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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant

advances in cancer research, particularly in analysing histopathology images for prognostic

and treatment-predictive insights. However, effective translation of these computational

methods requires computational researchers to have at least a basic understanding of histo-

pathology. In this work, we aim to bridge that gap by introducing essential histopathology

concepts to support AI developers in their research. We cover the defining features of key

cell types, including epithelial, stromal, and immune cells. The concepts of malignancy, pre-

cursor lesions, and the tumour microenvironment (TME) are discussed and illustrated. To

enhance understanding, we also introduce foundational histopathology techniques, such as

conventional staining with hematoxylin and eosin (HE), antibody staining by immunohis-

tochemistry, and including the new multiplexed antibody staining methods. By providing this

essential knowledge to the computational community, we aim to accelerate the develop-

ment of AI algorithms for cancer research.

Introduction

Histopathology—the microscopic analysis of tissue samples to diagnose and study diseases—is

the mainstay of cancer diagnosis, and most clinical practices revolve around expert human

pathologists examining very thin tissue slices (“sections”) mounted on glass slides under tradi-

tional light microscopes.

The last decades have experienced a huge rise in the application of bioinformatics, artificial

intelligence (AI), and machine learning (ML) in cancer research [1–3]. A plethora of AI tools

have been developed specifically for histopathology, which aim to improve its diagnostic reli-

ability and accuracy [4–6]. Tissue, i.e., the sum and interplay of cells, and cellular morpholo-

gies are the key variables in histopathology [7] and are the foundation for any supervised

modelling attempt. Thus, we believe that successful AI development requires an understanding

of tumour histology.

Building accurate AI models for medicine is an interdisciplinary task [8] and requires a

complement of different expertise, i.e., computational and mathematical skills combined with

clinical knowledge. This is often hampered by computer scientists and biologists/expert

healthcare professionals not physically working in the same environment, where they cannot

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012708 January 23, 2025 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mandal S, Baker A-M, Graham TA,
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easily access the other’s expertise. The lack of interdisciplinary communication results in sig-

nificant inefficiencies and misunderstandings, leading many AI models to remain prototypes

rather than being integrated into clinical practice [9,10]. In light of the rise of AI in the clinic,

teaching medics AI basics has become essential [11]; here, we propose that a similarly recipro-

cal understanding of biology is important for AI developers to build better models.

Recent advancements in AI research have significantly automated a range of diagnostic

(defining disease), predictive (predicting the response to a certain treatment [12]), and prog-

nostic (stratifying patients at risk and determining outcome/patient prognosis) tasks in oncol-

ogy [13–15]. However, these models often operate as “black boxes,” providing little

transparency regarding their decision-making processes. Physicians, on the other hand, base

their diagnoses on well-defined biological features and established criteria [16], especially in

the case of histopathologists, whose cornerstone is tissue and cell morphology [17]. Therefore,

the interpretability of both the design and the results of AI-based methods are crucial for gain-

ing the trust and acceptance of the medical community and accelerating the clinical imple-

mentation of in-silico approaches. A good level of understanding of tumour biology instructs

AI developers to incorporate relevant biological features into their computational models [18].

This understanding not only improves the accuracy and relevance of the models but also facili-

tates the presentation of results in a manner that physicians can validate and understand. For

example, a study on early-stage oestrogen receptor-positive (ER+) breast cancer demonstrated

how considering relevant biological features is crucial in the development of AI methods for

survival prediction [19]. The method described in this work leveraged understanding of

nuclear pleomorphism (variance in the appearance of the cell nucleus), which is a crucial fac-

tor in breast cancer grading.

This article aims to bridge the gap between the AI development and the translation to rou-

tine clinical application by emphasising the importance of relevant biological knowledge,

which would be helpful in enhancing model interpretability and the subsequent clinical valida-

tion. Only solid biological understanding would enable modellers to define sets of relevant fea-

tures and implement their morphological properties into algorithms.

While recently published literature aims at bestowing (cancer) healthcare professionals

with expertise on AI, e.g., developing image analysis and modelling skills for clinicians [20,21],

the opposite—giving AI developers an understanding of cancer histopathology fundamentals

—is rare. Thus, in this work we introduce some of the essential concepts of tumour histopa-

thology—the most frequent cell types, the concepts of “neoplasia,” “tumours,” and the tumour

microenvironment (TME). We also illustrate routine histopathology protocols and special

stainings that provide the visual representation of the above concepts.

