumar and Angione, 2017).

Genome-scale isotopic non-stationary metabolic flux analysis (INST-MFA) has been utilized to estimate in-

ternal metabolic fluxes more accurately in Synechococcus elongatus UTEX 2973, toward the aim of estab-

lishing factors affecting phototrophic metabolism under optimal growth conditions (Hendry et al., 2019).

Similarly, MOMA and INST-13C MFA were used to establish carbon partitioning at intracellular branching

points in the central metabolism of a glycogen-deficient Synechococcus sp. PCC 7002 mutant (Hendry

et al., 2017). Such models benefit significantly from constraints designed using experimentally measured

uptake or growth rates for the identification of alternative reactions responsible for the synthesis of metab-

olites and differences in pathway recruitment and utilization (e.g., for carbon conversion to biomass).

The current state of strain-specific metabolic modeling in cyanobacteria, and the potential of fluxomic data

and metabolic engineering, have been recently discussed elsewhere (Angermayr et al., 2015; Oliver et al.,

2016; Hendry et al., 2020; Luan et al., 2020; Babele and Young, 2020; Mukherjee et al., 2020; Hitchcock et al.,

2020). Within the Synechococcus genus, a comparative analysis of slow- and fast-growing strains in terms of

their active reactions under phototrophic conditions has been proposed to better inform their develop-

ment into production hosts (i.e., strain optimization), primarily by maximizing their growth rates (Hendry

et al., 2019). A number of novel, non-model strains of Synechococcus that have been developed include

Synechococcus UTEX 2973 (Yu et al., 2015), PCC 11801 (Jaiswal et al., 2018), PCC 11802 (Damini et al.,

2020), PCC 11901 (Włodarczyk et al., 2020), and BDU 130192 (Ahmad et al., 2020).
Multi-omic Data Integration in Microalgae

In recent years, synthetic biology has facilitated the modeling of biological processes for genetic engineer-

ing. Using synthetic biology tools, algal strains have been designed according to highly specific environ-

mental conditions and yield requirements. Synthetic biologists have been successful in assembling genetic

material and manipulating the lipid content of microalgae, as well as maximizing biomass accumulation

and biofuel yield (Jagadevan et al., 2018). These results are promising for the biofuels industry from the

microalgal perspective (Randhawa et al., 2017). In the context of microalgae, the alteration of lipid
2 iScience 23, 101818, December 18, 2020
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biosynthesis pathways through the induction of a stress response to a change in environment (such as tem-

perature, nutrient limitation, salinity) is a common practice to enhance the production of target com-

pounds, including those that are used to produce workable biofuels (Rawat et al., 2013).

Omics approaches have made a significant contribution to the understanding of the molecular processes

of microalgae. Furthermore, the discoveries that omics studies have made, e.g., the identification of genes

involved in specific processes, may be vital to the engineering of enhanced microalgae. Through the un-

derstanding of transcription levels and gene activation data gathered from transcriptomics, the effective-

ness of genetic alterations can be measured as previously achieved for other organisms, allowing for opti-

mization of the target product. For example, if the new gene insert is operating at its optimum, the

transcriptomic data should show an increase in the mRNA of the target gene when compared with the

wild type (Randhawa et al., 2017). Based on genomic and transcriptomic data, Wang et al. (2019) recently

identified a series of neutral sites on the chromosome of Synechococcus sp. PCC 7002 for the introduction

of novel heterologous genes or pathways without disruption.

Omics techniques can also provide valuable insights into alterations of lipid synthesis pathways that occur

as a result of stress conditions in microalgae. Metabolomics studies assess the low-molecular-weight meta-

bolic end products and are highly indicative of response to stresses. Previously, global transcriptomic, pro-

teomic, and metabolomic analyses have aided in identifying adaptations for cyanobacterial salt tolerance

in Synechocystis sp. PCC 6803 (Pandhal et al., 2009; Wang et al., 2016). An omic-combination approach

would allow for optimization of algal engineering, as the data gathered from transcriptomics should

show an increase in transcription in the gene of interest that coincides with a reduction in metabolism

caused by stress (such as nutrient limitation) highlighted by metabolomics, if the expression of the gene

of interest is linked to a metabolic process. The application of omic studies can not only ascertain the effec-

tiveness of any genetic modification but also be used to optimize the scale-up process. With the use of

spatial and temporal omics studies of systems such as raceways used for algal growth, a deeper under-

standing of how algae will perform in various areas of the raceway can be gained, allowing for process opti-

mization (Randhawa et al., 2017).

Aims and Objectives

In this work, we present a pipeline combining metabolic modeling with statistical and machine learning

tools (Figure 1) for analyzing aGSMMof the cyanobacterium Synechococcus sp. PCC 7002.We characterize

Synechococcus adaptationmechanisms using an updated GSMMof iSyp702 containing 728 genes (Hendry

et al., 2016), implementing multi-objective FBA with quadratic regularization. We then apply machine

learning techniques to identify functionally important genes and reactions. These include PCA, k-means

clustering, and LASSO regression, which serve not only to identify biologically significant gene transcripts

and fluxes but also to relate these features more effectively to growth-promoting or growth-limiting con-

ditions provided by the initial expression data.

Our goal is to show whether, in a predictive setting, features derived from the metabolic model can add

meaningful information to the features derived from the transcriptomic data (Zampieri et al., 2019). There-

fore, for eachmethod, we will consider the predictions yielded using three sets of features: (1) gene expres-

sion only, (2) fluxes only, and (3) gene expression and fluxes combined.

Through LASSO regression, we find that using flux rates to predict growth rates is more effective than

using gene transcript values alone. This suggests that GSMMs provide critical details in terms of stoichi-

ometry, and the involvement of genes in reactions determines the rate of cellular phototrophic growth as

well as other modes of energy utilization (e.g., heterotrophy, mixotrophy) in various environmental

conditions.

RESULTS

As highlighted above, our goal is to reconnect metabolism to growth and other cellular objectives using a

data-driven multi-view approach that yields biologically reasonable predictions. The results of PCA and k-

means clustering for flux data are included in Figure 2, whereas results of these analyses for gene transcript

data in isolation and gene transcript data combined with fluxes are detailed in Figure 3. Additionally, the

results of the pathway-wide analysis of principal components are provided in Figure 4. The highest posi-

tive/negative Pearson correlation coefficient (PCC) values for transcript- and flux-only datasets are given
iScience 23, 101818, December 18, 2020 3
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Figure 1. A Multi-omic Machine Learning Pipeline for Prediction and Classification of Synechococcus Metabolic

Features

(1) RNA sequencing data obtained from Synechococcus sp. PCC 7002 cells grown under 23 growth conditions (Ludwig

and Bryant, 2011, 2012a,b). (2) Data downloaded from CyanOmics (Yang et al., 2015). (3) Starting from a model recently

published by Hendry et al. (2016), the condition-specific GSMMs of Synechococcus sp. PCC 7002 are generated by

integrating omics data, and three pairs of objectives are optimized for each condition-specific model. (4) Bilevel

regularized FBA is conducted using quadratic programming to compute regularized flux distributions. (5) Transcriptomic,

fluxomic, and multi-omic (combination) datasets are preprocessed for the machine learning analysis. (6) PCA, k-means

clustering, LASSO regression, and correlation analysis are applied to identify latent cross-omic patterns in the metabolic

adaptation mechanisms. These techniques are applied and compared across three sets of omic features: gene

transcripts, condition-specific flux rates, and a combination of both omics.
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in Figure 5, whereas mean absolute PCCs for metabolic subsystems or pathways are shown in Figure 6C

with the number of reactions in each subsystem specified in Figure 6D. A list of all nonzero LASSO coeffi-

cients and the top 10 positive/negative correlation coefficients are given in the Supplemental Information,

with the full calculation of these coefficients provided in Data S2. An interpretation of the results for each

technique used is provided below.
Regularized Flux Balance Analysis

Compared with transcriptomics, metabolic flux data modeled at the genome-scale provide a more

comprehensive, condition-specific view of the phenotype. Therefore, we mapped each RNA sequencing

profile measured in 24 growth conditions to a Synechococcus GSMM, and we employed a regularized

FBA to obtain condition-specific flux distributions (see Transparent Methods in Supplemental Informa-

tion). To calculate the flux rates more accurately for each condition, several lower and upper bounds

were adjusted before performing FBA, according to specific growth media and other requirements

described for each growth condition (Ludwig and Bryant, 2011, 2012a, 2012b). The full details of these

growth conditions (including composition of growth media, optical density at the time of cell harvest-

ation, mode of energy utilization, availability of oxygen/carbon dioxide, light intensity, salinity, and tem-

perature) are listed in Table S1. The full specification of constraints for each growth condition is given in

Data S3.

From the transcriptomic studies listed in Table S1, there were a number of genes that were not

transcribed in the control condition but were transcribed specifically under perturbed conditions.

Many of these genes have yet to be assigned a particular functional category or encode hypothetical

proteins, but many more have been linked to specific pathways and compounds and some have

been associated with the adaptation of Synechococcus sp. PCC 7002 to atypical environmental or

growth conditions.

As shown in Figure 2, apart from the standard control, the highest fluxes through the ATP maintenance re-

action (when ATP maintenance is set as the secondary objective) were among conditions that limit growth,

such as phosphate limitation, 30+C, and oxidative stress. In dark anoxic, low-salinity, heat shock, phosphate

limitation, and mixotrophic conditions, there was no flux for the biomass reaction. However, for all the

objective pairs, the flux through the biomass during high light intensity and OD 0.4 (optical density) was

higher than the control condition (0.19 mmol gDW�1 h�1 and 0.093 mmol gDW�1 h�1 respectively,

compared with 0.053 mmol gDW�1 h�1). The biomass is likely to be higher at OD 0.4 than OD 0.7 due

to adjustment of the photon constraint, which allowed for more transmission of light at lower OD. Apart

from the dark anoxic and low O2 conditions, all fluxes through photosystem II were negligible, but the
4 iScience 23, 101818, December 18, 2020
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Figure 2. Flux Distributions with Fluxomic PCA and k-means

(Top): Flux distributions in the 24 growth conditions considered in this study. Flux distributions for four key reactions: ATP maintenance, photosystem I,

photosystem II, and biomass when running FBA using three different pairs of objectives (indicated at the bottom of each plot). Conditions 1–24 correspond

to those detailed in Table S1. To better visualize the differences in flux between conditions, flux values were normalized by dividing by the maximal flux (i.e.,

the flux value for the control condition) for that reaction across all conditions. The full list of flux rates is reported in the Supplemental Information.

Regularized FBA correctly predicts reduced growth in sub-optimal conditions and the highest biomass flux is given by the high light condition. (Bottom):

Fluxomic principal-component analysis (PCA) and k-means. PCA (A–C) and k-means clustering (panels D–F) were conducted using the entire flux distribution
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Figure 2. Continued

(742 reactions). (A) and (D) are associated with Biomass-ATP maintenance fluxes, (B) and (E) with Biomass-Photosystem I fluxes, and (C) and (F) with

Biomass-Photosystem II fluxes. For PCA plots, growth conditions are colored according to their cos2 value, which indicates the contribution of the first

two components to the squared distance of each condition to the origin (Abdi andWilliams, 2010). The higher the cos2 value, the greater the proportion

of contribution to the total distance, meaning that the importance of the principal components is greater for that condition. For k-means, data are

clustered by condition (where the colors of ellipses represent different clusters) and the number of clusters (k=6) was selected following silhouette

analysis. Due to co-location of conditions in the two-dimensional plot, not all overlapping points are visible, but the cluster associated with each

condition is labeled. The full list of growth conditions and their respective k-means clusters are reported in the Supplemental Information.
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fluxes through photosystem I were still maintained (0.058 mmol gDW�1 h�1 in the high light intensity con-

dition as opposed to 0.016 mmol gDW�1 h�1 in the control).

When photosystem I was set as the secondary objective, a low amount of flux through ATP maintenance

reaction was retained in phosphate-limited, heat shock, and low salinity conditions (approximately

0.0002 mmol gDW�1 h�1). When photosystem II was set as the secondary objective, the highest fluxes

through the photosystem II reaction were given by the phosphate limitation, mixotrophic, and low salinity

conditions (0.016 mmol gDW�1 h�1).

Lack of light is likely to be the greatest contributing factor to decrease in growth as low oxygen concen-

tration does not seem to stunt growth, as the proportional decrease in biomass was lower relative to the

standard control conditions. On the other hand, there appears to be little to no flux for the biomass or the

photosystem I reaction in the dark conditions. This is supported by Vu et al. (2013), who reported that

lower yields under dark conditions may be due to the limited generation of energy (ATP) and reductant

(NADPH) from glycogen in the absence of photoautotrophic growth. When optical density was varied

through the batch growth conditions (OD 0.4, 1.0, 3.0, and 5.0), the transmission of light through the cul-

tures decreased as the dry cell weight (DCW) increased. Equal reduction in transcript levels for the photo-

synthetic apparatus was previously observed in all macronutrient-limited conditions studied (Ludwig and

Bryant, 2012a). We infer that heat shock, mixotrophic growth, and phosphate limitation have the largest

effect on reducing growth rate, as there was a complete impairment of biomass production predicted

across all of our objectives for these conditions. This is in line with reported findings (Ludwig and Bryant,

2012a), where perturbations caused by phosphate limitation had a greater impact on the global transcrip-

tion pattern than observed for high irradiance or dark treatments.

