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Mapping intersectional inequalities 
in biomarkers of healthy ageing 
and chronic disease in older english 
adults
Daniel Holman1*, Sarah Salway1 & Andrew Bell2

Chronic diseases and their inequalities amongst older adults are a significant public health challenge. 
Prevention and treatment of chronic diseases will benefit from insight into which population groups 
show greatest risk. Biomarkers are indicators of the biological mechanisms underlying health and 
disease. We analysed disparities in a common set of biomarkers at the population level using English 
national data (n = 16,437). Blood-based biomarkers were HbA1c, total cholesterol and C-reactive 
protein. Non-blood biomarkers were systolic blood pressure, resting heart rate and body mass index. 
We employed an intersectionality perspective which is concerned with how socioeconomic, gender 
and ethnic disparities combine to lead to varied health outcomes. We find granular intersectional 
disparities, which vary by biomarker, with total cholesterol and HbA1c showing the greatest 
intersectional variation. These disparities were additive rather than multiplicative. Each intersectional 
subgroup has its own profile of biomarkers. Whilst the majority of variation in biomarkers is at the 
individual rather than intersectional level (i.e. intersections exhibit high heterogeneity), the average 
differences are potentially associated with important clinical outcomes. An intersectional perspective 
helps to shed light on how socio-demographic factors combine to result in differential risk for disease 
or potential for healthy ageing.

The huge and growing burden of chronic diseases and their inequalities amongst older adults is a significant 
public health challenge. Prevention and treatment of chronic diseases, and therefore attainment of the policy 
goal of healthy ageing, will benefit from insight into which population groups show greatest risk. Biological 
markers—objective measures of biological processes underlying healthy ageing and  disease1—are key risk fac-
tors. Many of the current gaps in knowledge on healthy ageing and chronic disease inequalities centre around 
the complex interaction of sociocultural, political and biological  factors2. However these inequalities have often 
been investigated according to single or at most a limited number of categories of difference at a time, such as 
gender, ethnicity or socioeconomic position (SEP). Such unidimensional approaches can inadvertently reinforce 
the intractability of inequalities and fail to provide evidence on how to  intervene3. By focussing on single social 
attributes, there is a risk that the disadvantages faced by particular subgroups can be rendered  invisible4.

Intersectionality has increasingly been seen as a promising way to advance health inequalities research 
and  policy5–8. Its essence is that multiple social attributes overlap and interact with each other to drive health 
 outcomes3,9–11. Different intersections defined by combinations of social attributes such as gender, ethnicity and 
SEP, are potentially associated with different (though overlapping) health outcomes and are subject to different 
causal processes driving these outcomes. An intersectional approach may help to advance understanding of the 
social processes and circumstances that create poor (or good) health as well as inform the design of policies and 
interventions for varied social contexts and for different population  subgroups12.

A first step in intersectional health inequalities research is to socio-demographically ‘map out’ disparities 
according to multiple social attributes. So far, researchers have done this for various health outcomes, including 
 depression13, body mass  index14 and chronic obstructive pulmonary  disease15. Here we extend this work by focus-
sing on a key set of biomarkers of healthy ageing, elevated levels of which are associated with a range of chronic 
diseases and their longer term  implications16. Intersectional mapping of biomarker outcomes illustrates how 
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population health is mutually constituted by the social and  biological17. Intersectional disparities in biomarkers 
would suggest that we can modify the social factors associated with intersectional positions/identities to reduce 
these disparities in order to reduce inequalities in healthy ageing. Currently, there is a lack of knowledge on the 
social distribution of biomarkers, as highlighted by the European Roadmap for Ageing  Research2. By bringing an 
intersectionality lens to the analysis of biomarker data, we offer a novel approach to filling this gap in knowledge.

There are many unanswered questions regarding the way in which health, including its causes and conse-
quences, is patterned intersectionally. Intersectional patterning may be present not only in the distribution of 
disease, but in risk factors and their social determinants, life course processes and dynamics, the lived experience 
of health and illness, healthy and functional ageing outcomes, and the social processes linking body processes 
to diagnosis. Researchers have only recent begun answering such questions, yet they might provide valuable 
knowledge for population health  strategies6. There are a number of possibilities for intersectional patterning. 
For example, it might be that the disadvantage associated with certain social attributes such as ethnic minority 
status is offset by advantages in another attribute such as SEP. This offsetting might occur for men but not women. 
Such subgroup differences would suggest a need to understand the social forces driving outcomes for particular 
subgroups, and that remedial policies or interventions may be inefficient or even increase inequalities if they 
are based on a single axis of inequality.