Concepts of tumour histopathology and representative examples

of modelling them

In order to model disease, firstly, a solid understanding of cell types, their physiological func-

tion, overall architecture and interplay with other cells is necessary. Parameters for image anal-

ysis and neural network training are best derived by applying knowledge of their defining

morphology and distinct, if not unique, individual features (the common proverb of “the eyes

can’t see what the mind doesn’t know” applies). In the first section, we introduce different cell

types and the concept of “neoplasia.”

Morphological diversities in cell types and tissues

Most human cells consist of nucleus and cytoplasm (Fig 1), both of which are organised into

different compartments and organelles and surrounded by the cell membrane. The size of the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012708 January 23, 2025 2 / 18

DNA methylation (GB2317139.0). TAG has

received honorarium from Genentech and DAiNA

therapeutics.

https://doi.org/10.1371/journal.pcbi.1012708


Fig 1. The morphological spectrum of different cell types (representative example using HE staining of a human

colon). Regions of interest with different cell types are highlighted with coloured boxes, i.e., inflammatory cells

(lymphocytes, macrophages, eosinophils, neutrophils, and plasma cells), epithelial cells (here, an enterocyte forming

the cellular unit of crypts), endothelium, and stromal fibroblasts. Prominent cytoplasm (asterisk) in a representative

macrophage. See Table 1 and section “The hematoxylin and eosin (HE) stain” for further description. Overview

scanned on a Hamamatsu Nanozoomer whole slide scanner (Hamamatsu Photonics, Hamamatsu, Japan),

magnification: 40×; individual cell types captured on a Zeiss Axio Imager Z2 microscope platform (Carl Zeiss AG,

Oberkochen, Germany), magnification: 63×. Arrow: Blood vessel lined with endothelial cells (grey box). Asterisks:
Cytoplasm. Crosses: nucleus. Partly created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1012708.g001
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nucleus exhibits a considerate amount of variability. Normal cells mostly display smooth

nuclear contours and smaller size. Cancerous cells, on the other hand, tend to exhibit larger

and pleomorphic (i.e., bizarre looking) nuclei with a prominent nucleolus (the spherical

site for ribosome biogenesis). Further, there is variation in nuclear shape among different

cell types. Fibroblasts, which are key components of connective tissue, have a spindle

shape, whereas epithelial cells tend to be more round or oval (Fig 1). Second, the cytoplasm

varies significantly in size and composition. Eosinophilic granulocytes typically feature a

bilobed (two-lobed, spectacle-shaped) nucleus, while macrophages can be recognised by

their large cytoplasm (Table 1). Overall, standard cellular morphology reveals distinct sets

of features to build AI models upon for cell phenotyping. Usually, these AI models [22,23]

consist of 2 sub-models, one for cell segmentation and the other for cell classification using

the segmentation results. Recently, substantial progress has been made to develop unified

models [24,25] for cell segmentation and classification simultaneously. However, cell phe-

notyping still faces significant challenges, which include but are not limited to the scarcity

of annotated large scale data sets, the significant morphological heterogeneity within cell

types, and the complex spatial relationships between cell types and their microenvironment

[26].

Human tissues, i.e., functional units of synergistically working cells, are composed of collec-

tions of cells that in a non-diseased state have an ordered arrangement in space. Roughly, tis-

sue can be subsumed into 2 major compartments; parenchyma, i.e., the functional part

composed of specialised cells, and stroma, i.e., the supporting part, mainly connective tissue,

extracellular matrix and (micro)vessels. While stroma is morphologically similar across tissue

types, the architecture of the parenchyma can have drastic differences. As an example, breast

parenchyma consists of lobules and ducts for lactation, whereas parenchyma in the heart is

mainly cardiac muscle. In short, tissue function defines the composition of the parenchyma

and vice versa.

Table 1. Cell types, their morphology (Fig 1), detection, and disease association. CD, Cluster of Differentiation; HE, hematoxylin and eosin; MUM1, Multiple Myeloma

Oncogene 1; SMA, smooth muscle antigen; TME, tumour microenvironment.