Synechococcus sp. PCC 7002 is known to possess one of the greatest tolerances for high light intensity

among cyanobacteria (with an upper limit of approximately 2,000 mmol photons m�2 s�1) (Xiong et al.,

2015). This was evident from our predictions for all three pairs of objectives, where flux through the biomass

pathway during high light intensity was slightly higher than the control condition (0.192 mmol gDW�1 h�1

compared with 0.053 mmol gDW�1 h�1). Although the fluxes through photosystem II were disrupted, the

fluxes through photosystem I were still maintained (0.058 mmol gDW�1 h�1 in the high light intensity con-

dition as opposed to 0.016 mmol gDW�1 h�1 in the control). Heat shock resulted in no fluxes through any of

the four reactions within all three objective pairs. It was previously reported that transcript levels for genes

encoding photosystem I decreased slightly in cells grown at high salinity and remained constant at low

salinity (Ludwig and Bryant, 2012b). On the other hand, it was found that transcript levels for genes encod-

ing photosystem II did not change in response to fluctuations in salinity (Ludwig and Bryant, 2012b).
Multi-omic Principal-Component Analysis

It can be argued that analyzing single-omic data alone has limited relevance in the context of metabolic

processes, as it does not capture the full complexity of the phenotype in relation to environmental vari-

ability. The hybrid approach proposed in this work connects transcriptomic and fluxomic data using a

data-driven multi-view approach that supports machine learning algorithms to yield more accurate predic-

tions (Culley et al., 2020). Considering the vast dimensionality of multi-omic models, the identification of

biologically meaningful information can prove to be challenging. As a non-parametric statistical technique,

principal-component analysis (PCA) was incorporated into our workflow for identifying patterns and genes/

reactions responsible for the most variance in the datasets (Brunk et al., 2016).

The PCA indicates the proportion of variance exhibited by fluxes in the first two dimensions for each objec-

tive pair. For all three pairs of objectives in Figures 2A–2C, over 68.31% of the variance can be explained by
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Figure 3. Transcriptomic and Multi-omic Principal-Component Analysis (PCA) and k-means

PCA and k-means clustering conducted for 3,187 gene transcripts (A and B) and both transcripts and fluxes, with Biomass-ATP maintenance (C and D),

Biomass-Photosystem I (E and F), and Biomass-Photosystem II (G and H) as objective pairs. In the PCA plots (A, C, E, and G), growth conditions are colored

according to their cos2 value, indicating the contribution of the first two components to the squared distance of each condition to the origin (Abdi and

Williams, 2010). For k-means, data are clustered by condition (where the color of the ellipses represents different clusters) and the number of clusters was

determined following silhouette analysis (k=6). When compared to using the transcriptomic dataset alone, the combined proportion of variance for PCA in

the first two dimensions was slightly higher when gene transcript data was used in isolation than when it was combined with fluxes. For k-means clustering,

the change in objective pair used for FBA did not result in a significant difference in the clusters formed. However, there is a clear demarcation between

clusters of conditions that limit growth (e.g., low light, sulfate limitation) and those that promote growth (e.g., high light, nitrate supplementation).
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the first dimension when considering flux data alone. As shown in plot (a), the high light intensity condition

contributed the highest score for the first dimension, accounting for the vast majority of the variance. On

the other hand, plots (b) and (c) showed that high light intensity, phosphate limitation, mixotrophic, and low

salinity were the highest scoring conditions in the first dimension. For the second dimension, the highest

score was given by high salinity, iron limitation, urea, 30+C and oxidative stress in plot (a), and high light

intensity, phosphate limitation, mixotrophic, and low salinity conditions in plots (b) and (c).

When considering only the gene transcript data (Figure 3A), the combined proportion of variance that

could be accounted for by the first two dimensions was vastly reduced (only 35.18% compared with

75.70%–86.27% for flux data). The conditions with the largest scores for the first dimension were sulfate

and iron limitation, followed by oxidative stress, 30+C, and high salinity. Once again, sulfate and iron lim-

itation were the highest in the second dimension, along with phosphate limitation, nitrogen limitation, dark

anoxic/oxic, and the last phase of the batch growth (OD 5.0).

When using a combined dataset of both gene transcripts and fluxes (Figures 3C, 3E, and 3G), the total pro-

portion of variance that could be explained in two dimensions for all three objective pairs was lower than

using transcript data alone (31.43%–32.07%). The highest scores were given by iron and sulfate limitation in

the first dimension and by dark oxic, dark anoxic, OD 5.0, iron limitation, and sulfate limitation in the second

dimension.

A full list of gene transcript and calculated fluxes are included in Data S1. For a list of the top 10 contribu-

tions of genes and reactions to the principal components, we refer the reader to the Supplemental Infor-

mation (Tables S3–S5).

Pathway-Level Analysis of Principal Components

To further examine the most metabolically significant pathways or cellular processes, we also performed

a pathway-level PCA while categorizing genes and reaction by their main function. Owing to the varying

number of reactions within each pathway, both the pathway sum and average contribution to the vari-

ance from the first two principal components were calculated. In Figures 4A and 4B, the sum of all con-

tributions to variance within each pathway or COG (Cluster of Orthologous Groups) category is summa-

rized. For the gene transcripts (Figure 4A), the COGs with the highest sum of variance within the first two

principal components were poorly characterized (with general or unknown function). It can be observed

that for each pair of flux objectives in (Figure 4B), the pathways that contribute the most to the first and

second components were similar: cofactor and vitamin metabolism, nucleotide metabolism, energy

metabolism, lipid metabolism, amino acid metabolism, carbohydrate metabolism, and transport meta-

bolism. These pathways can be directly linked to cellular growth because many of their products are

biomass precursors or compounds that can be catabolized to produce energy, i.e., carbohydrates, pro-

teins, and fats.

The radar plots in Figures 4C–4F depict the average contributions to the variance within each pathway for

the first and second principal components. The average contribution was higher for reactions (fluxes) than

genes because the number of genes in each COG category was greater than the number of reactions in

each subsystem of the GSMM. The pathways with the highest average contributions for gene transcripts

were nucleotide/amino acid metabolism in the first component and chromatin structure and dynamics in

the second component. For all three objective pairs, amino acid, aminoacyl-tRNA, and peptidoglycan bio-

syntheses were relevant in the first component (with an average contribution between 0.26 and 0.3). For the

second component, the pathways with the largest contribution varied for each objective. Coenzyme and

thiamine metabolism both had an average contribution greater than 0.45 for the second component in

relation to ATP and photosystem I fluxes, with the addition of hydrogen metabolism for ATP and pyridine

metabolism for photosystem I. On the other hand, purine and nucleotide metabolism had the highest con-

tributions in the second component for photosystem II. However, many of these pathways contained only

one or two reactions, which caused these results to be skewed; for example, the purine metabolism

pathway had an average contribution of 1.36, but only contains one nucleotide phosphodiesterase reaction

(PDE2).
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Figure 4. Pathway-Based PCA to Identify Pathway and Reaction Contribution to Variance across Conditions

(A and B) Component sums by pathway. Principal component contributions summed across reactions within each COG category/pathway, to decompose

the metabolic function of the main contributors to variance. The total percentage of contribution to variance of the first two principal components is also

given for each dataset: (A) gene transcripts and (B) fluxes calculated with objective functions Biomass-ATP maintenance, Biomass-Photosystem I, and

Biomass-Photosystem II.

(C–F) Component contribution by pathway. Average principal component contributions within each pathway, calculated across all gene transcripts (C) and

fluxes for each objective function pair: (D) Biomass-ATP maintenance, (E) Biomass-Photosystem I, and (F) Biomass-Photosystem II.

(G–L) Interpreting PCA coordinates with fluxes. The Pearson correlation coefficient (PCC) was calculated between the principal component coordinates and

the flux values across the conditions in three pairs of objectives. The coordinates for the first principal component (x axis) and flux (y axis) across the 24

conditions were plotted for the following reactions: (G) inorganic diphosphatase (IODP) for Biomass-ATPmaintenance, (H) aspartate transaminase (ASPTA1)

for Biomass-Photosystem I, and (I) pyruvate dehydrogenase (PDH) for Biomass-Photosystem II. For the second principal component, the reactions were: (J) L-

isoleucine transport via ABC system (ILEABC) for Biomass-ATP maintenance, (K) NADH dehydrogenase type II in the thylakoid membrane (NADH_PQ9tlm)

for Biomass-Photosystem I, and (L) phosphoribosylglycinamide formyltransferase (GARFT) for Biomass-Photosystem II. The PCC with their respective 95%

confidence intervals (CI) are displayed within each plot.
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Figure 5. Top PCCs with Their Respective 95% Confidence Intervals (CI) between Gene Transcript/Reaction Flux Data (x axis) and Growth Rates (y

axis)

Left to right: Black, top correlated genes; green, top correlated reactions when maximizing Biomass-ATP maintenance flux; red, top correlated reactions

when maximizing Biomass-Photosystem I flux; blue, top correlated reactions when maximizing Biomass-Photosystem II flux. Tables S9–S13 list the top 10

genes/reactions in the dataset that are positively or negatively correlated with growth and their respective PCC values. Additional figures of top 10 genes/

reactions and their respective PCC values are provided in the Supplemental Information (Figures S1–S4).
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Finally, to characterize the PCA in the context of single reactions, we analyzed the principal component co-

ordinates for all growth conditions against different reaction fluxes selected from the top 10 contributors to

the variance in each of the three objective pairs (see Figures 4G–4L). These plots confirmed that a large part

of the variance could be explained in the first principal component, as the first component coordinates

showed a near-perfect correlation with flux (> 0.99). The second principal component displayed a less

consistent but still strongly positive correlation between coordinates and flux values. The set of reactions

with the highest contributions to variance in the first and second components were completely different,

but three main functional categories could be identified among these reactions. IODP and GARFT can

be linked to nucleotide metabolism, ASPTA1 and ILEABC to amino acid metabolism, and PDH and

NADH_PQ9tlm to energy metabolism.
Clustering

k-means is a clustering algorithm that computes clusters while iteratively minimizing the sum of squared

Euclidean distances between each observation and its respective cluster mean (McLachlan et al., 2008).

To assess whether the generated multi-omic datasets could identify clusters of growth conditions accord-

ing to the respective omic responses, we applied k-means to the set of 24 growth conditions, considering

gene expression, flux rates, and the combined expression/flux dataset.

For the flux data (plots d–f in Figure 2), the partitioning of k-means clusters varied depending on the pair of

FBA objectives for which fluxes were calculated. Following silhouette analysis, the number of clusters set for

plots (d–f) in Figures 2, 3B, 3D, 3F, and 3H was k=6. The full list of members of each cluster is reported in the

Supplemental Information.

When combining both transcript and flux data (Figure 3D, 3F, and 3H), the clusters formed were less

distinct. This suggests that fluxes could help to contributemore biological insights intometabolic reactions

(through the metabolic network) that are not available in the transcriptomic data. Nevertheless, through

the k-means analysis with transcripts-only and the combined multi-omic dataset of transcripts and fluxes,
10 iScience 23, 101818, December 18, 2020
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Figure 6. Flux Map Comparison and PCC Values by Subsystem

Comparison between flux values in the TCA cycle for (A) nitrogen limitation and (B) urea supplementation. The SUCD1Itlm and SUCD1Icpm reactions

encoding succinate dehydrogenase were identified as having a strong positive correlation with the growth rate for the Biomass-ATP maintenance objective

pair.

(C) Mean absolute Pearson correlation coefficient (PCC) values calculated between 12 experimental growth rates and their corresponding condition-specific

GSMM reaction fluxes within each metabolic subsystem/pathway in the Synechococcus sp. PCC 7002 GSMM. The highest mean absolute correlations were

identified for folate metabolism, proline, and amino acid biosynthesis.
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Figure 6. Continued

(D) Reactions within each model subsystem sorted into classes of PCC values obtained between growth rates and flux rates in each objective pair (Biomass-

ATP maintenance, Biomass-Photosystem I, Biomass-Photosystem II). The Biomass-ATP maintenance pair yielded the highest positive PCC values [0.5, 0.7[

for reactions within the carbohydrate, amino acid, energy, transport, and exchange metabolic pathways.
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we conclude that clustering techniques benefit from analyzing the flux and transcript datasets in isolation

rather than combining them, as this avoids an increase in data dimensionality that cannot be easily

reduced.