An underlying dimension to intersectional patterning is whether dis/advantages are additive i.e. layer on 
top of each other, or have multiplicative effects i.e. have amplifying or attenuating effects, so that intersectional 
outcomes are different than expected given the referent attributes that comprise  them18,19. For example, in the 
former, the effect of ethnic minority status on health is the same regardless of, say, SEP, and in the latter, the effect 
of ethnic minority status on health might be particularly pronounced for those with low SEP. Without testing 
for interaction effects, subgroup differences are assumed to be the result of additive effects only, which can lead 
to erroneous  interpretations20. The necessity of testing for multiplicative effects to avoid such misinterpretation 
has often been taken to mean that intersectionality is falsified when only additive effects are present, when in 
fact, intersectionality is mainly a framework to understand heterogeneity and the social structures driving  it18.

In this paper, we examine patterns of key biomarkers of healthy ageing and chronic disease across intersec-
tional subgroups and seek to answer two research questions: 1. What are the extent/nature of intersectional differ-
ences in later life (50 +) biomarker measures? 2. Are these intersectional differences multiplicative or additive? We 
use data from two national surveys containing comparable biomarker data. We focus on a set of six biomarkers 
which were available in both surveys and are commonly accepted as biomarkers of healthy and functional ageing 
and predictors of chronic disease morbidity and  mortality16. Social disparities in the selected biomarkers are 
often analysed in order to unpack the social to biological processes leading to health  inequalities21. We analyse 
data from older adults aged 50 or over as this when many chronic diseases emerge.

Methods
Study design. The English Longitudinal Study of Ageing (ELSA) is a biennial panel study of adults aged 
50 + years living in England and includes biomarker collection every other  wave22. Data from wave 6 (2012–2013) 
are analysed, including from the harmonised  dataset23. Understanding Society: the United Kingdom Household 
Longitudinal Study (UKHLS) is a yearly household panel survey of people aged 16 + living in the United King-
dom. Data from the nurse health visit which took place across waves 2 and 3 in 2010–2012 are analysed. Data 
from the two surveys were pooled as shown in Fig. 1. Although ELSA and UKHLS have some differences in 
sampling design according to stratification and clustering, both surveys aimed for a nationally representative 
sample. As Table 1 and Supplementary Fig. 1 show, both surveys were highly similar in their socio-demographic 
composition and distribution according to the biomarkers analysed, though some small differences exist for 
ethnicity which we discuss in the limitations. After selecting respondents only resident in England in UKHLS, 
and excluding those aged under 50, sample sizes were similar, with 7573 ELSA respondents and 8864 UKHLS 
respondents, giving a total sample size of 16,437. Given that socio-demographic missing data were negligible 
(Fig. 1) missing cases were removed at this stage. Details on missing biomarker data are discussed below. 

Ethics approval including for biomarker collection and prospective analysis was sought by the respective 
studies. Ethics approval was not necessary for the present study as it uses secondary data only.

Intersectional variables. Gender, ethnicity, education and income were used to define 24 intersectional 
subgroups. Given the interest in intersecting disparities, sample size limitations meant it was necessary to use 
relatively coarse categorisations. In ELSA, participants were asked to which ethnic group they felt they belonged 
with seven options. In UKHLS, respondents were asked their ethnic group from 18 options. Ethnicity was 
dichotomised into White/Black and Minority Ethnic (BME). For ELSA this was defined by the category ‘white’ 
versus any other response, and for UKHLS the categories ‘white British/English/Scottish/Welsh/Northern Irish’, 
‘Irish’, and ‘Any other white’, versus any other response. Whilst the BME category contains substantial ethnic het-
erogeneity, and is the subject on ongoing debate, we are interested in minority ethnic status as a key dimension 
of social and health inequality in the English context. We were also restricted by sample size, which for specific 
ethnic groups is too small to expect meaningful differences to be uncovered.

To capture both earlier and later life SEP, we analysed both education and income. Education sets in motion 
a (non-determinant) trajectory of socioeconomic dis/advantage at a relatively early stage of the life course. 
Income at age 50 is a result of dis/advantage accumulated through an individual’s life. Further, in the English 
context, retirement income is strongly linked to pre-retirement SEP. Education and income are themselves out-
comes of intersectional processes, but nonetheless are strongly associated with particular social positions and 
identities. We represent the conceptual framework underlying the analysis in Fig. 2. For both surveys, education 
was measured according to whether respondents had an A level (or NVQ lever 3) or higher. For income, ELSA 
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Figure 1.  Flow chart diagram.

Table 1.  Sample characteristics.