Cell type Distinguishing morphological, cytological, and spatial

characteristics

Immunohistochemistry Disease setting

Epithelial cell Distinct shape (polyhedral geometry), pink cytoplasm, ovoid shape Cytokeratin/s e.g., colorectal adenoma, carcinoma (Fig

2)

Lymphocyte Small, round, very intense stained large nuclei (condensed chromatin),

scant amount of cytoplasm. Usually scattered but can aggregate (e.g.,

in “follicles”). Can cluster at inflammation sites

e.g., CD3, CD4, CD8, CD20,

CD45, FOXP3 (Table 3)

e.g., lymphoma, (chronic) inflammation,

tumour-infiltrating lymphocytes (TILs)

Neutrophil Multi-lobed nucleus and (pale looking) granular cytoplasm. Scattered,

can cluster at inflammation sites

e.g., Myeloperoxidase (MPO) e.g., acute inflammation, tumour-

associated neutrophils (TANs)

Eosinophil Bi-lobed nucleus, large and bright red-stained granules. Scattered, can

cluster at inflammation sites

e.g., Major basic protein e.g., acute and chronic inflammation,

Eosinophilic Pneumonia, TME

component [78]

Fibroblast Spindle-shaped, elongated nucleus. Scattered, part of connective tissue e.g., Vimentin e.g., fibrosis, cancer-associated fibroblasts

(CAFs)

Endothelial

cell

Elongated, and flattened, clear cytoplasm, lining the lumen of (blood

and lymphatic) vessels

e.g., CD31, CD34, D2-40, ERG e.g., part of the TME (microvessels),

neoplastic vasculature

Macrophage Abundant cytoplasm, large size, phagocytosed particles e.g., CD11b, CD68, CD163 Tumour-associated macrophages

(TAMs), Whipple disease, Rosai–

Dorfman disease, etc.

Plasma cell Eccentric nucleus, “clock-face” chromatin, abundant cytoplasm e.g., CD38, CD138, MUM1 e.g., multiple myeloma, chronic

inflammation

Mast cell Relatively large ovoid cells, cytoplasmic granules, central nucleus e.g., cKIT (CD117), Tryptase e.g., mastocytosis

https://doi.org/10.1371/journal.pcbi.1012708.t001
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What are “tumours”?

“Tumour” (Latin for “swelling”) is an ill-defined term, in principle designating an increase in

tissue volume. It refers to a neoplastic process (“neoplasia” being the abnormal and excessive

growth of cells and tissue), whose biological “potential” is in most cases dichotomously classi-

fied as either benign (localised without metastatic potential, e.g., a minute hyperplastic polyp

in the colon) or malignant (invading neighbouring tissue and/or moving to distant organs,

e.g., colorectal cancer). The cells of origin for a neoplasia can be classed as epithelial, lymphoid

(blood cells), or mesenchymal (connective tissue). Understandably, a large number of AI mod-

els focus on the most frequent cancer types [27], which are epithelial in origin and solid, i.e.,

mass-forming. Non-solid neoplasia are, for instance, cancers of the blood system, which are

not localised and not confined to a single organ, e.g., leukemia where neoplastic cells are in cir-

culation in the blood. In the following, we concentrate on solid neoplasia, due to its epidemio-

logic relevance and localised anatomy.

Histologically, solid neoplasia is composed of the tumour parenchyma, i.e., the neoplastic

cells themselves, and the tumour stroma (Fig 2A and 2B). The tumour stroma has gained

more and more attention in cancer research [28], and is mainly composed of cells of the

tumour microenvironment (TME, see below), extracellular matrix (structural and specialised

proteins surrounding units of cancer cells), and connective tissue (mainly collagen fibres,

fibroblasts, and microvessels).

What is “tumour invasion” and its predecessors?

Tumour invasion is the critical step to a malignant phenotype in epithelial neoplasia (crudely

referred to as “cancer”). Illustrative examples are the malignant transformation of (colorectal)

adenomas to carcinomas [29], loss of basal cells in prostate cancer [30], loss of myoepithelial

cells in breast cancer [31], or crossing anatomical barriers, e.g., the basal layer in skin squa-

mous carcinoma (Fig 2C). For those interested in modelling diagnostic AI support, knowledge

of these anatomical structures is critical. The features that are truly unique to invasive cancers

should be exploited—for example, the presence of features such as necrosis (dead cells) or an

abundance of mitoses (dividing cells) do not imply malignancy, as they can be frequent in

benign neoplasms.