In most of the k-means plots in Figure 3, changing the objective pair used for FBA did not result in a sig-

nificant difference in the clusters formed. However, there was sometimes a demarcation between clusters

of conditions that limited growth (e.g., low light, nutrient limitation) and those that promoted growth (e.g.,

high light availability, nutrient supplementation). In some instances, certain conditions (e.g., heat shock,

high light intensity, iron limitation) were isolated within a single cluster. Furthermore, reducing the number

of dimensions in the data following PCA could serve to reduce noise and make the definition of clusters

even clearer.
LASSO Regression

Regression-based algorithms can ascertain a mapping function, given a number of continuous output vari-

ables y and a number of real-valued or discrete input variables x. For each input variable, a coefficient is

estimated with linear regression, determining the importance of the input variable toward predicting

the output variable. In our study, the least absolute shrinkage and selection operator (LASSO) was used

to select a subset of the input variables by minimizing the number of nonzero coefficients. It employs L1

regularization, which penalizes the sum of absolute values of all the coefficients; this sets the coefficients

of unnecessary or recursive features equal to zero, resulting in a sparser matrix (Tibshirani, 1996). The reg-

ularization enables the identification of important predictors, elimination of redundant predictions, and

generation of shrinkage estimates with lower predictive errors.

The LASSO regression identified genes and reactions in the model that are strongly related to in vivo

growth rates through the retention of non-zero predictor coefficients (see Table S2). The full calculation

of LASSO coefficients is provided in Data S2.

A complete list of non-zero predictors retained by LASSO for each dataset is given in the Supplemental

Information. The functional classifications were provided by CyanOmics in the case of genes (CY Category

and CY Sub Category) or the subsystems field within the model GSMM for reactions. In Tables S6 and S8

(where both transcript and flux datasets or only the gene transcripts are considered), the same non-zero

predictors (genes) were retained, irrespective of the objective pair used for FBA. The genes yielding pos-

itive coefficients were associated with photosynthesis and respiration or post-translational modification of

proteins. When applying the LASSO algorithm to the flux-only dataset (see Table S7), the non-zero coeffi-

cients retained were primarily related to the metabolism of nucleotides, cofactors, and vitamins and path-

ways relating to energy generation, such as carbohydrate and amino acid metabolic pathways. Such co-fac-

tors are often composed of metal ions, for which there are numerous transport and exchange reactions,

e.g., cobalt and manganese.
Correlation Analysis

The Pearson correlation coefficients were calculated to ascertain the strength of the association between

transcripts and/or flux rates and growth across different conditions (see Table S2). The absolute Pearson

correlation coefficients were sorted in descending order, and the top 10 positive/negative correlation co-

efficients for each dataset are listed in the Supplemental Information. Figure 5 shows the highest positive

and negative Pearson correlation coefficients for transcript- and flux-only datasets. The gene A0639 en-

codes a phycocyanin-associated phycobilisome rod-core linker polypeptide, which is an important compo-

nent of the photosynthetic apparatus. This confirms that photosynthesis and energy metabolism are

directly correlated with cellular growth.

For the Biomass-ATP maintenance flux objectives, the selection of reactions encoding succinate dehydro-

genase in the cytoplasmic and thylakoid membranes (SUCD1Icpm and SUCD1Itlm) demonstrated the

importance of the tricarboxylic acid (TCA) cycle in the generation of energy for biomass accumulation.
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To illustrate this, a comparison of flux values between the nitrogen-limited and urea-supplemented growth

conditions is provided in Figures 6A and 6B. It can be seen in Table S2 that the limitation or supplementa-

tion of a nitrogen source had a direct effect on the growth rate. Cyanobacteria have long been known to

possess a unique TCA cycle where an alternative reaction homologous to 2OGDH is used to convert alpha-

ketoglutarate into succinyl semialdehyde (2OGDC), which is subsequently converted into succinate (via

succinate-semialdehyde dehydrogenase, i.e., SSALY) (Zhang and Bryant, 2011; Steinhauser et al., 2012).

2OGDC and SSALY were found to carry negligible flux under phototrophic conditions in (Hendry et al.,

2016), which was supported by the flux values derived for the standard control for our simulations

(3.599 mmol gDW�1 h�1 for both reactions), as well as the growth-limiting conditions such as nitrogen lim-

itation (Figure 6A). This suggests that succinate dehydrogenation plays an important role in growth; it is

known to still take place in dark, anoxic conditions (McNeely et al., 2010) where there is an increased

flux toward succinate during the dark period, driving ATP production through respiratory electron trans-

port (Sarkar et al., 2019).

Figure 6C shows themean absolute PCC values among reactions within each subsystem, whereas Figure 6D

shows the number of reactions within a given range of PCC values for each subsystem/pathway listed in the

model, to account for the differing number of reactions in each pathway in the model. The pathway with the

largest mean absolute correlation across all the flux objectives was the folate metabolism. In Synechocystis

sp. PCC 6803, folate is synthesized from chorismate and is known to be important for cellular processes

such as DNA replication, repair, and methylation, in addition to being a vital precursor for the biosynthesis

of certain amino acids, co-factors, nucleotides, and tRNAs (Mills et al., 2020). The highest mean PCC in the

biomass-ATP maintenance flux pair corresponded with the proline biosynthesis pathway/reaction. Inter-

estingly, it has been found that proline accumulation is highly induced in stress conditions in cyanobacteria,

especially high salinity (increased NaCl concentration) because it plays a role in osmoprotection, antioxi-

dative defense, and signaling (Hayat et al., 2012; Pingkhanont et al., 2019). Across all flux objectives, the

majority of reactions in Figure 6D have a correlation value between [-0.1, 0.1[ or [0.3, 0.5[, implying most

reactions had little to no significant correlation or a moderately positive correlation. The strongest positive

correlation values [0.5, 0.7[ were found between the Biomass-ATP maintenance flux pair and the growth

rates. It can be seen that these reactions were classified under various pathways, i.e., carbohydrate, amino

acid, energy, and transport- and exchange-related metabolism.
DISCUSSION

In this work, we showed how using a hybrid multi-view approach with multi-omic data andmachine learning

to yield metabolically significant fluxes enabled the identification of trends in data that were not apparent

using solely transcriptomic data. We used condition-specific FBA to obtain flux distributions with L2-regu-

larized bilevel optimization.

The flux distributions obtained for four key reactions showed clear differences in pathway activity

across the various conditions and also between the three pairs of objectives used. When comparing

the results across the types of datasets used, it is clear that complex metabolic and phenotypic out-

comes as a result of adaptation to a changing environment are difficult to predict from gene expres-

sion alone. Condition-specific metabolic models within a machine learning framework allowed for the

detection of coordinated responses shared between different data types, as well as the variation in

responses across different growth conditions. Although a large number of studies express the maxi-

mization of biomass as the only objective when performing FBA, it is imperative to recognize that in

reality most organisms have multiple objectives to satisfy. It has been well established that the activity

of biosynthetic and energy-generating pathways increases with the growth rate (Bernstein et al., 2014),

which led us to implement multi-level regularized optimization in our pipeline, considering more than

one objective function.

Specifically, when calculating the flux distribution across conditions, biomass was chosen as the primary

objective, whereas the secondary objective was set to ATP maintenance, photosystem I, or photosystem

II, to reflect the main cellular goals of cyanobacteria. Biomass was chosen as a primary objective to repre-

sent the maximization of growth rate and cellular yields (Feist and Palsson, 2010; Yuan et al., 2016; Laksh-

manan et al., 2019), which is a critical consideration for the production of biofuels by cyanobacteria as this

informs the substrate uptake rates and maintenance requirements that indicate fundamental cellular

growth requirements. The chosen secondary objectives are key pathways involved in energy metabolism
iScience 23, 101818, December 18, 2020 13
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during photosynthesis. Simulating the cost of ATP maintenance can help to examine the energy required

for sustaining metabolic activity even in the absence of growth. The incorporation of the photoexcitation

reactions occurring within photosystems I and II served to characterize how flux under various conditions

reflects the light harvesting and energy transfer via photon absorption through these complexes. Thus,

solving the quadratic optimization problem for multiple pairs of objectives helped to resolve trade-offs

by considering the conditions and constraints affecting each of these objectives (Sajitz-Hermstein and Ni-

koloski, 2016; Occhipinti et al., 2020).

Our results suggest that it is worth using model-generated flux data that incorporates transcriptomics to

conduct machine learning analyses. The flux data were initially informed by transcriptomic data as the con-

dition-specific gene expression profiles were generated by combining themwith a baseline GSMM for Syn-

echococcus sp. PCC 7002; in this way, gene transcripts already constituted an important component of the

FBA. Furthermore, reducing the number of dimensions in the data following PCA can serve to reduce noise

and make the definition of clusters even clearer. In addition to this, a reduced set of predictors were iden-

tified as being related to growth as a result of the LASSO regularization. Specifically, the identification of

reactions by LASSO as key features, which are of potential use for the prediction of growth rates, supports

the inclusion of metabolic fluxes as features for future applications of regression techniques with smaller,

more concise sets of flux data.

The reactions identified as being strongly correlated with the growth rate in the flux datasets (SUCD1Itlm,

SUCD1Icpm, ME2) suggest that fluxes can help to gain more biological insights into machine learning an-

alyses. As a different, unrelated set of genes displayed a strong correlation with the growth rate, it is

evident that analyzing both transcriptomic and fluxomic data provides a more complete picture of cyano-

bacterial metabolism than single-omic analyses. In particular, the role of metal transport pathways in cya-

nobacteria was significant because they are highly relevant in the context of photosynthesis. The detection

of latent, biologically significant patterns and adaptive mechanisms to fluctuations in light intensity and

salinity elucidates the maintenance of metabolic efficiency at the cellular level, as well as the attainment

of multiple cellular objectives.

Algal engineering supplemented with data frommulti-omic studies can contribute to informing the scale-

up of these processes. Such multi-omic data are sensitive enough to detect the effect of stress on meta-

bolism. Metabolic engineers could apply this pipeline to test more strategies in silico when developing

the optimal production host, or to analyze multi-omic outputs (both independently and in combination

with other omic data). In this regard, the use of transcriptomic data to characterize fluxomic predictions

elucidates many of the unique mechanisms employed by Synechococcus sp. PCC 7002 when adapting

to changes in light intensity, salinity, and other conditions. In the case of cyanobacteria, we also emphasize

the importance of assessing model inputs in accordance with specific growth conditions before con-

ducting FBA. These contribute to the organism’s underlying objective of maintaining metabolic efficiency

for phototrophic growth and light-dependent photosynthesis. As a result of predicting and classifying

metabolic profiles in various growth conditions, our approach sheds light on the cross-omic mechanisms

of its adaptation process, which enables survival across a wide range of environments and stress

conditions.
Limitations of the Study

The availability of exact measurements for the various growth conditions could yield more precise flux

predictions. For example, in our case, the exact photon absorbance of the Synechococcus sp.

PCC 7002 cultures was not available. Hence, the photon uptake constraints were approximated using

DCW and photon consumption based on the availability of light. Likewise, the setting of nutrient

uptake rates was approximated based on data provided by in vivo experiments rather than measured

directly.

Furthermore, in this study we adopted linear transformations and linear methods, where possible. This was

with the goal of maximizing the biological interpretability of the predictions, using quadratic terms for reg-

ularization only. However, different dimensionality reduction or clusteringmethods could be implemented,

e.g., to elucidate any further non-linear relationship among the omic elements.
14 iScience 23, 101818, December 18, 2020
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Finally, there is further potential for other types of omic data to be integrated into the model (e.g., from

proteomic or metabolomic datasets). It is expected that integrating further omic datasets, i.e., further

data views in our multi-view machine learning setting, could produce even more detailed insights into

metabolic adaptations, or better support existing findings derived from transcriptomic and fluxomic

data.
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Angione, C. (2017). Seeing the wood for the trees:
a forest of methods for optimization and omic-
network integration in metabolic modelling.
Brief. Bioinformatics 19, 1218–1235.

Vu, T.T., Hill, E.A., Kucek, L.A., Konopka, A.E.,
Beliaev, A.S., and Reed, J.L. (2013).
Computational evaluation of Synechococcus sp.
pcc 7002 metabolism for chemical production.
Biotechnol. J. 8, 619–630.

Wang, M., Luan, G., and Lu, X. (2019). Systematic
identification of a neutral site on chromosome of
Synechococcus sp. pcc 7002, a promising
photosynthetic chassis strain. J. Biotechnol. 295,
37–40.

Wang, Y., Chen, L., and Zhang, W. (2016).
Proteomic and metabolomic analyses reveal
metabolic responses to 3-hydroxypropionic acid
synthesized internally in cyanobacterium
synechocystis sp. pcc 6803. Biotechnol. Biofuels
9, 209.

Włodarczyk, A., Selão, T.T., Norling, B., and
Nixon, P.J. (2020). Newly discovered
Synechococcus sp. PCC 11901 is a
robust cyanobacterial strain for high
biomass production. Communications Biology 3,
1–14.

Wortel, M.T., Noor, E., Ferris, M., Bruggeman,
F.J., and Liebermeister, W. (2018). Metabolic
enzyme cost explains variable trade-offs between
microbial growth rate and yield. PLoS Comput.
Biol. 14, e1006010.