ELSA UKHLS Pooled sample

n = 7573 n = 8864 n = 16,437

Intersectional attributes

Age—mean (SD) 67.63 (9.36) 64.90 (9.94) 66.16 (9.77)

Women—% (n) 55.26 (4185) 54.22 (4806) 54.70 (8991)

BME—% (n) 2.93 (222) 3.34 (296) 3.15 (518)

Low education—% (n) 59.70 (4531) 56.62 (5019) 58.04 (9540)

Low income—% (n) 33.34 (2525) 33.37 (2968) 33.36 (5483)

Medium income—% (n) 33.25 (2518) 33.35 (2956) 33.30 (5474)

High income—% (n) 33.41 (2530) 33.28 (2950) 33.34 (5480)

Biomarkers—mean (SD)

HbA1c (mmol/mol) 41.16 (8.36) 39.45 (8.64) 40.32 (8.54)

Missing—% (n) 24.85 (1882) 38.08 (3375) 31.98 (5257)

Cholesterol (mmol/L) 5.54 (1.18) 5.53 (1.22) 5.53 (1.20)

Missing—% (n) 23.95 (1814) 34.18 (3030) 29.47 (4844)

CRP (mg/L) 2.13 (1.92) 2.23 (2.03) 2.18 (1.98)

Missing—% (n) 28.28 (2142) 39.49 (3500) 34.32 (5642)

SBP (mm Hg) 132.21 (17.49) 131.43 (17.25) 131.81 (17.37)

Missing—% (n) 6.89 (522) 15.13 (1341) 11.33 (1863)

RHR (bpm) 66.49 (10.60) 68.45 (11.00) 67.50 (10.85)

Missing—% (n) 6.88 (521) 15.13 (1341) 11.33 (1862)

BMI (kg/m2) 28.30 (5.26) 28.55 (5.27) 28.43 (5.27)

Missing—% (n) 4.41 (334) 5.92 (525) 5.23 (859)



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13522  | https://doi.org/10.1038/s41598-020-69934-8

www.nature.com/scientificreports/

collects information at the benefit unit level, which is a couple or single person and any dependent children. 
This is equivalised by adjusting for benefit unit size. In UKHLS, income was measured at the household level 
and equivalised using the OECD scale. Given that the sources and marginal utility of income change over the 
life course, we split income into tertiles to maximise comparability between the different intersections. Since 
in ELSA ages over 90 are collapsed into one category, the same procedure was applied to the UKHLS dataset. 
We controlled for age (including a squared term to capture non-linear effects, which healthy ageing biomarkers 
often  exhibit24) as our aim is to map out health disparities in relation to socioeconomic and socio-demographic 
factors. Further, the extent to which biomarkers are risk factors for disease is age variant.

Outcomes. Biomarkers were derived from bloods (HbA1c, total cholesterol, C-reactive protein (CRP)) and 
anthropometric/cardiovascular measures (systolic blood pressure (SBP), resting heart rate (RHR), body mass 
index (BMI)). HbA1c is a measure of blood glucose concentration over the past 2 to 3 months and is used to 
diagnose  diabetes25. It is associated with diabetes complications and cardiovascular events and stroke, includ-
ing in patients without  diabetes26. Total cholesterol is a well-established risk factor for cardiovascular disease 
(CVD)27. CRP is a marker of inflammation thought to respond to cumulative social adversity and is a predic-
tor of  CVD28 and  diabetes29. Systolic, rather than diastolic, blood pressure was analysed as it is a predictor of 
 CVD30. Resting heart rate is an independent risk factor for CVD and all-cause  mortality31 as well as metabolic 
 syndrome32. BMI is risk factor for a range of  diseases33. We did not adjust for medication use (and therefore 
disease) as this is part of the underlying causal pathway of interest i.e. biomarkers as indicators of healthy ageing 
and disease. We present unstandardised results as we are interested in the clinical significance of intersectional 
disparities but use standardised outcomes when estimating model fit statistics as these are scale-dependent. We 
standardised outcomes so that outcomes had a mean of 0 and a standard deviation of 1. Measurement error with 
biomarker outcomes is likely to be minimal given the standardised measurement procedures implemented in 
ELSA and UKHLS.

Missing biomarker data. For blood measures, in ELSA 1882 (24.85%) respondents were missing values 
for HbA1c, 1814 (23.95%) for cholesterol and 2142 (28.28%) for CRP. 602 (7.95%) respondents refused to give 
a blood sample and 364 (4.81%) were not eligible due to a clotting/blood disorder. In 829 (10.95%) cases there 
were problems with measurement for example due to poor veins or an incomplete or non-reactive sample. In 
328 cases CRP was > 10 mg/L, indicating recent infection, and was recoded as missing following best  practice34. 
For non-blood measures, 522 (6.89%) respondents were missing values for SBP and 521 for RHR (6.88%). In 384 
cases this was because they had engaged in an activity in the last 30 minutes that would affect their measures, 
with remaining cases due to invalid or incomplete measures. 334 (4.41%) respondents were missing values for 
BMI nearly all due to measurement issues.