Invasion is usually the final step in a sequence of malignant transformation. In epithelial

tumours (e.g., gastric adenocarcinoma [32]), it is frequently preceded by, first metaplasia, and

second dysplasia (definitions in S1 Table). Epithelial dysplasia, i.e., simply put the presence of

abnormal but yet not cancerous cells [33], is a frequent precursor lesion, e.g., in upper and

lower gastrointestinal tract, genital tract, skin, and the head and neck region. However, the

defining morphological criteria of dysplasia differ by tissue type, and modelling approaches

need to take this into account (Table 2 and Fig 3). For instance, while hyperchromasia (darker

staining) is a feature of dysplastic nuclei in the colon, this does not hold true for squamous dys-

plasia, where architectural disorders and mitoses are more diagnostic. The modeller needs a

solid knowledge about which morphological criteria are defining in a respective organ, as con-

cepts are not necessarily transferable. We provide a few examples of such features in Table 2.

The “face” of malignancy—Morphology and pitfalls

Not every malignancy follows the conventional benign-intermediate-malignant trajectory

described above, examples being de novo (i.e., not arising from a precursor tumour, such as a

skin mole (“naevus”)) malignant melanoma [34] or sarcoma (relatively rare malignant

tumours of the soft tissue or bone). Briefly, malignant tumours can be classified according to

their cell(s) of origin, e.g., epithelial, mesenchymal (simply put, connective tissue), or
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Fig 2. The morphology of “cancer,” HE. (A) Nonneoplastic epithelium (left) versus adenocarcinoma glands/cells (right,

separated by dotted line) in a The Cancer Genome Atlas (TCGA) sample of colorectal adenocarcinoma (COAD, TCGA-A6-
2678). Dashed inset (corresponding to the dashed rectangle): Higher magnification showing malignant COAD glands with

malignant nuclear features and a focus of “dirty” necrosis within the cancer gland (asterisk). Insets: On the one hand,

enterocytes (e, colonic epithelium) with regular contours, polarised towards the lumen with a goblet (mucus-containing)

cell (G) on top. On the other hand, cancer cell (c) with a prominent nucleolus (cross), large size and irregular contours.

Arrow: Regular colonic crypts, rich in goblet cells (arrow on goblet cell). Arrowhead: High-grade dysplasia at the surface
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lymphoid (see above). It’s reasonable to assume that for developers and the healthcare system,

epidemiologically frequent malignant tumours are most relevant, these being malignant epi-

thelial tumours, namely (adeno)carcinomas, e.g., of the prostate, breast, colon (rectum), and

lung [21]. Adenocarcinomas are a morphological (and also molecularly distinct) subset of car-

cinomas (e.g., in contrast to squamous cell carcinomas) and have a typical morphology with

gland-like (i.e., circularly arranged with a central lumen) growth with malignant nuclear fea-

tures such as bizarre cell forms, mitotic figures, and a prominent nucleolus (Fig 2A); however,

there are always exceptions and this can make modelling tricky and algorithms incompatible

with routine diagnostic practice. Illustrative exceptions are deviant subtypes or atypical cancer

growth patterns, such as high-grade prostatic adenocarcinoma with diffuse growth [35], or

invasive-lobular breast cancer with discohesive tumour cells [36]. Not incorporating these fea-

tures into algorithms is severely limiting and might jeopardise clinical conclusion from a com-

puter-assisted diagnostic setup. Non-small cell lung cancer (NSCLC), second most frequent

cancer in both sexes in the United States, has a known multitude of growth patterns [37] and

also colorectal cancer can exhibit a very deviant morphology, even if rare [38]. In addition,

mucosa. (B) Tumour parenchyma (red) and tumour stroma (blue, green) in pancreatic adenocarcinoma (PAAD, TCGA-
2J-AAB6). PAAD glands are surrounded by dense “desmoplasia” (blue, inset) with pinkish collagen deposition (black

arrowhead) and immune cell infiltrate (green, inset), mainly lymphocytes (white arrowheads) among microvessels (arrows).

(C) Phenotype of invasion. From left to right: Invasive breast cancer (BRCA) clusters (BRCA, TCGA-3C-AALJ), prostatic

adenocarcinoma (PRAD, TCGA-EJ-7792) glands with loss of basal cell layer (arrows: benign prostatic parenchyma),

invasive squamous cell carcinoma of the cervix (CESC, TCGA-C5-A7XC) with adjacent high-grade squamous intraepithelial

lesion (HSIL, white asterisk) and of the head and neck region (HNSC, TCGA-BA-4076). See Table 2 and section “The

hematoxylin and eosin (HE) stain” for further description. Asterisks: Surface squamous epithelium, arrowheads: invasive SC.