Xiong, Q., Feng, J., Li, S.t., Zhang, G.y., Qiao, Z.x.,
Chen, Z., Wu, Y., Lin, Y., Li, T., Ge, F., et al. (2015).
Integrated transcriptomic and proteomic analysis
of the global response of Synechococcus to high
light stress. Mol. Cell Proteomics 14, 1038–1053.

Yang, Y., Feng, J., Li, T., Ge, F., and Zhao, J. (2015).
Cyanomics: an integrated database of omics for
the model cyanobacterium Synechococcus sp.
pcc 7002. Database 2015, bau127.

Yu, J., Liberton, M., Cliften, P.F., Head, R.D.,
Jacobs, J.M., Smith, R.D., Koppenaal, D.W.,
Brand, J.J., and Pakrasi, H.B. (2015).
Synechococcus elongatus utex 2973, a fast
growing cyanobacterial chassis for biosynthesis
using light and co 2. Sci. Rep. 5, 8132.

Yuan, H., Cheung, C., Hilbers, P.A., and van Riel,
N.A. (2016). Flux balance analysis of plant
metabolism: the effect of biomass composition
andmodel structure onmodel predictions. Front.
Plant Sci. 7, 537.

Zampieri, G., Vijayakumar, S., Yaneske, E., and
Angione, C. (2019). Machine and deep learning
meet genome-scale metabolic modeling. PLoS
Comput. Biol. 15, e1007084.

Zhang, S., and Bryant, D.A. (2011). The
tricarboxylic acid cycle in cyanobacteria. Science
334, 1551–1553.
iScience 23, 101818, December 18, 2020 17

http://refhub.elsevier.com/S2589-0042(20)31015-4/sref40
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref40
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref41
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref41
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref41
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref41
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref42
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref42
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref42
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref43
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref43
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref43
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref44
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref44
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref44
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref44
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref44
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref45
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref45
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref45
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref45
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref45
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref45
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref46
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref46
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref46
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref46
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref46
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref47
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref47
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref47
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref47
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref47
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref48
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref48
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref48
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref49
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref49
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref49
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref49
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref49
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref50
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref50
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref50
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref50
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref50
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref50
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref51
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref51
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref51
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref51
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref52
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref52
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref52
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref52
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref53
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref53
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref53
http://arXiv:1610.06859
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref55
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref55
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref55
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref55
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref56
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref56
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref56
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref56
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref57
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref57
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref57
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref58
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref58
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref58
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref58
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref58
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref59
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref59
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref59
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref59
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref60
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref60
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref60
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref60
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref61
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref61
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref61
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref61
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref61
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref61
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref62
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref62
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref62
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref62
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref63
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref63
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref63
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref63
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref64
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref64
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref64
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref64
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref65
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref65
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref65
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref66
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref66
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref66
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref66
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref66
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref67
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref67
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref67
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref67
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref67
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref67
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref68
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref68
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref68
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref68
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref68
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref69
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref69
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref69
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref69
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref69
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref70
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref70
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref70
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref70
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref70
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref71
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref71
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref71
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref71
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref71
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref71
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref72
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref72
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref72
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref72
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref72
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref72
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref73
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref73
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref73
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref73
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref73
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref74
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref74
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref74
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref74
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref74
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref75
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref75
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref75
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref75
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref76
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref76
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref76
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref76
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref76
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref76
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref77
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref77
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref77
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref77
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref77
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref78
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref78
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref78
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref78
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref79
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref79
http://refhub.elsevier.com/S2589-0042(20)31015-4/sref79


iScience, Volume 23
Supplemental Information
A Hybrid Flux Balance Analysis and Machine

Learning Pipeline Elucidates Metabolic

Adaptation in Cyanobacteria

Supreeta Vijayakumar, Pattanathu K.S.M. Rahman, and Claudio Angione



1. Transparent Methods

1.1. Growth Conditions
A complete list of the culture conditions for Syne-

chococcus sp. PCC 7002 is reported in Table S1,
for which RNA sequencing data was integrated into
GSMM to generate a condition-specific FBA frame-
work.

1.2. Condition-Specific Metabolic Modeling
We initiated our pipeline by mapping the gene ex-

pression profiles for phototrophic growth in Syne-
chococcus sp. PCC 7002 using multi-omic flux balance
analysis and building condition-specific flux profiles,
starting from a model recently published by Hendry
et al. (2016).

Transcriptomic data were acquired in the form of
RNA-Seq data from a series of studies previously con-
ducted by Ludwig and Bryant (Ludwig and Bryant,
2011, 2012a,b). Such data were compiled in an online
repository known as CyanOmics (Yang et al., 2015),
an integrated omics analysis database containing omic
data specific to Synechococcus sp. PCC 7002. Specific
growth conditions are recorded in Table S1, along with
a reference to the original paper for each condition.
For each culture condition, we downloaded the reads
assigned per kilobase of target per million mapped
reads (RPKMs) as a measure of relative transcript
abundance (Yang et al., 2015). Given this informa-
tion, we calculated fold change values of each gene
dividing the RPKM values under these conditions by
the average expression of three standard control repli-
cates for that gene.

In flux balance analysis (FBA), a steady-state is
assumed to calculate all fluxes under time-invariance
and spatial homogeneity for purposes of mass con-
servation (Heirendt et al., 2019). Mass-balance con-
straints are imposed on the GSMM to identify a range
of points representing all feasible flux distributions. A
phenotypic state in the solution space is then com-
puted using linear programming with a set of values
indicating the optimal conditions required to optimize
a given cellular objective function (Ebrahim et al.,
2016).

In our pipeline, we integrated condition-specific ex-
pression profiles generated from RNA sequencing data
with the Synechococcus GSMM using METRADE
(Angione and Lió, 2015). We then implemented
a quadratic program for solving a regularized bi-
level FBA, using Gurobi as a quadratic programming
solver.

The regularized optimization problem was formu-
lated as:

max gᵀv − σ

2
vᵀv

such that max fᵀv, Sv = 0,

vminϕ(Θ) ≤ v ≤ vmaxϕ(Θ),

(1)

where S is the stoichiometric matrix recording all re-
actions and metabolites in the Synechococcus GSMM,
v is the vector of reaction flux rates. f and g are
Boolean vectors of weights selecting the reactions in v
in which flux rates are considered as the objectives: f
selects the primary objective function (biomass) and g
selects the secondary objective function (ATP mainte-
nance, photosystem I or photosystem II). In order to
obtain a unique flux solution, the outer level objective
g is regularized by subtracting the concave function σ

2
vᵀv, where σ = 10−6 (Heirendt et al., 2019). Upon
solving this problem, a vector of fluxes (v) is obtained.

vmin and vmax are vectors representing the lower-
and upper-limits for the flux rates in v for the uncon-
strained model. The gene set expression of reactions
associated with the fluxes in v are represented by the
vector Θ. ϕ is a function mapping the expression level
of each gene set to a coefficient for the lower- and
upper-limits of the corresponding reaction (Angione
et al., 2016), and is defined as follows:

ϕ(Θ) = [1 + γ |log(Θ)|]sgn(Θ−1)
. (2)

In this way, a specific RNA-Seq profile was mapped
onto the GSMM for each growth condition, and
solving the quadratic optimization problem yielded
condition-specific flux rates. In the case of standard
control flux, the expression vector was set to all ones;
for all other conditions, RNA-Seq data was mapped to
coefficients for the lower and upper limits of the corre-
sponding reactions using the function in Equation 2.
γ represents the strength of gene expression mapped
to each reaction in the model (set to 3.5). A sensi-
tivity analysis was conducted to assess the robustness
of this parameter, whilst ensuring maximum variabil-
ity of experimentally-feasible flux values across growth
conditions. Adjusting γ = 3.5±0.1 resulted in a flux
change of approximately ± 0.0078 (averaged across all
conditions).

1.3. Flux Constraints

The uptake rate (i.e. lower bound) of carbon dioxide
was fixed at -10 under all growth conditions, except
for the low CO2 growth condition (-0.01). In order to
establish a protocol for specifying the variation in light
uptake across growth conditions, a photon uptake rate
(PU) was calculated for each growth condition using
a method similar to Vu et al. (Vu et al., 2012). The
available light consumption (LC) under each condition
(mmol) was multiplied by the surface area (SA) of
the culture exposed to the light source (m2), then the
product was divided by the total available dry cell
weight (DCW) of the culture (g per volume):

PU =
LC × SA
DCW

(3)
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ID Condition Specifics Ref.

1 Dark oxic Incubated in darkness prior to harvest, sparged in N2 (Ludwig and Bryant, 2011)
2 Dark anoxic Incubated in darkness prior to harvest (Ludwig and Bryant, 2011)
3 High light Illuminated at 900 µmol photons m−2 s−1 prior to harvest (Ludwig and Bryant, 2011)
4 OD 0.4 Harvested at OD 730nm = 0.4 (Ludwig and Bryant, 2011)
5 OD 1.0 Harvested at OD 730nm = 1.0 (Ludwig and Bryant, 2011)
6 OD 3.0 Harvested at OD 730nm = 3.0 (Ludwig and Bryant, 2011)
7 OD 5.0 Harvested at OD 730nm = 5.0 (Ludwig and Bryant, 2011)
8 Low O2 Sparged in N2 (Ludwig and Bryant, 2011)
9 Low CO2 Sparged with air [0.035% (v/v) CO2] (Ludwig and Bryant, 2012a)
10 N-limited Cells washed in medium A (lacking NO3

-) and resuspended (Ludwig and Bryant, 2012a)
11 S-limited Cells washed with MgCl2 (Ludwig and Bryant, 2012a)
12 PO4

3- limited Cells washed w/o (PO4
3-) harvested at OD = 0.7 (Ludwig and Bryant, 2012a)

13 Fe-limited Cells washed in medium A with 720 µM deferoxamine me-
sylate B added at OD 0.35

(Ludwig and Bryant, 2012a)

14 NO3
- Standard growth in medium A (lacking NaNO3) with 25 mM

HEPES, 1 µM NiSO4, 12 mM NaNO3

(Ludwig and Bryant, 2012a)

15 NH3 Standard growth in medium A (lacking NaNO3) with 25 mM
HEPES, 1 µM NiSO4 and 10 mM NH4Cl

(Ludwig and Bryant, 2012a)

16 CO(NH2)2 Standard growth in medium A (lacking NaNO3) with 25 mM
HEPES, 1 µM NiSO4 and 10 mM CO(NH2)2

(Ludwig and Bryant, 2012a)

17 Heat Shock 1h heat shock at 47◦C (Ludwig and Bryant, 2012b)
18 22◦C Standard growth at 22◦C (Ludwig and Bryant, 2012b)
19 30◦C Standard growth at 30◦C (Ludwig and Bryant, 2012b)
20 Oxidative stress 5 µM methyl viologen added 30 minutes prior to harvesting (Ludwig and Bryant, 2012b)
21 Mixotrophic Medium A+ supplemented with 10 mM glycerol (Ludwig and Bryant, 2012b)
22 Low salt Medium A+ containing 3 mM NaCl and 0.08 mM KCl (Ludwig and Bryant, 2012b)
23 High salt Medium A+ containing 1.5 M NaCl and 40 mM KCl (Ludwig and Bryant, 2012b)
24 Standard control Medium A+ at 38◦C (see caption for full details) (Ludwig and Bryant, 2012b)

Table S1: Growth and stress conditions for Synechococcus sp. PCC 7002, Related to Figure 2. The standard control
condition was defined as: Medium A+ at 38◦C, illuminated at 250 µmol photons m−2s−1, sparged in air with 1% (v/v) CO2, with
cells harvested at OD 730nm = 0.7.
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As per the culture conditions described by Lud-
wig and Bryant (Ludwig and Bryant, 2011), the sur-
face area of the culture exposed to the light source
was calculated using the diameter of the culture tube
(20mm) and the volume of the culture medium (25ml).
The DCW of marine Synechococcus has been approx-
imated at 0.35 gDW/L for an optical density (OD)
of 1.0 at 750nm (Myers et al., 2013), which is close to
other DCW estimates for Synechococci (Aikawa et al.,
2014; Qiao et al., 2018). Given this estimate, a pre-
established linear calibration for Synechococcus PCC
7942 cultures was used to calculate DCW for optical
densities above OD 1.8 (i.e. OD 3.0 and 5.0) (Kato
et al., 2017). In the plot (y = DCW, x = OD),
since the same line could not be extrapolated below
OD = 1.8 due to yielding negative DCW values, we
adopted a piecewise linear approximation, and a sepa-
rate linear equation was calculated for OD 0.4 and 0.7
between the lowest OD point (1.8,0.375) and the ori-
gin (0,0). The full specification of constraints for each
growth condition and further information on their cal-
culation is available in Supplementary Data 3.