In UKHLS, 3375 (38.08%) respondents were missing values for HbA1c, 3030 (34.18%) for cholesterol and 
3500 for CRP (34.49%). 1380 (15.57%) respondents refused to give a blood sample, and 803 (9.06%) were 
ineligible for unspecified reasons. In 381 cases CRP was > 10 mg/L, and was recoded as missing. For non-blood 
measures, 1341 (15.13%) respondents were missing values for SBP and RHR due to 1130 (12.75%) engaging in an 
activity in the last 30 min that would affect their measures, with the remaining causes due to invalid/incomplete 
measures. 525 (5.92%) respondents were missing cases for BMI nearly all due to measurement issues.

In cross-sectional analysis, missing data do not introduce bias provided all variables associated with missing-
ness are included as covariates, under a missing at random  assumption35. Given the included socio-demographics 

Figure 2.  Conceptual framework.
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are likely to be highly associated with missingness, we would expect their inclusion to minimise bias. As a sen-
sitivity test, missing data were imputed using multiple imputation following best practice  guidelines35. Chained 
equations were used, with all biomarkers to be imputed included in the model, and all analysis variables included 
as predictors, as well as auxiliary variables known to be associated with missingness as stated in the user guides for 
ELSA and UKHLS. We used the pooled data for imputation as auxiliary variables were available across both sur-
veys: marital status (married/not married), household size, home ownership (owner/non-owner), long-standing 
illness, self-rated health (5 categories). We used long-standing illness as a substitute for limiting long-standing 
illness as only the former was available across both datasets. We were also unable to include government office 
region, also known to be associated with missingness, as it is anonymous in ELSA and therefore cannot be pooled. 
The number of imputations was set to 34—the % missing for the variable (CRP) with most missing data for the 
pooled sample. As the differences between the imputed and non-imputed data were non-existent or negligible 
(Supplementary Fig. 2), we proceed with complete case analysis (by outcome).

Survey weights, clustering and stratification. As a sensitivity analysis, we followed guidelines on 
weighting data and accounting for clustering and stratification from the user guides of ELSA and UKHLS. 
For ELSA, the weight variable was w6bldwt for analysis of blood biomarkers and w6nurwt for non-blood bio-
markers, and for UKHLS the respective variables were indbdub_xw and indnsub_xw. Since differences with 
unweighted data were small (Supplementary Fig. 3 and Supplementary Table 1), and it is not possible to weight 
pooled data due to different sample designs, we present the pooled unweighted data on the basis that the preci-
sion gained by pooling two national datasets is greater than that gained by analysing two sets of weighted data 
separately. Ethnicity was most sensitive to weighting, consistent with the other analyses in the paper. We discuss 
this in the limitations.

Statistical analysis. We first use the multilevel analysis of individual heterogeneity and discrimina-
tory accuracy (MAIHDA) method which is a novel multilevel approach developed to analyse intersectional 
 inequalities9,36. MAIHDA has been used to study various types of health outcomes, including  depression13, body 
mass  index11,14, chronic obstructive pulmonary  disease15, and opioid  misuse37. This method involves defining a 
number of intersectional groups (or intersections) according to combinations of social attributes. These inter-
sections are taken to be analogous to the types of contexts traditionally studied in multilevel models such as 
neighbourhoods or  countries37. For example, one intersection may be BME women with high education and low 
income. Given this method is explicitly testing multiple hypotheses (the differences between multiple intersec-
tions), readers might be concerned about multiple testing. Jones et al.38 argue that shrinkage in MAIHDA mod-
els solves the problem of multiple testing, but we have shown in previous  work36 that this is not always the case. 
However, this should be seen as a sign of more certainty in our null finding of no multiplicative effects: there 
were no significant effects even though the test applied was potentially too anti-conservative.

First, a null model is specified with individuals at level one nested within intersections at level two. This allows 
for estimating the extent to which the variance in an outcome is explained by differences across intersections ver-
sus differences within them via the intraclass correlation coefficient (ICC)—in the MAIHDA framework termed 
the variance partition coefficient (VPC). A high VPC suggests that intersections have substantially different mean 
levels of an outcome and that individuals are fairly similar within them, whereas a low VPC suggests that indi-
viduals differ substantially within intersectional groups, which have similar mean levels of a particular  outcome9.

In the second step, main effects are added to the fixed part of the model. The VPC now represents the extent 
to which intersectional clustering is multiplicative. A reduction in the VPC to around 0% indicates that inter-
sectional differences are fully explained by the main effects, and so are additive and not multiplicative. Given we 
find no evidence for multiplicative effects, the MAIHDA models offer no advantages over conventional models 
for estimating mean differences in outcomes between intersectional  groups36, so we proceed with conventional 
linear regression analysis and use marginal effects to predict intersectional disparities, and we use MAIHDA to 
ascertain the discriminatory accuracy of intersectional clustering (i.e. the extent to which intersections are able 
to distinguish between different levels of a biomarker). The BIC values in Supplementary Table 2, which we use 
to assess the trade-off between model fit and complexity as is typically done when using  MAIHDA11, confirm 
that linear regression models have no worse model fit than the multilevel main effects models. 