Crosses: Extracellular matrix/stroma between BRCA clusters.

https://doi.org/10.1371/journal.pcbi.1012708.g002

Table 2. Features of epithelial tumours and strategies of incorporating them into modelling systems.

Biological object Cellular detail Architectural detail Stromal detail Additional

identifiers

Relevant modelling considerations

Dysplasia in the

gastrointestinal tract

Nuclear hyperchromasia

[79], cell form (e.g.,

“pencillate” in intestinal

adenomas [80])

Can be polypoid or

flat

Evtl. associated

inflammation

Staining intensity of epithelial cells to

quantify hyperchromasia. Eccentricity,

circularity, and elongation to detect

pencil-like nuclei.

Dysplasia in the genital

and head and neck

region

Mitoses, irregular cell form,

loss of cell polarity [81]

Loss of stratification

of squamous

epithelium

Evtl. associated

inflammation

Atypical

keratinisation

Detection of mitotic cells [82,83]. Cell-

based morphological features (such as

eccentricity, convex area, contour area,

extent, perimeter, solidity, and

orientation) [84]. Quantification of cell

polarity [85].

Tumour invasion Invasive “phenotype”

(atypical nucleus,

nucleolus), mitoses

(Partial) loss of

anatomic border, e.g.,

a basal membrane

[86]

“Desmoplasia,”

potential immune

response

Proportion of continuous versus

disrupted basal membrane/layer,

“desmoplastic” stroma [87].

Adenocarcinoma Gland-forming, mucus Complex clustering of

carcinoma glands

“Desmoplasia,”

potential immune

response

“Dirty necrosis”

(not specific for a

cancer type) [88]

Glandular shape descriptors [89]. Nuclear

shape descriptors (bizarre form,

nucleolus). Mucus can be used as a proxy.

Special subtypes and

growth patterns of

adenocarcinoma

Signet ring cells

(intracellular mucus,

compressed nucleus), giant

cells

e.g., (micro)papillary,

tubular, acinar,

lepidic

“Desmoplasia,”

potential immune

response

Detection of signet ring cells [90].

Detection of specific and unique growth

patterns (such as lepidic, papillary, acinar,

cribriform, micropapillary and solid

[91]).

Squamous cell

carcinoma

Intercellular bridges Keratin “pearls,”

specific growth

pattern (e.g., basaloid)

“Desmoplasia,”

potential immune

response

Detection of keratin pearls [92].

Detection of intercellular bridges [93].

https://doi.org/10.1371/journal.pcbi.1012708.t002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012708 January 23, 2025 7 / 18

https://doi.org/10.1371/journal.pcbi.1012708.g002
https://doi.org/10.1371/journal.pcbi.1012708.t002
https://doi.org/10.1371/journal.pcbi.1012708


Fig 3. Example of computational modelling of an oncologic precursor lesion (low-grade dysplasia (LGD), human

colon) with feature extraction. (A) Conventional features of (sporadic) colonic LGD, i.e., hyperchromasia, next to

normal colonic mucosa (separated by black line) with inconspicuous enterocytes and crypts (representative example of

an inflammatory bowel disease cohort, HE stain). Arrows: Hyperchromatic, pseudostratified (pencillate) nuclei in LGD.

(B) Nuclei detection, produced using a deep neural network [77]. Inset: High magnification. (C) Nuclei intensity

mapping. Computed from the segmentation mask in B by normalising the nuclei intensities across the whole slide image.

LGD shows higher intensities, histologically corresponding to hyperchromasia (darker staining in HE).

https://doi.org/10.1371/journal.pcbi.1012708.g003

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012708 January 23, 2025 8 / 18

https://doi.org/10.1371/journal.pcbi.1012708.g003
https://doi.org/10.1371/journal.pcbi.1012708


adenocarcinoma is frequently accompanied by a strong stromal response (“desmoplasia”),

which can be seen by collagen deposition and extracellular matrix (ECM) recomposition [39]

(Fig 2B and Table 2). Squamous cell carcinoma, most prominently in the head and neck

region (Fig 2C), genital tract (cervical cancer, anal cancer) and lung is characterised by keratin

“pearls” (whorl-shaped accumulations of keratin, a structural protein), and intercellular brid-

ges (specialised connections between adjacent cells). It has to be kept in mind that even very

typical diagnostic features might not be apparent in poorly differentiated tumours which have

lost much of their resemblance to the tissue of origin (“dedifferentiation” is the process of los-

ing tissue specialisation, returning to a less specialised state). Mixed carcinomas, e.g., adenos-

quamous, adeno-neuroendocrine (e.g., mixed neuroendocrine-nonneuroendocrine

neoplasms [40]), add further to the complexity. Lastly, malignancy of other lineages, e.g., non-

epithelial shows a considerable amount of variation, too. In particular, malignant melanoma is

known for its plethora of “morphological faces” [41].