1.4. Data Normalization

When creating the combined transcript-and-flux
dataset, the two types of data (gene transcripts and re-
action fluxes) were combined by converting them into
fold change values. The fold changes of the RNA-Seq
data was obtained by dividing the RPKM values for
each growth condition by the average expression of
three standard control replicates for that gene, as de-
tailed in Section 1.2. In order to scale flux rates in
the same range as the gene transcripts, we converted
flux rates into fold change values by dividing the flux
rates under these conditions by the flux rate derived
for the standard condition. This provided a ratio of
reaction activity between experimental conditions and
the standard control. In order to account for the FBA
solver tolerance, all the negligible flux rates (rate <
10-4) were set to zero. When both experimental and
control flux rates were negligible, fold change values
were set to 1, while fold changes for divisions resulting
in infinite values (due to the control flux being zero)
were set to the maximum fold change for that dataset.

1.5. Principal Component Analysis (PCA)

Ascertaining the contribution of each condition to
the construction of each dimension allowed us to de-
tect conditions that deviated from the usual pat-
terns, as well as those that were the greatest contrib-
utors to variance in the dataset. The PCA was con-
ducted using the FactoMineR package in R (Lê et al.,
2008), where conditions were described by gene tran-
scripts and/or reaction fluxes (quantitative variables)
for each pair of objectives, and the contribution of
each condition to the dimensions and variance in the
datasets was recorded.

Figure 2(a-c) displays PCA individual factor maps
for the three objective pairs, showing the principal
component scores of 24 individuals (which in our case
are simulated growth conditions) described by 742
fluxes on the first two principal components. Fig-
ure 3(a), (c), (e) and (g) display individual factor
maps for the three objective pairs and the respective
principal component scores of 24 individuals described
by 3187 transcripts (a), or 3929 multi-omic variables
(c), (e) and (g), which include both transcripts and
fluxes.

1.6. K-means Clustering

Gene transcripts, flux rates, or a combination of
both measurements were used as variables for clus-
tering growth conditions. To specify the appropriate
number of clusters for running the k -means algorithm,
we performed a silhouette analysis to assess the accu-
racy of cluster assignment by measuring the cohesion
of data points within each cluster (given by a silhou-
ette value for each variable). Both silhouette analysis
and clustering were performed in MATLAB with the
silhouette and kmeans functions, using the number of
clusters that returned the highest silhouette values for
the majority of points (k = 6).

Whilst computing correlation between genes across
the profiles, the zscore function was used to standard-
ize each of the profiles to have zero mean and unit vari-
ance. The pattern of clustering using the “cityblock”
distance metric was compared between: (i) transcripts
only (ii), fluxes only, (iii) both gene transcripts and
fluxes. Multidimensional scaling was performed using
a robust variation of the mdscale function in Matlab
to circumvent colocation of points by multiplying dis-
similarities by a scalar value (minimizing the squared
stress criterion with 500 iterations of the iterative al-
gorithm). The results of this clustering are reported
in Figure 2(d-f) and Figure 3(b), (d), (f) and (h).

1.7. LASSO Regression

To relate the calculated flux distributions to in-vivo
growth in our model, x is the data matrix consisting
of input variables in the form of (i) gene transcripts
(ii) flux rates, or (iii) both gene transcripts and flux
rates, and y is the vector of growth rates in Table S2.
Of the 23 transcriptomic profiles procured from the
original studies, only 12 growth conditions had avail-
able (i) specified growth rates, (ii) specified doubling
times, or (iii) standard growth curves (Ludwig and
Bryant, 2011, 2012a,b). For these growth curves, the
gradient between OD 0.4 and OD 0.7 was calculated
as the growth rate, and all the other growth rates and
doubling times were calculated relative to the stan-
dard growth rate. Although growing photoautotroph-
ically in nature, heterotrophically-grown microalgae
sometimes have higher growth rates, in the absence
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of light shading and more space available to achieve
greater cellular density (Kim et al., 2016).

Condition Doubling time Growth rate

Standard 100.000 0.075
N-limited 162.500 0.046
S-limited 150.000 0.050
P-limited 212.500 0.035
Nitrate 43.281 0.173
Ammonia 28.133 0.267
Urea 28.133 0.267
22◦C 194.000 0.039
30◦C 109.000 0.069
Mixotrophic 84.000 0.089
Low salt 98.000 0.077
High salt 270.000 0.028

Table S2: Growth rates for LASSO and correlation anal-
ysis, Related to Figures 5 and 6. Growth rates of 12
conditions calculated from growth curves previously published
for Synechococcus sp. PCC 7002 (Ludwig and Bryant, 2011,
2012a,b). Doubling time is given as a fraction of standard con-
ditions (where 100 is the standard condition).

The formula for the LASSO algorithm is specified in
Eq. 4. We solved the regression problem in the form:

min
β0,β

(
1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λ

p∑
j=1

|βj |
)
, (4)

where N is the number of conditions, yi is the growth
rate at the (i)th condition, p is the number of predic-
tors indexed by j, xi is a vector of p values at condition
i, λ is a positive regularization parameter and β0 and
β represent the scalar and p-vector coefficients.

Our LASSO analysis reduced the list of recursive
features by retaining positive and negative non-zero
coefficients greater than 0.01. Furthermore, to pro-
vide a measure of predictive accuracy, we calculated
the mean squared error (MSE) for all the fitted co-
efficients yielded as a result of the LASSO regression
in each dataset. These values are recorded in Supple-
mentary Data 2. The errors were at least one magni-
tude below the observed growth rates (in the response
variable y), showing low deviation/variance between
predicted and actual values and therefore good pre-
dictive accuracy overall.

1.8. Correlation Analysis

To find the strength of the association between
growth rates and gene expression or flux values, the
Pearson correlation coefficient was calculated between
each vector of gene transcripts/flux rates and growth
rates across conditions (see Table S2). For this analy-
sis, all flux fold changes were converted into absolute
(non-negative) values before calculating the correla-
tion, therefore considering reversible reaction fluxes

in absolute value to represent the activity of that re-
action. For each gene/reaction, the mean predictor
coefficient (MPC) was calculated by averaging across
coefficients in all vectors for that predictor. The high-
est positively/negatively correlated genes or reactions
for each dataset are plotted in Figure 5.

2. Supplemental Results

2.1. Clustering

For Biomass-ATP maintenance fluxes (Figure 2d),
the clusters formed were: (i) dark oxic, dark anoxic,
low O2, low CO2, nitrogen limitation, sulfur limita-
tion, nitrate, ammonia, heat shock and mixotrophic;
(ii) high light intensity, phosphate limitation, and
standard control; (iii) OD 0.4, OD 3.0, 30◦C and ox-
idative stress; (iv) OD 1.0 and urea; (v) OD 5.0, iron
limitation and high salinity; (vi) 22◦C and low salin-
ity.

For Biomass-Photosystem I fluxes (Figure 2e), the
clusters were: (i) dark oxic, dark anoxic, OD 3.0, OD
5.0, phosphate limitation, heat shock, mixotrophic
and low salinity; (ii) high light intensity; (iii) OD 0.4;
(iv) OD 1.0, nitrogen limitation and sulfur limitation;
(v) low O2 (vi) low CO2, iron limitation, nitrate, am-
monia, urea, 22◦C, 30◦C, oxidative stress, high salin-
ity, and standard control.

For Biomass-Photosystem II fluxes (Figure 2f), the
clusters were: (i) dark oxic, dark anoxic, OD 3.0, OD
5.0, phosphate limitation, heat shock, mixotrophic
and low salinity; (ii) high light intensity; (iii) OD 0.4;
(iv) OD 1.0, nitrogen limitation and sulfur limitation;
(v) low O2 (vi) low CO2, iron limitation, nitrate, am-
monia, urea, 22◦C, 30◦C, oxidative stress, high salin-
ity, and standard control.

For the gene transcripts (plots a-b in Figure 3) the
clusters formed were: (i) dark oxic, high light inten-
sity, OD 0.4, OD 1.0, OD 3.0, OD 5.0, low O2, ni-
trogen limitation, sulfur limitation, phosphate limita-
tion, nitrate, ammonia, urea and low salinity; (ii) dark
anoxic; (iii) low CO2; (iv) iron limitation; (v) heat
shock; (vi) 22◦C, 30◦C, oxidative stress, high salinity,
and standard control.

When combining both transcript and flux data (Fig-
ure 3 c-h), the clusters formed were less distinct. For
the Biomass-ATP objective pair, the clusters were: (i)
dark oxic, OD 1.0, OD 3.0, low CO2, nitrogen limi-
tation, sulfur limitation, iron limitation, nitrate, am-
monia, urea, 30◦C, oxidative stress and high salinity;
(ii) dark anoxic, low O2, phosphate limitation, heat
shock, mixotrophic, and standard control; (iii) high
light intensity; (iv) OD 0.4 (v) OD 5.0 (vi) 22◦C and
low salinity.

For the Biomass-PI objective pair, the clusters were:
(i) dark oxic, OD 1.0, OD 3.0, OD 5.0, low O2, low
CO2, nitrogen limitation, sulfur limitation, nitrate,
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ammonia, urea, heat shock, 22◦C, 30◦C, oxidative
stress, high salinity, and standard control; (ii) dark
anoxic; (iii) high light intensity and OD 0.4; (iv) phos-
phate limitation and low salinity; (v) iron limitation;
(vi) mixotrophic.

For the Biomass-PII objective pair, the clusters
were: (i) dark oxic, OD 1.0, OD 3.0, OD 5.0, low
O2, low CO2, nitrogen limitation, iron limitation, ni-
trate, ammonia, urea, heat shock, 22◦C, 30◦C, oxida-
tive stress, high salinity, and standard control; (ii)
dark anoxic; (iii) high light intensity and OD 0.4;
(iv) sulfur limitation; (v) phosphate limitation; (vi)
mixotrophic and low salinity.

2.2. Principal Component Contributions to Variance

Table S3 displays contributions of the fluxes to the
principal components in the form of a list of the top
ten reactions contributing to variation in the datasets
for all three objective pairs. Among the highest con-
tributors to variance for all objectives was inorganic
diphosphate (IODP), which catalyzes the hydrolysis of
phosphorous acid anhydrides. Additionally, aspartate
transaminase (ASPTA1) is involved in the transfer of
an amino group from aspartate to alpha-ketoglutarate
during which glutamate and oxaloacetate are formed.
In the absence of sufficient oxygen, photoautotrophs
such as Synechococcus are capable of switching from
aerobic respiration to anaerobic fermentation in or-
der to produce ATP for cellular metabolic processes.
For all objective pairs, formate exchange (EX FOR E)
and transport (FORT) were among the highest con-
tributors to variance. Methenyltetrahydrofolate cy-
clohydrolase (MTHFC) and methylenetetrahydrofo-
late dehydrogenase (MTHFD) are intermediates in
folate biosynthesis that are involved in the Wood-
Ljungdahl pathway (aka reductive acetyl coenzyme A
pathway), where carbon fixation by acetyl-CoA syn-
thase and fermentative respiration occur concurrently
and acetate is generated as the end product((Woo and
Jang, 2019)). The exchange and transport of for-
mate (EX FOR E and FORT) are also linked with
folate biosynthesis, since formate can be converted
into tetrahydrofolate. Transketolase (TK1 and TK2)
as well as sedoheptulose bisphosphatase are also uti-
lized in the pentose phosphate pathway. The pen-
tose phosphate pathway is an important source of
NADPH, a reducing agent used to drive the numer-
ous oxidation-reduction reactions throughout the cen-
tral carbon metabolic pathways. In Synechocystis sp.
PCC 6803, higher metabolic flux was observed for
NADPH production under low light conditions since
the oxidative pentose phosphate pathway provides an
alternative route for NADPH production (Ueda et al.,
2018). For the biomass-photosystem I objective pair,
glutamate exchange (EX GLU E) and transport of L-
glutamate(GLUSYM) and sodium (NAT3) were rep-
resented in the highest contributors. For the biomass-

photosystem II objective pair, the key respiratory en-
zymes glucose-6-isomerase (PGI) and pyruvate dehy-
drogenase (PDH) as well as ribulose 5-phosphate 3-
epimerase (RPE) from the pentose phosphate path-
way were included. The pentose phosphate pathway
runs parallel to glycolysis and is mainly responsible for
the synthesis of amino acid and nucleotide precursors.
Pyruvate dehydrogenase is among the most important
enzymes in central carbon metabolism since it is re-
sponsible for producing acetyl-CoA.

2.3. LASSO Regression

Reducing the number of predictors in a regression
model enables identification of important predictors,
elimination of redundant predictions, and generation
of shrinkage estimates with lower predictive errors
than ordinary least squares regression. LASSO em-
ploys L1 regularization, which penalizes the sum of
absolute values of all the coefficients; this sets the co-
efficients of unnecessary or recursive features equal to
zero, resulting in a sparser matrix. The formula for
the algorithm is specified in Eq. 4 in the main text.
Tables S6, S7, and 2.3 list all non-zero coefficients
and the transcripts/fluxes they are associated with.
For each gene/reaction, the mean predictor coefficient
(MPC) is calculated by averaging across coefficients in
all vectors for that predictor.