MAIHDA models were estimated using  runmlwin39 v2.36 (MLwiN v3.0440), called from Stata v14.0. Lin-
ear regression models were estimated directly in Stata and marginal effects were calculated using the margins 
command. Given that MAIHDA models are often estimated using the Markov Chain Monte Carlo (MCMC) 
 method13–15,37 we tested whether the lack of multiplicative effects found was due to our use of IGLS estimation. 
Further, MAIHDA models often use age categories to define the intersectional  subgroups9,13–15,37, so we also tested 
whether this strategy would result in multiplicative effects being found, by including age in 10 years bands to 
define intersectional subgroups. Supplementary Table 3 shows that this made a negligible difference to the lack 
of multiplicative effects we found, with ICC values for main effects models of ~ 0–1.5%. For this supplementary 
analysis, MCMC estimation was based on IGLS initialisation values (burn-in length 5000 iterations; monitoring 
chain length 50,000 iterations). MCMC models demonstrated marginally higher VPC values but differences were 
minimal. The inclusion of age categories to define the intersections made no difference to the multiplicative effects 
found. Stata .do files are included for replication of all analyses in the supplementary materials.

Results
ELSA and UKHLS were well-matched on nearly all variables (Table 1). In terms of biomarker outcomes, mean 
values were above commonly accepted clinical cut-points for cholesterol (5 mmol/L25, sample mean 5.53) and 
SBP (120 mm  Hg41, sample mean 131.81). HbA1c was below the cut-point of 48 mmol/mol for diagnosis of 
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 diabetes25 (sample mean 40.32), CRP was below the suggested cut-point of > 3 mg/L for metabolic  syndrome29 
(sample mean 2.18); and RHR was below 120 bpm, which is considered  high42 (sample mean 67.50). The sample 
mean for BMI (28.43 kg/m2) was above the cut-point for overweight but not obese. The intersectional distribu-
tion is shown in Supplementary Table 4.

Multilevel intersectional models. The null multilevel intersectional models showed small overall inter-
sectional variation (Supplementary Table 2)—around 1 to 2%—with the exception of HbA1c (5.64%) and cho-
lesterol (9.18%). Thus 1–3% of the variance in CRP, SBP, RHR and BMI is at the intersectional level, and the 
majority of variance is at the individual level. This suggests that there is substantial heterogeneity within, and 
overlap between, intersections for these biomarkers, and they are relatively poor at discriminating between indi-
viduals in terms of their biomarker levels (less so for HbA1c and cholesterol). Once the main effects were added 
to the fixed part of the models, the ICC reduced to ~ 0% in each case, meaning there was no evidence of multi-
plicative intersectional effects.

Multiple regression models. The multiple regression models suggest additive intersectional effects, with 
the various social attributes mostly having an independent effect on biomarker outcomes (Table 2). The mixed 
direction of the effects presents a complex picture regarding disparities in objective measures of healthy ageing, 
suggesting that there may be variegated processes and mechanisms underlying these disparities. For compari-
son, standardised results are given in Supplementary Table 5.

Controlling for age, women had lower HbA1c and SBP, but higher cholesterol, CRP, and RHR than men. 
While the BME category had higher HbA1c, SBP and RHR, they had lower cholesterol compared with the White 
category, and there was no difference for other outcomes. Low education was associated with elevated biomarker 
levels except cholesterol where the opposite was the case. For income, HbA1c, CRP and RHR followed a gradient 
pattern where lower income was associated with elevated biomarker levels. This was reversed for cholesterol, 
and for SBP medium income had the lowest figure. For BMI, those with high income were distinct in having 
lower levels.

While these differences are informative of the effects of social attributes across the whole sample, they mask 
relatively large subgroup differences, and the mixed relationships suggest intersectional patterning, where the 
factors in the regression add together to produce multiple (dis)advantages. We therefore plotted predicted results 
by intersectional subgroup (Figs. 3 and 4), showing that disparities between subgroups are much wider than 
conventional multiple regression results convey.

Predicted intersectional disparities. In terms of blood-based biomarkers, intersections ranged in mean 
predicted HbA1c from 38.73–45.73 mmol/mol, with a sample mean of 40.32 mmol/mol. The effect of ethnic-
ity on HbA1c was apparent, and there was a difference of around 2.6 mmol/mol within both ethnic categories, 
according to the other intersectional attributes. The BME intersection with the lowest HbA1c still had a value 
around 1.5 mmol/mol higher than the white intersection with the highest HbA1c. Intersections ranged in pre-
dicted mean cholesterol from 4.71–5.95 mmol/L. BME male intersections had the lowest cholesterol, with small 
education/income variation within this group, whilst white female intersections had the highest, again with 

Figure 3.  Intersectional disparities in blood biomarkers.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13522  | https://doi.org/10.1038/s41598-020-69934-8

www.nature.com/scientificreports/

this group mostly homogenous. Intersections ranged in predicted CRP from 1.73–2.54 mg/L. Those with high 
income and education had the lowest levels, especially for men, regardless of ethnicity. Conversely the highest 
levels were seen amongst women in the lowest income and education categories.