Composition of, and modelling the tumour microenvironment (TME)

The TME is the complex biological ecosystem surrounding a tumour. It is composed of

tumour-infiltrating lymphocytes (“TILs”) [42], (cancer-associated) fibroblasts and (tumour-

associated) neutrophils (CAFs, TANs) [43,44], macrophages, extracellular matrix, and sup-

portive elements such as microvessels. All of those have gained significant attention due to

their prognostic, tumour-promoting or -suppressive impact. While macrophages have tradi-

tionally been dichotomously subclassified (i.e., M1- and M2-polarised [45]), TILs can be more

deeply sub-stratified.

Modelling the TME needs a comprehensive strategy due to its inherent level of complexity

and set of “players.” Nevertheless, modelling using morphology is possible to a certain degree

as the “players” generally have distinct cellular and architectural features (Table 1). In the fol-

lowing, we introduce routine stainings and immunohistochemistry that can facilitate the mor-

phological characterisation of tumours and their TME.

Routine tissue protocols

Formalin-fixed paraffin-embedded (FFPE) and fresh frozen (FF) tissue

Formalin-fixed, paraffin-embedded (FFPE) tissue preservation is the gold standard in histopa-

thology for maintaining tissue integrity. This technique, first introduced by German patholo-

gist Friedrich Blum in 1896 [46], involves fixing tissue samples in formalin, which preserves

their cellular structure by cross-linking proteins. The fixed tissues are then dehydrated, embed-

ded in paraffin wax, and formed into a solid, archivable tissue block. These blocks can be sec-

tioned into thin slices (usually between 2 and 10 μm [47]), mounted onto glass slides, and

stained allowing for microscopic examination. Fresh frozen (FF) tissue on the contrary is

immediately preserved by snap-freezing at −196˚C in liquid nitrogen (e.g., cancer tissue within

1 h from surgery), without (formalin) fixation. As FF is tissue in its purest form, it is more

accurate for genomic analysis than FFPE. However, FFPE preserves better structural integrity

and is much more standardised (and affordable) for conventional staining and immunohis-

tochemistry (see below). Despite these advantages, it is crucial to consider that the number of

(viable) cells of tissue samples is highly heterogeneous and depends not only on the tissue (and

biopsy site) itself but also on how it is retrieved [48]. In general, surgical resection specimens

collected in conventional FFPE tissue cassettes (approximately 1 × 1 × 0.5 cm) tend to contain

the most cells, while the amount of cells in tissue biopsies is much reduced and limited by sev-

eral factors such as, for instance, the gauge of the biopsy needle [49], the anatomical site (e.g.,

soft tissue is less cellular than bone marrow), and the expertise of the operator [50,51].
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The hematoxylin and eosin (HE) stain

The hematoxylin and eosin (HE) stain is the standard staining that has been used in (diagnos-

tic) histopathology for many years [52]. While hematoxylin stains acidic structures, e.g., the

nucleus, in different degrees of blue-purple, eosin stains basophilic structures in red-pink,

such as the cytoplasm and ECM (Fig 1). This allows for the identification of common cell

types and their arrangement in space. The HE stain is cheap, widely used and well accepted in

the diagnostic community [53]. A low amount of staining variability is critical for both diag-

nostics and AI algorithms [54].

Immunohistochemistry (IHC) and immunofluorescence (IF)

HE stains allow for a vast amount of tissue interpretability, but in order to address cells and

their interplay more granularly, auxiliary information can be obtained from immunohis-

tochemistry (IHC). (Single-plex) IHC has revolutionised histopathology in the 20th century

[55] and continues to be an indispensable tool. In principle, IHC detects a target antigen of

interest (e.g., membrane transporters, enzymes) by using a chromogen-linked commercial

antibody that binds to the antigen of interest and “staining” it a particular colour—usually

brown (Fig 4A and Table 3) [56]. The target of interest could be in tumour cells or in cells of

the TME.