When applying the LASSO algorithm to the flux-
only dataset (Table S7), the coefficients identified
primarily belonged to pathways associated with the
metabolism of nucleotides, co-factors and vitamins,
but also those that converge in order to fulfil a com-
mon objective i.e. energy generation from carbo-
hydrate and lipid metabolism, or the exchange and
transport of specific metal ions. Of particular interest
is cobalt transport (COBALTT5), since this reaction
yielded one of the highest coefficient values. Many
cyanobacterial species (including Synechococcus) uti-
lize nickel, copper, zinc, and cobalt-containing en-
zymes as protein co-factors that constitute important
components of the photosynthetic machinery (Huer-
tas et al., 2014). Furthermore, these co-factors con-
tribute to mechanisms for survival in iron-depleted
environments (Palenik et al., 2003), such as the se-
cretion of siderophores to chelate iron. In the form
of the photosystem II manganese-stabilizing polypep-
tide (psbO), manganese plays a critical role in pho-
tosystem II function by catalyzing the light-induced
dissociation of water to molecular oxygen (Bartse-
vich and Pakrasi, 1995; Liu et al., 2018). Inactiva-
tion of the manganese transport system (MNABC)
leads to an invariable loss of activity in photosys-
tem II, consequently affecting the photosynthetic pro-
cess as a whole (Shcolnick and Keren, 2006). Simi-
larly, the molybdenum exchange and transport reac-
tions (EX MOBD E and MOBDABC) represent the
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Biomass - ATP maintenance

No. Rxn Reaction Name Dim 1 Dim 2

1 IODP inorganic diphosphatase 0.307 0.012
2 TKT1 transketolase 0.307 0.016
3 NDPK1 nucleoside-diphosphate kinase (ATP:GDP) 0.307 0.016
4 RPE ribulose 5-phosphate 3-epimerase 0.307 0.016
5 TKT2 transketolase 0.307 0.016
6 FBA3 Sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3-phosphate-lyase 0.307 0.016
7 SBP sedoheptulose-bisphosphatase 0.307 0.016
8 FBA fructose-bisphosphate aldolase 0.307 0.016
9 FBP fructose-bisphosphatase 0.307 0.016
10 NDPK3 nucleoside-diphosphate kinase (ATP:CDP) 0.307 0.016

Biomass - Photosystem I

No. Rxn Reaction Name Dim 1 Dim 2

1 ASPTA1 aspartate transaminase 0.270 0.001
2 GLUSYM L-Glutamate transport in via sodium symport 0.270 0.004
3 EX GLU E glutamate exchange 0.270 0.004
4 NAT3 sodium transport out via proton antiport 0.270 0.004
5 IODP inorganic diphosphatase 0.270 0.004
6 EX FOR E formate exchange 0.270 0.003
7 FORT formate transport via diffusion 0.269 0.003
8 MTHFC methenyltetrahydrofolate cyclohydrolase 0.269 0.004
9 MTHFD methylenetetrahydrofolate dehydrogenase (NADP) 0.269 0.004
10 FTHFD formyltetrahydrofolate deformylase 0.269 0.003

Biomass - Photosystem II

No. Rxn Reaction Name Dim 1 Dim 2

1 ASPTA1 aspartate transaminase 0.272 1.36×10-5

2 IODP inorganic diphosphatase 0.272 0.001
3 PDH pyruvate dehydrogenase 0.272 0.001
4 MTHFC methenyltetrahydrofolate cyclohydrolase 0.272 4.49×10-4

5 MTHFD methylenetetrahydrofolate dehydrogenase (NADP) 0.272 4.49×10-4

6 TKT1 transketolase 0.272 3.57×10-4

7 EX FOR E formate exchange 0.272 1.23×10-4

8 FORT formate transport via diffusion 0.272 0.001
9 PGI glucose-6-phosphate isomerase 0.272 0.001
10 RPE ribulose 5-phosphate 3-epimerase 0.272 0.001

Table S3: Contributions of reactions to variance, Related to Figure 2. Top ten contributions of individual reaction fluxes
to principal component variables for the first two dimensions when PCA is performed on the fluxes for three pairs of objectives
(biomass-ATP maintenance, biomass-photosystem I, biomass-photosystem II).

No. Gene COG category CY category CY subcategory Dim 1 Dim 2

1 A0445 AA transport and metabolism Transport and binding proteins NA 0.125 0.002
2 A1216 Translation, ribosomal structure and

biogenesis
Translation Aminoacyl tRNA

synthetases and
tRNA modification

0.124 5.16×10-5

3 A0327 Energy production and conversion Hypothetical NA 0.124 0.007
4 A1341 None Unknown NA 0.123 0.0006
5 A1274 AA transport and metabolism/Cell

wall, membrane, envelope biogenesis
AA biosynthesis Aspartate family 0.121 0.0008

6 A0831 Coenzyme transport and metabolism Biosynthesis of cofactors, pros-
thetic groups, and carriers

Thiamin 0.119 8.66×10-5

7 A1173 Secondary metabolites biosynthesis,
transport and metabolism

Fatty acid, phospholipid and
sterol metabolism

NA 0.119 0.0003

8 A2554 Carbohydrate transport and
metabolism

Transport and binding proteins NA 0.111 7.59×10-8

9 A0939 Signal transduction mechanisms Hypothetical NA 0.111 0.011
10 A1414 Energy production and conversion Energy Metabolism Pyruvate and acetyl-

CoA metabolism
0.110 0.002

Table S4: Contributions of genes to variance, Related to Figure 3. Top ten contributions of genes to principal component
variables for the first two dimensions when PCA is performed on the gene transcripts. COG category refers to the Cluster of
Orthologous Groups that the gene belongs to, whilst CY category is its functional category according to Cyanobase (Fujisawa
et al., 2016).
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Biomass - ATP maintenance

No. Gene/Rxn COG category/Rxn description CY category/subsystem CY subcategory Dim 1 Dim 2

1 A0831 Coenzyme transport and
metabolism

Biosynthesis of cofactors,
prosthetic groups, and car-
riers

Thiamin 0.118 3.31×10-5

2 A1274 AA transport and metabolism/Cell
wall, membrane, envelope biogene-
sis

Amino acid biosynthesis Aspartate family 0.118 0.002

3 A1216 Translation, ribosomal structure
and biogenesis

Translation Aminoacyl tRNA syn-
thetases and tRNA modifi-
cation

0.118 0.002

4 A0445 AA transport and metabolism Transport and binding pro-
teins

NA 0.117 0.002

5 A1341 None Unknown NA 0.116 0.005
6 A0327 Energy production and conversion Hypothetical NA 0.115 0.012
7 A1173 Secondary metabolites biosynthe-

sis, transport and metabolism
Fatty acid, phospholipid
and sterol metabolism

NA 0.115 0.003

8 A2796 Replication, recombination, and
repair

DNA replication, restric-
tion, modification, recombi-
nation, and repair

NA 0.110 0.003

9 A0743 Lipid transport and metabolism Other Other 0.107 0.003
10 A1414 Energy production and conversion Energy Metabolism Pyruvate and acetyl-CoA

metabolism
0.107 0.003

Biomass - Photosystem I

No. Gene/Rxn COG category/Rxn description CY category/subsystem CY subcategory Dim 1 Dim 2

1 A0831 Coenzyme transport and
metabolism

Biosynthesis of cofactors,
prosthetic groups, and car-
riers

Thiamin 0.119 0.001

2 A1274 AA transport and metabolism/Cell
wall, membrane, envelope biogene-
sis

Amino acid biosynthesis Aspartate family 0.115 0.005

3 A0445 AA transport and metabolism Transport and binding pro-
teins

NA 0.114 0.006

4 A1216 Translation, ribosomal structure
and biogenesis

Translation Aminoacyl tRNA syn-
thetases and tRNA modifi-
cation

0.114 0.007

5 A1341 None Unknown NA 0.112 0.009
6 A1173 Secondary metabolites biosynthe-

sis, transport and metabolism
Fatty acid, phospholipid
and sterol metabolism

NA 0.111 0.005

7 A0327 Energy production and conversion Hypothetical NA 0.111 0.016
8 A2796 Replication, recombination, and

repair
DNA replication, restric-
tion, modification, recombi-
nation, and repair

NA 0.110 0.001

9 A0743 Lipid transport and metabolism Other Others 0.107 2.69×10-4

10 A1405 Signal transduction mechanisms Other Drug and analog sensitivity 0.105 0.001

Biomass - Photosystem II

No. Gene/Rxn COG category/Rxn description CY category/subsystem CY subcategory Dim 1 Dim 2

1 A0831 Coenzyme transport and
metabolism

Biosynthesis of cofactors,
prosthetic groups, and car-
riers

Thiamin 0.119 7.48×10-4

2 A1274 AA transport and metabolism/Cell
wall, membrane, envelope biogene-
sis

Amino acid biosynthesis Aspartate family 0.115 0.005

3 A0445 AA transport and metabolism Transport and binding pro-
teins

NA 0.115 0.006

4 A1216 Translation, ribosomal structure
and biogenesis

Translation Aminoacyl tRNA syn-
thetases and tRNA modifi-
cation

0.114 0.007

5 A1341 None Unknown NA 0.113 0.009
6 A1173 Secondary metabolites biosynthe-

sis, transport and metabolism
Fatty acid, phospholipid
and sterol metabolism

NA 0.112 0.005

7 A0327 Energy production and conversion Hypothetical NA 0.111 0.016
8 A2796 Replication, recombination, and

repair
DNA replication, restric-
tion, modification, recombi-
nation, and repair

NA 0.111 0.001

9 A0743 Lipid transport and metabolism Other Other 0.108 2.57×10-4

10 A1405 Signal transduction mechanisms Other Drug and analog sensitivity 0.106 0.001

Table S5: Contributions of genes and reactions to variance, Related to Figure 3. Top ten contributions of gene transcripts
and reaction fluxes to principal component variables for the first two dimensions when PCA is performed on the gene transcripts
and fluxes for three pairs of objectives (biomass-ATP maintenance, biomass-photosystem I, biomass-photosystem II).
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uptake and transport of molybdenum by cyanobacte-
rial ABC transporters to form cofactors (e.g. Moco
or FeMoco) that assist in nitrogen fixation (Shvarev
and Maldener, 2018; Demtröder et al., 2019). GMPS2
(guanosine monophosphate synthetase) was among
the top negative LASSO coefficients and catalyzes
the reversible conversion between xanthosine 5’ phos-
phate and GMP (guanosine monophosphate) and also
between L-glutamine and L-glutamate. Significantly,
the nitrate reduction reaction (FDNOR1) was one of
the main negative LASSO coefficients retained in the
Biomass-Photosystem I flux data. Ferredoxins are
iron and sulfur-containing proteins that act as electron
carriers during many important metabolic processes
including oxidation-reduction, photosynthesis, and ni-
trogen fixation (Lea-Smith et al., 2016). More specif-
ically, nitrate ferredoxin acts as a significant electron
sink during the reversible, redox inter-conversion of
nitrite to nitrate during photosynthesis (Flores et al.,
2005; Qian et al., 2016).

The positive coefficients for reactions previously
identified during PCA were also retained for the
Biomass-Photosystem I objective pair. ASPO5
(anaerobic L-aspartate oxidase) was identified as the
highest positive LASSO coefficient in the ATP objec-
tive pair. This anaerobic reaction uses fumarate as a
terminal electron acceptor instead of oxygen, produc-
ing succinate.

Succinate dehydrogenase (SUCD1Itlm and
SUCD1Icpm) catalyzes the interconversion of
succinate to fumarate as a product of NADH oxida-
tion in the TCA cycle, a process which can still occur
in Synechococcus sp. PCC 7002 during fermentative
metabolism in dark, anoxic conditions (McNeely
et al., 2010). In a diurnal GSMM accounting for
fluctuations in light availability in the phototrophic
metabolism of Synechocystis sp. PCC 6803, an
increased flux towards succinate was observed during
the dark period, driving ATP production through
respiratory electron transport (Sarkar et al., 2019).
Other correlated reactions were associated with the
oxidation, transport and exchange of D-lactate and
water, synthesis of intermediates used in central
carbon metabolism, and for synthesis of interme-
diates formed during amino acid biosynthesis and
catabolism. The negatively correlated reactions
included dehydrogenases in the TCA cycle that
catalyze the reversible oxidation of carbohydrates or
amino acids (L-aspartate, L-alanine, D-lactate) into
pyruvate or oxaloacetate, which can be utilized in the
central metabolic pathways (glycolysis or the TCA
cycle).