For non-blood biomarkers, intersections ranged in predicted SBP from 129.75–134.97 mm Hg, with a sample 
mean of 131.81 mm Hg. BME men, and especially those with low education had the highest SBP. White men 
with low education had a similar SBP to BME men with high education. White women had low SBP, and the 
lowest levels were found in those with high education. White men with high education and BME women with 
low education had around the sample mean. Intersections ranged in predicted RHR from 65.03–70.81 bpm. 
Despite the strong gender main effect, there was overlap between some male and female intersections, with 
BME men with low education and white women with high education near the sample mean of 67.50 bpm. White 
male intersections with high incomes had the lowest RHR while BME female intersections with low or medium 
incomes had the highest RHR. Intersections ranged in predicted BMI from 27.46–29.34 kg/m2, with a sample 
mean of 28.43 kg/m2. The effect of low or medium income was apparent across all gender/ethnic categories, and 
BME men and women with low or medium incomes had the highest BMI predictions. Conversely, those with 
high incomes in particular had the lowest BMIs, and again this was mostly invariant according to other categories.

Table 2.  Coefficient estimates from linear regression main effects models. BIC values pertain to standardised 
outcomes.

HbA1c (mmol/
mol)

Cholesterol 
(mmol/L) CRP (mg/L) SBP (mm Hg) RHR (bpm) BMI (kg/m2)

Women − 0.49 (− 0.81 to 
− 0.17) 0.58 (0.54–0.62) 0.20 (0.13–0.28) − 2.26 (− 2.82 to 

− 1.70) 2.45 (2.10–2.81) − 0.10 (− 0.26–
0.07)

BME 4.32 (3.33–5.30) − 0.43 (− 0.56 to 
− 0.30)

− 0.04 (− 0.27–
0.19) 1.31 (− 0.27–2.90) 1.35 (0.35–2.35) 0.24 (− 0.23–0.71)

Low education 0.82 (0.49–1.15) − 0.10 (− 0.14 to 
− 0.06) 0.22 (0.15–0.30) 1.00 (0.40–1.59) 0.67 (0.29–1.04) 0.83 (0.66–1.01)

Low income 1.37 (0.96–1.78) − 0.13 (− 0.19 to 
− 0.08) 0.34 (0.24–0.43) 0.04 (− 0.69–0.77) 1.31 (0.85–1.77) 0.70 (0.48–0.91)

Medium income 1.05 (0.66–1.44) − 0.11 (− 0.17 to 
− 0.06) 0.19 (0.10–0.28) − 0.60 (− 1.29–

0.10) 0.84 (0.40–1.28) 0.62 (0.42–0.83)

Age 0.64 (0.44–0.85) 0.02 (− 0.00–0.05) − 0.04 (− 0.08–
0.01) 1.27 (0.92–1.63) − 0.54 (− 0.77– 

− 0.32) 0.28 (0.17–0.39)

Age squared − .004 (− .005 to 
− .002)

− .000 (− .001 to 
− .000)

.000 (− .000 
–.001)

− .007 (− .010 to 
− .005) .004 (.002–.005) − .002 (− .003 to 

− .002)

BIC 31,377 31,645 30,495 40,881 41,114 44,008

n 11,180 11,593 10,795 14,574 14,575 15,578

Figure 4.  Intersectional disparities in non-blood biomarkers.
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Table 3 summarises differences across biomarkers for each intersectional group, showing that intersections are 
rarely dis/advantaged according to all biomarkers—though some are more than others. For example, white men 
typically had low levels across multiple biomarkers but nonetheless white men with low education had elevated 
SBP and BMI. White men with high education had reduced HbA1c, CRP, RHR, and BMI, but not cholesterol 
or SBP. For the equivalent white women high cholesterol was clearly elevated. BME men had high HbA1c, SBP 
and BMI (except those with high education and income) but low cholesterol. BME women had elevated levels 
across a number of biomarkers—HbA1c, CRP, RHR, and BMI (except those with high education and income), 
but did not have lower cholesterol like their male counterparts. Overall, education and income can to some extent 
counteract gender and ethnic disparities in biomarker measures, but not completely.

These heterogeneous patterns open up the possibility of biomarker health ‘profiles’ across different intersec-
tional groups (which must nonetheless be viewed in the context of the majority of heterogeneity existing within 
intersections rather than between them). This suggests there may be differential intersectional drivers and healthy 
and functional ageing outcomes related to these profiles.