While IHC uses enzymes as chromogens, immunofluorescence (IF) uses fluorescent dyes

(fluorophores) conjugated to antibodies. Advantages of IF are higher resolution and an

improved visualisation of co-localised antigens. On the contrary, IHC stainings are long-last-

ing, cheaper and can be viewed by light microscopy. Some antigens are of particular relevance

for diagnostic and (consequently also) AI-developing purposes, namely the proliferation

marker Ki-67 [57,58] or lineage markers such as cytokeratins [59] (Table 3). “Clusters of dif-

ferentiation” (CDs) are surface proteins that can help with subtyping cells, particularly

immune cells (refer to https://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/

complete/docs/cdlist.txt). This is useful as there is little potential to identify an immune cell

subpopulation from an HE alone. IHC staining should be validated extensively, as some anti-

bodies tend to cross-react among different targets leading to lack of specificity and misleading

results [60]. Internal on-slide controls can be helpful as a quality control, such as cross-reacting

(stromal) cells.

Tissue microarrays (TMAs) (Fig 4A), i.e., assembling a multitude of usually 0.6 to 1 mm

sized tissue cores into a single slide, have allowed for a high-throughput setup [61]. Depending

on the tissue type and anatomic site, a TMA core usually captures between a few hundred and

a few thousand cells per tissue core [62]. TMAs allow multiple stainings and tissues (from dif-

ferent patients) can be analysed under standardised conditions [63,64].

The advent of multiplexing

Recently, antigen visualisation reached a new era in which we can detect up to hundreds of

markers of interest in one section of tissue (recent comprehensive review in [65]) (Table 3).

Basic panels visualise cells of interest and key anatomic structures [66], for instance, an epithe-

lial, a pan-leukocyte marker and vessels (e.g., a cytokeratin, CD45, CD31). Multiplexing allows

for multiple panels which represent different compartments (Fig 4B and 4C and Table 3)

characterising the TME [67] and its neighbourhoods [68]. This increasing plexity allows for

the interrogation of biology in more detail, but results in more complex data sets than HE.

This could present significant challenges for AI models, which include the demand for larger

training data sets (and thus higher computational power) to reach a similar level of perfor-

mance seen for HE, higher likelihood of technical artefacts due to more complex wet lab
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Fig 4. Immunohistochemistry (IHC) and multiplexing. (A) Singleplex IHC and tissue microarrays (TMAs). Left:

Preserved nuclear expression of the mismatch repair protein MSH6 in a colorectal adenocarcinoma sample (asterisks).

Arrow: Preserved expression in stromal fibroblasts. On the right, the principle of TMA construction: Tissue cores,

usually 6 to 10 mm in diameter, are punched and transferred to a new FFPE block, which is composed of multiple

patients and tissues. Inset: Overview of colorectal cancer tissue and illustrative punches. (B) Basic multiplex

immunofluorescence (mIF) panel on colorectal mucosa consisting of 2 markers and DAPI (blue) as a standard nuclear

stain. CD20 (light blue) labels B-cells and a lymphoid follicle (arrowheads). Beta-catenin stains colonic crypts (red,
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protocols, and the difficulty of jointly modelling multiple cellular markers and their spatial

relationships. Further, different markers often co-localise, which introduces additional diffi-

culties to the modelling process [69]. Thus, compared to HE, analysing both IHC and IF data

is usually harder and more expensive. A challenge further exacerbated by increasing plexity.

Challenges and outlook

To be implemented into routine practice, an AI algorithm needs several indispensable proper-

ties, i.e., clinical relevance, high accuracy, rapid implementation, fast computation, and last

but not least, user-friendliness. Perfect accuracy is desired for pathological diagnostics, such as

differentiating between tumour invasion and benign disease; anything less could put patients’

lives at risk. False negatives that lack a prognostic biomarker may lead to reduced therapeutic

arrows). (C) Extended mIF panel with 6 markers and DAPI. Beta-catenin (red) highlights colorectal adenocarcinoma

glands (asterisks), while the space between malignant glands is composed of immune cells, such as B-cells (CD20, light

blue), and macrophages (CD68, green, black arrowheads). CD31 (orange) highlights blood vessels (grey arrowheads,

intermixed with SMA, yellow) and might suggest vascular invasion. The stroma is represented by Vimentin (purple,

grey arrowheads)-positive fibroblasts and smooth muscle (SMA, yellow. arrow). CD, Cluster of Differentiation; SMA,

smooth muscle actin.