2.4. Pearson Correlation Analysis

Similarly to LASSO, the Pearson correlation coef-
ficient was calculated between each dataset of gene
transcripts/flux rates (x ) and growth rates (y) listed

in Table S2 in the main text. For this analysis,
all transcript and flux fold changes were converted
into absolute (non-negative) values. Plots for the top
ten positively/negatively correlated genes are given in
Figure S1. Tables S9, S10, S11, S12, and 2.4 provide
additional information on the function of each gene or
reaction as well as its Pearson correlation coefficient.
Additionally, Figure 6 (c) displays the mean absolute
PCC values according to subsystems defined in the
GSMM.

For all three objective pairs, genes involved in succi-
nate dehydrogenation (SUCD1Itlm/SUCD1Icpm), ef-
flux (SUCCt2b) or exchange (EX succ E) were found
to be positively correlated with growth. In addi-
tion to succinate dehydrogenase, fumarase (FUMH),
succinate semialdehyde dehydrogenase (SSALY) and
2-oxoglutarate (2OGDC) were positively correlated
with growth in Biomass-ATP maintenance. All three
of these enzymes play an important role in the in-
terconversion of compounds within the TCA cycle.
Overall, there were a high number of reactions that
yielded similar positive coefficients for Biomass - Pho-
tosystem I and Biomass - Photosystem II data (Table
2.4). These reactions belonged to pathways relating
to amino acid, carbohydrate, exchange and transport
metabolism. NADPH dehydrogenases are among the
top negative coefficients for all three flux datasets.
Cyanobacteria consume a large amount of the cofac-
tors NADPH and NADH whilst reducing nitrate to
catabolize glycogen under dark anaerobic conditions
(Qian et al., 2016). NADH dehydrogenase (type II)
is a protein that catalyzes the electron transfer from
NADH to a quinone molecule via a flavin co-factor
(Heikal et al., 2014). In the case of Synechococcus and
other cyanobacteria, this molecule is plastoquinone,
which plays a critical role as a mobile electron car-
rier during the light-dependent reactions of photosyn-
thesis. NADH type II is formed when plastoquinone
combines with NADH to form NADH:plastoquinone
oxidoreductase, which acts as a single-subunit flavoen-
zyme. In photosystem II, plastoquinone is doubly re-
duced to plastoquinol, acting as a terminal electron
acceptor (McConnell et al., 2011). The reduced plas-
toquinone (plastiquinol) pool serves as an electron
buffer, maintaining a consistent charge between pho-
tosystem II and photosystem I (Peltier et al., 2016).
The reduction from plastiquinone to plastiquinol can
occur both in the cytoplasm and the thylakoid mem-
brane, either with or without a proton pump. Reac-
tions for water exchange (EX H20 E) and transport
(H20T5) have the highest negative correlation with
growth in the Biomass-ATP maintenance flux data.
In addition to the photosystem II reaction (PSIIR),
water and oxygen exchanged between the thylakoid
lumen and cytosol are among the top negative coef-
ficients in the Biomass-Photosystem II flux data. In
cyanobacteria, water plays an important role in photo-
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Gene COG category CY category CY subcategory MPC

A0639 None Photosynthesis and respiration Phycobilisome 0.036
A0575 None Hypothetical NA 0.012
A0720 Posttranslational modification,

protein turnover, chaperones
Central intermediary metabolism Others 0.011

A0083 General Translation Degradation of proteins
peptides and glycopeptides

-0.012

A1376 Cell cycle control, cell division,
chromosome partitioning

Hypothetical NA -0.025

G0060 Inorganic ion transport and
metabolism

Transport and binding proteins NA -0.049

Table S6: Non-zero coefficients (>0.01) retained by LASSO regularizer for all gene transcripts, Related to Sec-
tion 3.4 LASSO regression and Figure 5. The mean predictor coefficient (MPC) is calculated by averaging across coefficients
in all vectors for that predictor. Genes yielding positive coefficients are associated with photosynthesis, respiration, and protein
modification. Genes yielding negative predictor coefficients are involved in protein degradation, cell division, and transport of
inorganic ions.

Biomass - ATP maintenance

Reaction Description Subsystem MPC

ASPO5 L-aspartate oxidase AA Metabolism 11.253
GLNS glutamine synthetase AA Carbohydrate and Energy Metabolism 2.387
ILEABC L-isoleucine transport via ABC system Extracellular Transport 0.247
LEUABC L-leucine transport via ABC system Extracellular Transport 0.063

GMPS2 GMP synthase (glutamine-hydrolysing) Nucleotide Metabolism -3.589
IMPD IMP dehydrogenase Nucleotide Metabolism -0.192

Biomass - Photosystem I

Reaction Description Subsystem MPC

COBALTT5 cobalt transport in/out via permease (no H+) Transport 267.011
GLUSZ glutamate synthase (Ferredoxin) Energy and Carbohydrate Metabolism 88.057
ADSL2R adenylosuccinate lyase Nucleotide Metabolism and AA Metabolism 45.372
ATPM ATP maintenance requirement Nucleotide Metabolism 41.438
NTD7 5”-nucleotidase (AMP) Nucleotide Metabolism 38.909
PRAGS phosphoribosylglycinamide synthetase Nucleotide Metabolism 14.157
ADCL 4-aminobenzoate synthase Metabolism of cofactors and vitamins 13.206
THFAT tetrahydrofolate aminomethyltransferase Metabolism of cofactors and vitamins 12.862
PIABC phosphate transport via ABC system Transport 11.172
EX GLYC E glycerol exchange Exchange Reaction 9.735

ME2 malic enzyme (NADP) Carbohydrate Metabolism and Energy
Metabolism

-176.122

MNABC manganese transport via ABC system Transport -3.832
FDNOR1 ferredoxin-NADP reductase Energy Metabolism -3.641
HTDHL6 (3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein]

hydro-lyase
Lipid metabolism and Metabolism of cofactors
and vitamins

-2.140

HOXPRX 2-hydroxy-3-oxopropionate reductase (NAD) Carbohydrate Metabolism -1.509
BTMAT1 Butyryl-[acyl-carrier protein]:malonyl-CoA C-

acyltransferase
Metabolism of cofactors and vitamins -1.098

GTPCI GTP cyclohydrolase I Metabolism of cofactors and vitamins -0.950
EX COBALT2 Ecobalt exchange Exchange Reaction -0.913
DB4PS 3,4-Dihydroxy-2-butanone-4-phosphate Metabolism of cofactors and vitamins -0.821
GAPD NADP glyceraldehyde-3-phosphate dehydrogenase

(NADP) (phosphorylating)
Energy Metabolism -0.817

Biomass - Photosystem II

Reaction Description Subsystem MPC

ADCL 4-aminobenzoate synthase Metabolism of cofactors and vitamins 367.805
EX GLYC E glycerol exchange Exchange Reaction 119.944
G3PD2 glycerol-3-phosphate dehydrogenase (NADP) Lipid metabolism 61.787
ALALIG D-alanine-D-alanine ligase (reversible) Cell wall and Metabolism of other amino acids 48.533
EX MN2 E manganese exchange Exchange Reaction 4.757
EX PTRC E putrescine exchange Exchange Reaction 4.011
PTRCABC putrescine transport via ABC system Extracellular Transport 0.301

GMPS2 GMP synthase (glutamine-hydrolysing) Nucleotide Metabolism -0.829

Table S7: Non-zero coefficients (>0.01) retained by LASSO regularizer for fluxes in the three pairs of objectives,
Related to Section 3.4 LASSO regression and Figure 5. Flux rates below 10−4 were not considered in order to account for
solver tolerance during optimization. The coefficients retained are related to pathways involved in energy metabolism - fatty acid
synthesis, transport/exchange, nucleotide metabolism, carbohydrate metabolism, and amino-acid metabolism.
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Biomass - ATP maintenance

Gene/Rxn COG category/Rxn description CY category/subsystem CY subcategory MPC

A0639 None Photosynthesis and respiration Phycobilisome 0.036
A0575 None Hypothetical NA 0.012
A0720 Posttranslational modification,

protein turnover, chaperones
Central intermediary metabolism Others 0.011

G0060 Inorganic ion transport and
metabolism

Transport and binding proteins NA -0.049

A1376 Cell cycle control, cell division,
chromosome partitioning

Hypothetical NA -0.025

A0083 General Translation Degradation of proteins
peptides and glycopeptides

-0.012

Biomass - Photosystem I

Gene/Rxn COG category/Rxn description CY category/subsystem CY subcategory MPC

A0639 None Photosynthesis and respiration Phycobilisome 0.036
A0575 None Hypothetical NA 0.012
A0720 Posttranslational modification,

protein turnover, chaperones
Central intermediary metabolism Others 0.011

G0060 Inorganic ion transport and
metabolism

Transport and binding proteins NA -0.049

A1376 Cell cycle control, cell division,
chromosome partitioning

Hypothetical NA -0.025

A0083 General Translation Degradation of proteins
peptides and glycopeptides

-0.012

Biomass - Photosystem II

Gene/Rxn COG category/Rxn description CY category/subsystem CY subcategory MPC

A0639 None Photosynthesis and respiration Phycobilisome 0.036
A0575 None Hypothetical NA 0.012
A0720 Posttranslational modification,

protein turnover, chaperones
Central intermediary metabolism Others 0.011

G0060 Inorganic ion transport and
metabolism

Transport and binding proteins NA -0.049

A1376 Cell cycle control, cell division,
chromosome partitioning

Hypothetical NA -0.025

A0083 General Translation Degradation of proteins
peptides and glycopeptides

-0.012

Table S8: Non-zero coefficients (>0.01) retained by LASSO regularizer for all features (gene transcripts and
fluxes) with the three objective pairs, Related to Section 3.4 LASSO regression and Figure 5. Only gene
coefficients are retained, which are the same predictors as Table S6.
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system II when it splits to produce molecular oxygen
during the light-driven flux of protons from the cyto-
plasm to the luminal side of the thylakoid membrane,
enabling a transmembrane electric potential for the
diffusion of metal ions (Checchetto et al., 2012). Simi-
lar to results of the LASSO, the nitrate reduction reac-
tion (FDNOR1) has the highest negative Pearson co-
efficient in the Biomass-Photosystem I flux data. The
NAD-dependent malic enzyme (ME2) yielded a highly
positive correlation coefficient for the Biomass- ATP
maintenance data but a negative coefficient for the
Biomass - Photosystem I data. Its function within the
TCA cycle is the oxidative decarboxylation of malate
and NAD+ to pyruvate and NADH.

When the gene transcripts were analyzed in isola-
tion (Table S9), the highest Pearson correlation coef-
ficients were given by (i) genes relating to photosyn-
thesis and energy metabolism (A0639, A1008, A1802),
and (ii) genes relating to amino acid biosynthesis and
protein assembly (A2457, A0881). The phycobili-
some is a large, light-harvesting membrane complex in
photosystem II comprising chromophorylated phyco-
biliproteins and linker peptides (Boulay et al., 2008).
Phycobilisomes assist cyanobacteria in adapting to
varying light conditions by adjusting their size and
structure to accommodate the flow of energy (Noreña-
Caro and Benton, 2018). These are evidently impor-
tant features to retain in the model for a phototrophic
cyanobacterium as photophysiological measurements
associated with photosystems tend to increase with
the growth rate (Watanabe et al., 2014). Correspond-
ingly, nutrient limitation causes degradation of the
phycobilisomes, which activates mechanisms responsi-
ble for maintaining photosynthetic efficiency (Jackson
et al., 2015; Clark et al., 2018; Saha et al., 2016).

When the gene expression and flux datasets were
combined, all of the same genes are identified in Ta-
ble 2.4 as in Table S9 and there was no difference
in coefficients between the objectives (i.e. Biomass -
ATP maintenance, Biomass - Photosystem I, Biomass
- Photosystem II). This supports our idea of using
fluxes separately as additional predictive omic features
in further machine learning analyses (Zampieri et al.,
2019; Yang et al., 2019; Culley et al., 2020; Zhang
et al., 2020), for predicting growth rate or production
rates for biotechnologically-relevant metabolites.
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Figure S1: Top ten Pearson correlation coefficients (PCC) with their respective 95% confidence intervals (CI)
between gene transcript values (x) and growth rates (y), Related to Figure 5. A list of each gene and its respective
PCC is provided in Table S9.
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Gene COG category CY category CY subcategory PCC

A0639 None Photosynthesis and respiration Phycobilisome 0.874
A2457 Post-translational modification,

protein turnover, chaperones
Cellular processes Chaperones 0.828

A1008 None Photosynthesis and respiration Photosystem I 0.821
E0022 None Unknown NA 0.811
A0561 None Hypothetical NA 0.770
A0575 None Hypothetical NA 0.767
A2725 None NA NA 0.759
A1802 Energy production and con-

version/Secondary metabolites
biosynthesis, transport and
metabolism

Photosynthesis and respiration CO2 fixation 0.742

A0881 AA transport and metabolism AA biosynthesis Aspartate family 0.734
A0472 None Hypothetical NA 0.727

G0060 Inorganic ion transport and
metabolism

Transport and binding proteins NA -0.835

A2485 General Hypothetical NA -0.831
A0356 General Translation Degradation of proteins

peptides and glycopeptides
-0.787

A1839 None Other Other -0.781
A1133 Replication, recombination, and

repair
Translation Aminoacyl tRNA syn-

thetases and tRNA modifi-
cation

-0.766

A1618 AA transport and metabolism Hypothetical NA -0.761
A1703 AA transport and metabolism Energy Metabolism Amino acids and amines -0.759
A2018 General Hypothetical NA -0.758
A1427 Coenzyme transport and

metabolism
Biosynthesis of cofactors, pros-
thetic groups, and carriers

Pantothenate -0.757

A0483 General Hypothetical NA -0.751

Table S9: Top ten Pearson correlation coefficients between gene transcripts and growth rates for 11 conditions,
Related to Figures 5 and S1. The highest correlation coefficients are given by genes relating to photosynthesis and energy
metabolism or amino acid biosynthesis and protein assembly.