Discussion
For the first time, we have intersectionally ‘mapped out’ the main social disparities in key biomarkers of healthy 
ageing using nationally representative English data. We found no evidence of multiplicative intersectional effects, 
consistent with other MAIHDA analyses which have generally found no or negligible effects in a range of health 
 outcomes13–15,37. We uncovered intersectional disparities both in terms of the intersectional range, as well as 
intersectional patterning, as a result of the additive (or layered) effects of social attributes. The intersections 
nonetheless exhibited low discriminatory accuracy. Methodologically, our analysis suggests that although the 
MAIHDA method is useful for distinguishing between additive and multiplicative effects and the discrimina-
tory accuracy of intersectional subgroups, conventional main effects regression is a more parsimonious way to 
explore intersectional disparities in the absence of multiplicative effects.

The research and policy significance of additive vs multiplicative effects is a key theme in the intersectionality 
 literature19,43–45. We agree with the position that actual intersectional disparities (accounting for any potential 
interactions if necessary) are a key tenet of the intersectionality  framework19. These disparities are more impor-
tant than their statistical  constitution46, and are relevant to policy interest in targeting and evaluating policies and 
interventions in relation to those facing multiple  disadvantages47. Further, the social uniqueness of intersectional 
positions/identities will not necessarily translate into multiplicative  effects13.

Whilst further work is needed to understand whether intersectional disparities translate to differential risk of 
health events, existing work suggests that the mean differences in biomarker levels across intersections represent 
clinically important differences. For example, mean intersectional HbA1c varied from 38.82–45.72 mmol/mol, 
approximating a 5% increase in cardiovascular mortality in those with no known  diabetes48 and a 17% increased 
risk of cardiovascular events in those with type 2  diabetes49. The intersectional range of 1 mmol/L in total cho-
lesterol is associated with a ~ 20% increase in coronary heart disease (CHD) in women and a ~ 24% increase for 
 men50. Mean intersectional CRP varied from 1.76–2.52 mg/L, which is associated with a ~ 50% increased risk 
of CHD and ~ 20% risk in vascular  death51. The intersectional range of ~ 5 mm Hg in SBP is associated with 
a ~ 20% increase in the risk of stroke death and ~ 15% increase in risk of death from ischaemic heart disease and 
other vascular  causes52. The intersectional range in RHR of 6 bpm is associated with an increased risk of CHD 
of ~ 4%, CVD of ~ 8%, and all-cause mortality of ~ 9%53. Finally the intersectional range in BMI of ~ 2 kg/m2 is 
associated with an increase in the hazard ratio for mortality of around 1.08; put another way, the intersectional 
level of just under 30 kg/m2 is associated with living around 4 years less compared to those with a BMI of < 2533. 
These comparisons are approximate given differing populations and confounder adjustment but nonetheless are 
indicative of the potential implications of wide-ranging intersectional disparities in biomarkers.

The main effects driving the intersectional patterning were approximately consistent with previous studies. 
For example, a study using UKHLS data found very similar effects for gender and income for the six biomark-
ers analysed here, despite also including younger  adults54. Studies on the relationship between ethnicity and 
biomarkers of healthy ageing seem to be lacking in the extant literature. We found that intersectional dispari-
ties according to gender, ethnicity, education and income did not follow a simple pattern but were different for 
different biomarkers. Consequently, different intersectional subgroups have different ‘biomarker profiles’, and 
although some intersections have a greater number of reduced or elevated biomarkers than others, no intersec-
tion has reduced or elevated levels of all biomarkers. Similarly, our findings also highlight that it is important 
to move away from mean differences between e.g. men and women, and between White and BME groups given 
the heterogeneity within these categories according to other social attributes. For example, we found evidence 
of compensatory mechanisms such that elevated ethnic minority HbA1c was somewhat but not completely 
compensated by socioeconomic advantage. For SBP, we found that the most advantaged men and the most 
disadvantaged women have approximately the same SBP, despite the overall strong gender effect.

An important caveat to these findings emerging from the use of the MAIHDA is that the intersections exhib-
ited low discriminatory accuracy. Most heterogeneity in biomarker outcomes exists within rather than between 
intersectional subgroups, consistent with the picture emerging of MAIHDA analyses of various  outcomes11,14,15,37. 
In other words, intersections cannot discern which particular person is healthy or sick. This speaks to emerging 
findings from ‘precision medicine’55, where it is becoming evident that current statistical methods are unable to 
predict the health of any one individual with any reasonable degree of accuracy. Caution is therefore required 
in targeting interventions or policies, not only due to matters of efficiency, but also given the risk of stigmatis-
ing people who are assumed to have a particular level of health or illness by virtue of their social  attributes18. 
Nonetheless action on particular intersections could still have important population health effects if they are 
effective at shifting the means for those subgroups.
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It remains to be seen whether intersections have better discriminatory accuracy with regards to other factors 
the theory suggests are patterned intersectionally such as differences in social discrimination, lived experience, 
or being subject to differential institutional or policy processes. In addition, differential life course drivers e.g. 
in terms of the social, political or geographical context in relation to an individual’s life trajectory, may be impli-
cated in intersectional patterning, providing clues on how to design policies and interventions to address  this56. 
However in the absence of this evidence caution is required in intersectionally targeting/tailoring interventions 
or policies at particular subgroups. An alternative more social epidemiologically-oriented research goal might be 
to uncover the social factors driving the individual distribution of  risk9, in which case discriminatory accuracy 
matters less. Indeed, researchers are now turning towards answering the question, for example by investigating 
whether discrimination mediates intersectional  patterning18.