https://doi.org/10.1371/journal.pcbi.1012708.g004

Table 3. Representative markers for multiplexing panels (Fig 4). ALK, anaplastic lymphoma kinase; AR, androgen

receptor; ARID1A, AT-rich interactive domain-containing protein 1A; Bax, Bcl-2-associated X protein; CA, carboan-

hydrase; CD, Cluster of Differentiation; CK, cytokeratin; EGFR: Epidermal Growth Factor Receptor; ER, oestrogen
receptor; ERG, ETS-Related Gene; FOXP3, forkhead box P3; GLUT1, glucose transporter member 1; INSM1, insuli-

noma-associated protein 1; LCA, leukocyte common antigen; LDH, lactate dehydrogenase; MCT, moncarboxylate

transporter; mdm2, mouse double minute 2 homolog; MMR, mismatch repair; MEK, mitogen-activated protein kinase

kinase enzyme; MPO, myeloperoxidase; MUM1 (IRF4), multiple myeloma 1 (interferon regulatory factor 4); PD-1/
PD-L1, programmed death/ligand-1; PHH3, phospho-histone H3; PgR, progesterone receptor; PTEN, phosphatase and

tensin homolog; Rb1, retinoblastoma protein; SMA, smooth muscle antigen; SOX10, SRY related HMG box 10.

Target of interest Antigen/Marker

Basic anatomical structures Blood/Lymphatic vessels: CD31, CD34, ERG / D2-40 (Podoplanin)

Connective tissue: e.g., collagens

(Smooth) muscle: Desmin, SMA

Nerves: S-100, SOX10

Immune infiltrate (see

Table 1)

B-cells: e.g., CD19, CD20

Cytokines: e.g., Interleukin/s (Il) such as Il-17 for Th17 cells

Macrophages: e.g., CD11b, CD68, CD163

Neutrophils: e.g., CD15, MPO

Natural Killer (NK)-cells: e.g., CD16, CD56, CD57

Plasma cells: e.g., MUM1 (IRF4)

T-cells: e.g., CD3, CD4 (T-helper), CD8 (cytotoxic), CD45 (LCA), Granzyme B

(activated T- and NK-cells)

T-regulatory cells: e.g., FOXP3

Lineage Epithelial: e.g., Cytokeratin/s

Melanocytic: e.g., Melan-A, S-100, SOX10

Mesenchymal: e.g., Desmin, SMA

Neuroendocrine: e.g., Chromogranin A, INSM1, Synaptophysin

Tumour invasion Calponin, CK5/6, p63 (basal cell layer loss in prostate cancer, myoepithelial cell loss

in breast cancer), collagens (basal membrane)

Proliferation/Apoptosis e.g., proliferation index Ki67, PHH3 (mitoses)/Caspases (such as Caspase-3) or Bax,

Fas (CD95)

Drug response and

prediction

e.g., Her-2, hormone receptors (e.g., AR, ER, PgR), MMR proteins, PD1/PD-L1

Surrogates for molecular

alterations

e.g., ALK, ARID1A, BRAF (V600E), EGFR, mdm2, MEK, p53, PTEN, Rb1

Hypoxia and metabolism e.g., CA9, GLUT1, LDH, MCT1, MCT4

https://doi.org/10.1371/journal.pcbi.1012708.t003
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options. A variety of technical difficulties, such as staining differences, scanner variability,

image modalities, and image size [70,71] hinder the performance of AI models, including their

generalisation to different datasets. For these models to achieve robust generalisation across

different datasets, several key standardisation approaches are required throughout the imaging

and analysis pipeline, such as introducing standardisation of tissue processing, sectioning

thickness, reagents, fixation protocols, scanner calibration, and performing stain normalisa-

tion [72–74]. Further, multi-centre validation data sets that are able to represent real-world

technical variations could also help in developing and validating more generalised AI models.

Aside from the need of standardisation, the AI developer is frequently confronted with the

profound problem of lacking in-depth biological, morphological, and structural knowledge. It

is our hope that this work enables the developer to leverage biologically relevant features into

designing computational models. It is our hope that this work enables the developer to lever-

age biologically relevant features into designing computational models. Further, this becomes

helpful in explaining the output from “black-box” AI models, by correlating the results with

known biological features. With a common knowledge level, the design of “pathologist in-the-

loop” approaches [75,76] in training AI models are facilitated.
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Supervision: Trevor A. Graham, Konstantin Bräutigam.
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