Biomass - ATP maintenance

Reaction Description Subsystem PCC

SUCD1Itlm succinate dehydrogenase Carbohydrate Metabolism 0.683
SUCD1Icpm succinate dehydrogenase Carbohydrate Metabolism 0.683
ME2 malic enzyme (NADP) Carbohydrate Metabolism and Energy

Metabolism
0.683

CA2T3 Ca2 transport via ion channels Transport 0.605
GLNS glutamine synthetase AA Carbohydrate and Energy

Metabolism
0.605

CA2T2 calcium transport out via proton antiport Transport 0.605
EX NH4 E ammonia exchange Exchange Reaction 0.536
NH4T ammonium transport via diffusion Transport 0.536
FUMH fumarase AA Metabolism 0.527
GLUSYM L-Glutamate transport in via sodium symport Transport 0.519
EX GLU E glutamate exchange Exchange Reaction 0.519

EX H2O E water exchange Exchange Reaction -0.524
H2OT5 H2O transport via diffusion Transport -0.524
NADPHPQ9cpm NADPH dehydrogenase (plastoquinone-9 and 4 protons) Energy Metabolism -0.391
ALAD LR L-alanine dehydrogenase (reversible) AA Metabolism -0.388
LDH D D-lactate dehydrogenase Carbohydrate Metabolism -0.381
lac d2 D-lactate transport Transport -0.381
EX lac d E D-lactate exchange Exchange Reaction -0.381
NADPHPQ9tlm NADPH dehydrogenase (plastoquinone-9 and 4 protons) Energy Metabolism -0.376
THD2 NAD(P) transhydrogenase Metabolism of cofactors and vitamins -0.353
ASPT L-aspartase AA Metabolism -0.324

Table S10: Top ten Pearson correlation coefficients between Biomass - ATP maintenance fluxes (x) and growth
rates (y), Related to Figures 5 and S2. The flux rates used to calculate PCC were absolute values of the fluxes calculated
during bi-level regularized FBA. Reactions that yield the highest positive correlation coefficients belong to pathways relating to
amino acid, carbohydrate, exchange and transport metabolism whereas reactions involved in nucleotide metabolism are negatively
correlated with the growth rate.
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Biomass - Photosystem I

Reaction Description Subsystem PCC

SUCCt2b Succinate efflux via proton symport Transport 0.378
EX succ E Succinate exchange Exchange 0.378
ASPT L-aspartase AA Metabolism 0.364
HDH2 Bidirectional Hydrogenase (NADP/NADPH) Hydrogen Metabolism 0.355
NADPHPQ9tlm NADPH dehydrogenase (plastoquinone-9 and 4 protons) Energy Metabolism 0.349
NAT3 sodium transport out via proton antiport Transport 0.343
GLUSYM L-Glutamate transport in via sodium symport Transport 0.343
EX GLU E glutamate exchange Exchange 0.343
SSALY succinate-semialdehyde dehydrogenase (NADP) AA Metabolism and Carbohydrate

Metabolism
0.343

2OGDC 2-oxoglutarate decarboxylase Exchange 0.343

FDNOR1 ferredoxin-NADP reductase Energy Metabolism -0.427
ME2 malic enzyme (NADP) Carbohydrate Metabolism and Energy

Metabolism
-0.259

GAPD NADP glyceraldehyde-3-phosphate dehydrogenase (NADP)
(phosphorylating)

Energy Metabolism -0.252

ACONT aconitase Carbohydrate Metabolism -0.246
CS citrate synthase Carbohydrate Metabolism -0.246
ICDHY isocitrate dehydrogenase (NADP) Metabolism of other amino acids and En-

ergy Metabolism
-0.246

P5CD 1-pyrroline-5-carboxylate dehydrogenase AA Metabolism -0.242
FDPQ Cyclic reaction (ferredoxin:plastoquinol) Energy Metabolism -0.240
CA2ABC1 calcium efflux via ABC system Transport -0.239
COABC Cobalt transport via ABC system Transport -0.239
DADPEP D-ala-D-ala dipeptidase AA Metabolism -0.239
DAGK SYN diacylglycerol kinase (Synechococcus) Lipid metabolism -0.239
EX PI E phosphate exchange Exchange Reaction -0.239
FTHFCL 5-formyltetrahydrofolate cyclo-ligase Metabolism of cofactors and vitamins -0.239
NTD7 5”-nucleotidase (AMP) Nucleotide Metabolism -0.239
PIABC phosphate transport via ABC system Transport -0.239
THFAT tetrahydrofolate aminomethyltransferase Metabolism of cofactors and vitamins -0.239
DAGPYP SYN diacylglycerol pyrophosphate phosphatase (Synechococ-

cus)
Fatty Acid Synthesis -0.239

ILEDIFF L-isoleucine transport out via diffusion Transport -0.239
LEUDIFF L-leucine transport out via diffusion Transport -0.239
VALDIFF L-valine transport out via diffusion Transport -0.239

Table S11: Top ten Pearson correlation coefficients between Biomass- Photosystem I fluxes (x) and growth rates
(y), Related to Figures 5 and S3.

Biomass - Photosystem II

Reaction Description Subsystem PCC

SUCCt2b Succinate efflux via proton symport Transport 0.373
EX succ E Succinate exchange Exchange 0.373
ASPT L-aspartase AA Metabolism 0.364
NADPHPQ9tlm NADPH dehydrogenase (plastoquinone-9 and 4 protons) Energy Metabolism 0.354
HDH2 Bidirectional Hydrogenase (NADP/NADPH) Hydrogen Metabolism 0.354
NAT3 sodium transport out via proton antiport Transport 0.344
GLUSYM L-Glutamate transport in via sodium symport Transport 0.343
EX GLU E glutamate exchange Exchange 0.343
SSALY succinate-semialdehyde dehydrogenase (NADP) AA Metabolism and Carbohydrate

Metabolism
0.342

2OGDC 2-oxoglutarate decarboxylase Exchange 0.342

PSIIR photosystem II reaction Energy Metabolism -0.319
O2EXtll oxygen exchange between thylakoid lumen and cytosol None -0.319
H2OEXtll water exchange between thylakoid lumen and cytosol None -0.319
PFK phosphofructokinase Carbohydrate Metabolism -0.239
FRUK fructokinase Carbohydrate Metabolism -0.239
SPS sucrose-phosphate synthase Carbohydrate Metabolism -0.239
SUCPPT sucrose-phosphate phosphatase Carbohydrate Metabolism -0.239
SUCPR sucrose phosphorylase Carbohydrate Metabolism -0.239
GLCP glycogen phosphorylase Carbohydrate Metabolism -0.239
CTPD CTP deaminase Nucleotide Metabolism -0.239

Table S12: Top ten Pearson correlation coefficients between fluxes for Biomass - Photosystem II (x) and growth
rates (y), Related to Figures 5 and S4.
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Figure S2: Top ten Pearson correlation coefficients (PCC) with their respective 95% confidence intervals (CI)
between fluxes obtained using Biomass - ATP maintenance as objective functions (x) and growth rates (y),
Related to Figure 5. A list of each reaction and its respective PCC is provided in Table S10.
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Figure S3: Top ten Pearson correlation coefficients (PCC) with their respective 95% confidence intervals (CI)
between fluxes obtained using Biomass - Photosystem I as objective functions (x) and growth rates (y), Related
to Figure 5. A list of each reaction and its respective PCC is provided in Table S11.
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Figure S4: Top ten Pearson correlation coefficients (PCC) with their respective 95% confidence intervals (CI)
between fluxes obtained using Biomass - Photosystem II as objective functions (x) and growth rates (y), Related
to Figure 5. A list of each reaction and its respective PCC is provided in Table S12.
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Biomass - ATP maintenance

Gene COG category CY category CY subcategory PCC

A0639 None Photosynthesis and respiration Phycobilisome 0.874
A2457 Post-translational modification, protein turnover, chaperones Cellular processes Chaperones 0.828
A1008 None Photosynthesis and respiration Photosystem I 0.821
E0022 None Unknown NA 0.811
A0561 None Hypothetical NA 0.770
A0575 None Hypothetical NA 0.767
A2725 None NA NA 0.759
A1802 Energy production and conversion/Secondary metabolites

biosynthesis, transport and metabolism
Photosynthesis and respiration CO2 fixation 0.742

A0881 AA transport and metabolism AA biosynthesis Aspartate family 0.734
A0472 None Hypothetical NA 0.727

G0060 Inorganic ion transport and metabolism Transport and binding pro-
teins

NA -0.835

A2485 General Hypothetical NA -0.831
A0356 General Translation Degradation of proteins

peptides and glycopeptides
-0.787

A1839 None Other Other -0.781
A1133 Replication, recombination, and repair Translation Aminoacyl tRNA syn-

thetases and tRNA modifi-
cation

-0.766

A1618 AA transport and metabolism Hypothetical NA -0.761
A1703 AA transport and metabolism Energy Metabolism Amino acids and amines -0.759
A2018 General Hypothetical NA -0.758
A1427 Coenzyme transport and metabolism Biosynthesis of cofactors, pros-

thetic groups, and carriers
Pantothenate -0.757

A0483 General Hypothetical NA -0.751

Biomass - Photosystem I

Gene COG category CY category CY subcategory PCC

A0639 None Photosynthesis and respiration Phycobilisome 0.874
A2457 Post-translational modification, protein turnover, chaperones Cellular processes Chaperones 0.828
A1008 None Photosynthesis and respiration Photosystem I 0.821
E0022 None Unknown NA 0.811
A0561 None Hypothetical NA 0.770
A0575 None Hypothetical NA 0.767
A2725 None NA NA 0.759
A1802 Energy production and conversion/Secondary metabolites

biosynthesis, transport and metabolism
Photosynthesis and respiration CO2 fixation 0.742

A0881 AA transport and metabolism AA biosynthesis Aspartate family 0.734
A0472 None Hypothetical NA 0.727

G0060 Inorganic ion transport and metabolism Transport and binding pro-
teins

NA -0.835

A2485 General Hypothetical NA -0.831
A0356 General Translation Degradation of proteins

peptides and glycopeptides
-0.787

A1839 None Other Other -0.781
A1133 Replication, recombination, and repair Translation Aminoacyl tRNA syn-

thetases and tRNA modifi-
cation

-0.766

A1618 AA transport and metabolism Hypothetical NA -0.761
A1703 AA transport and metabolism Energy Metabolism Amino acids and amines -0.759
A2018 General Hypothetical NA -0.758
A1427 Coenzyme transport and metabolism Biosynthesis of cofactors, pros-

thetic groups, and carriers
Pantothenate -0.757

A0483 General Hypothetical NA -0.751

Biomass - Photosystem II

Gene COG category CY category CY subcategory PCC

A0639 None Photosynthesis and respiration Phycobilisome 0.874
A2457 Post-translational modification, protein turnover, chaperones Cellular processes Chaperones 0.828
A1008 None Photosynthesis and respiration Photosystem I 0.821
E0022 None Unknown NA 0.811
A0561 None Hypothetical NA 0.770
A0575 None Hypothetical NA 0.767
A2725 None NA NA 0.759
A1802 Energy production and conversion/Secondary metabolites

biosynthesis, transport and metabolism
Photosynthesis and respiration CO2 fixation 0.742

A0881 AA transport and metabolism AA biosynthesis Aspartate family 0.734
A0472 None Hypothetical NA 0.727

G0060 Inorganic ion transport and metabolism Transport and binding pro-
teins

NA -0.835

A2485 General Hypothetical NA -0.831
A0356 General Translation Degradation of proteins

peptides and glycopeptides
-0.787

A1839 None Other Other -0.781
A1133 Replication, recombination, and repair Translation Aminoacyl tRNA syn-

thetases and tRNA modifi-
cation

-0.766

A1618 AA transport and metabolism Hypothetical NA -0.761
A1703 AA transport and metabolism Energy Metabolism Amino acids and amines -0.759
A2018 General Hypothetical NA -0.758
A1427 Coenzyme transport and metabolism Biosynthesis of cofactors, pros-

thetic groups, and carriers
Pantothenate -0.757

A0483 General Hypothetical NA -0.751

Table S13: Top ten Pearson correlation coefficients between transcript-and-flux data (x) and growth rates (y),
Related to Figures 5 and S1. The same genes are already highlighted in Table S9.
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