In presenting our findings, we have deliberately used the term disparities to denote that the differences dem-
onstrated do not necessarily represent inequalities because they may to some extent reflect natural underlying 
physiological differences. For example, men and women have different anthropometric profiles and so their 
different biomarker levels might be considered ‘normal’. Similarly, there is some debate whether there should 
be ethnic-specific cut-points in HbA1c for diagnosing  diabetes57. Given that we analyse a range of biomarkers 
and social attributes it would be unfeasible to take into account the difference between levels of biomarkers 
(or biomarker profiles) and consequences for healthy and functional ageing in the current analysis. Instead we 
regard this as an important focus of future work. A potentially interesting interim step might be to investigate 
the pathways between biological processes and rates of diagnosed diseases, which might suggest areas of over 
or under-diagnosis, or point towards the social processes and mechanisms such as help-seeking and diagnosis 
mediating this relationship.

Our study has a number of strengths. Pooling biomarker data from ELSA and UKHLS has allowed for a 
granular analysis of intersectional disparities in biomarkers of healthy ageing and disease across England. Whilst 
many health inequalities studies control for socio-demographics, for example controlling for socioeconomic 
status in explaining ethnic differences, we specifically focus on subgroup disparities in order to examine their 
co-constitution by multiple social attributes.

Nonetheless, as with all studies ours has limitations. We did not take into account the use of medications 
which affect biomarker measures because medication use is confounded with diagnosis and severity, which are 
ultimately of interest in mapping out biomarker disparities. It is likely that intersectional differences vary accord-
ing to whether people are diagnosed and on medication or not and this should be explored in further work. 
There may also be intersectional bias e.g. in terms of non-response which influences the patterns we found. Some 
intersectional effects may be due to how the meaning of some categories changes according to others e.g. edu-
cational qualifications and age. Ethnicity is notoriously difficult to measure in surveys, with a range of different 
meanings and constructs that impact on the way it is recorded. We found some differences between ELSA and 
UKHLS in terms of ethnic differences in biomarkers, including in sensitivity analyses. Nonetheless, we consider 
our results as broadly indicative of intersectional inequalities, but they should be seen as exploratory and in need 
of further investigation using larger samples, ideally with high quality ethnicity data. Our study would likely 
have been able to uncover greater ethnic heterogeneity using such data for example by focussing on particular 
ethnic groups. We cannot generalise out findings beyond the English setting. Given the minimal measurement 
error with biomarker outcomes, an interesting area of future research would be to see whether intersectional 
inequalities vary between different geospatial contexts.

conclusion
We present a complex picture of disparities in healthy ageing biomarkers to counter dominant simplistic narra-
tives of health inequalities according to single or at most a limited number of social attributes e.g. SEP or ethnic-
ity. Our results have a number of important implications. They show that certain intersections have particularly 
reduced, or elevated levels of particular biomarkers of healthy ageing and chronic disease, which should be 
taken into account in inequity policy. However, our results also show that intersections have substantial hetero-
geneity i.e. that they are relatively poor at discriminating who has an elevated or reduced level of any particular 
biomarker. This suggests that rather than using intersections to target interventions, which may be inefficient, 
policies might instead aim to affect the underlying social determinants of health that are responsible for overall 
intersectional differences. Our results also suggest that people who are typically disadvantaged according to 
multiple social attributes e.g. gender, income and ethnicity, are not always disadvantaged according to all health 
measures. Rather, a more nuanced picture emerges, suggesting intersectional groups exhibit a mixture of both 
protective as well as risk factors for illness.

By opening up a granular view of inequalities, an intersectionality research agenda offers opportunities to 
unpack how the dynamics of power and social determinants might interact to drive variegated outcomes. This 
presents new puzzles and challenges on how and why biomarkers might translate into health and functional 
outcomes differently for different subgroups and the life course processes that lead to such differences. Such 
innovation may be helpful in tackling the huge and growing burden of chronic disease.

Data availability
The datasets analysed in the current study are freely available from the UK Data Archive.
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