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Greedy control of cascading failures 
in interdependent networks
Malgorzata Turalska* & Ananthram Swami

Complex systems are challenging to control because the system responds to the controller in a 
nonlinear fashion, often incorporating feedback mechanisms. Interdependence of systems poses 
additional difficulties, as cross-system connections enable malicious activity to spread between layers, 
increasing systemic risk. In this paper we explore the conditions for an optimal control of cascading 
failures in a system of interdependent networks. Specifically, we study the Bak–Tang–Wiesenfeld 
sandpile model incorporating a control mechanism, which affects the frequency of cascades occurring 
in individual layers. This modification allows us to explore sandpile-like dynamics near the critical 
state, with supercritical region corresponding to infrequent large cascades and subcritical zone being 
characterized by frequent small avalanches. Topological coupling between networks introduces 
dependence of control settings adopted in respective layers, causing the control strategy of a given 
layer to be influenced by choices made in other connected networks. We find that the optimal 
control strategy for a layer operating in a supercritical regime is to be coupled to a layer operating in 
a subcritical zone, since such condition corresponds to reduced probability of inflicted avalanches. 
However this condition describes a parasitic relation, in which only one layer benefits. Second optimal 
configuration is a mutualistic one, where both layers adopt the same control strategy. Our results 
provide valuable insights into dynamics of cascading failures and and its control in interdependent 
complex systems.

Networks constitute the theoretical framework behind structural and dynamical properties of a plethora of 
natural and man-made systems1,2. Evolution of social, communication and information platforms, spread of 
infectious diseases or dependencies between financial markets are all captured by network science concepts. In 
particular, the above examples are all demonstrations of a property characteristic to networks, namely their ability 
to propagate perturbations. Cascading failures form an especially important class of such perturbations, as they 
capture processes of malfunction spreading. Starting from a localized failure, interactions between components 
of a network initiate a domino-like effect, resulting in catastrophic events such as blackouts in power grids3–5, 
crashes in financial markets6,7 and extinctions in ecological systems8,9. The massive failures are only amplified by 
the interdependencies between networks10, making inquiries into control protocols reducing the risk of cascad-
ing failures an active area of research.

In particular, numerous investigations into topological features of interconnected networks have shown that 
structural connectivity plays significant role in reducing vulnerabilities of those systems10. Next to traditional 
features such as degree distribution, higher-order network organization, reflected by intra- and inter-layer degree 
correlations, has been identified as a necessary condition for structural stability and robustness of coupled 
networks11,12. Similar observations have been made regarding dynamical processes on networks. Recent studies 
have determined that the density of interlayer connections affects occurrence of cascading failures in intercon-
nected systems13,14, while correlations present in the multilayer structure facilitate cooperation in evolutionary 
games12 or decrease of epidemic thresholds15. Those studies however focus on the impact the structure of a 
system has on observed dynamics, while in many realistic scenarios large scale changes to the network structure 
are not a preferable or available method of exerting control. More practical approaches focus on early detection 
and prediction of cascading events, and ultimately on control of events after they have been triggered16. In this 
paper we develop a systematic framework addressing the latter case.

We model cascading failure process with the Bak–Tang–Weisenfeld (BTW) sandpile model of self-organized 
criticality17,18. The BTW process is an archetypal model for the cascades of load, in which the distribution of event 
sizes is characterized by a power law. Such scaling of failure cascades is observed e.g. in electrical blackouts3,4, 
earthquakes19,20 and forest fires21, making the BTW model a valuable tool for studying propagation of failures 
resulting from a malfunction of a single element in a system. Within the framework of the BTW model, control 
can be implemented as any action interfering with the process of load accumulation on a network, resulting in 
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reduction of the probability of extreme events. The principle behind such action follows the reasoning behind 
e.g. triggering snow avalanches in order to prevent snow accumulation that could result in deadly avalanches, or 
igniting controlled forest fires in order to reduce the probability of uncontrolled events spreading over wide areas.

The first proposed control scheme of the BTW process is based on triggering cascades on sites that are near to 
becoming seeds of cascading events22,23. This approach leads to a redistribution of load on the network through 
small scale cascades, and it prevents the occurrence of massive failures. More recently Noël et al.24 defined a 
broader scheme by controlling how often cascades of any size occur in the system. Depending on the control drive 
this protocol recovers earlier results22,23 by avoiding large cascades at the cost of causing many small ones. How-
ever it also allows for an opposite situation, where cascades of any size are avoided at all cost. The latter rule leads 
to accumulation of load on the network, which in turn results in very infrequent, but highly destructive failures.

As mentioned earlier, pervasiveness of interconnected systems determines the need to extend control schemes 
proposed for individual networks to more complex structures. Thus in this paper we discuss control of cascad-
ing failures extending the protocol of Noël et al. to a system of interdependent networks. Our goal is to identify 
conditions for optimal control exerted through modification of the dynamical rules defining cascading process. 
We observe that the topological coupling between networks introduces dependence of control settings adopted 
in respective layers, causing the control strategy of a given layer to be influenced by choices made in other con-
nected layers. Therefore due to cascading events that propagate across layers, a strategy optimal for an individual 
network becomes suboptimal in the connected system. Our results provide valuable insights into dynamics of 
cascading failures and and its control in interdependent complex systems.

Methods and models
Sandpile model.  The BTW model is an idealized model of cascading dynamics driven by load redistribu-
tion on a network25. In this paper we consider a generalization of the classical BTW dynamics17,18 into a network 
of arbitrary topology, as follows13,24. We consider a network of N nodes, where each node has a fixed capacity to 
hold grains of sand. The capacity of a node is the maximal amount of sand that it can hold and it is set to k − 1 , 
where k is the degree of a node. Thus, a (k − 1)-sand node of degree k is said to be at capacity, and adding sand 
to such node brings it over capacity, initiating a toppling event.

The dynamics of sandpile model consist of a slow and a fast process. The slow process adds one grain of sand 
to a node chosen uniformly at random. If this addition brings the initial node over capacity, the fast process of 
the propagation of an avalanche is initiated. The initial node topples and sheds one grain of sand to each of its 
neighbors. This shedding might result in neighboring nodes becoming overloaded. Thus any node that exceeds 
its capacity topples, in the same way as the first node, distributing its load to its neighbors, who then may top-
ple as well. This repeated shedding can result in a cascade of events, which continues until all nodes are below 
or at their capacity. Once equilibrium is restored, the slow process proceeds with adding another grain of sand. 
In order to prevent the system from becoming saturated with sand, we incorporate a dissipation mechanism 
into the dynamics. Whenever a grain of sand is moved between nodes during a shedding event, it dissipates (is 
removed) with a small probability f. In all numerical simulations presented in this paper f = 0.05 . The size s of 
a cascade is defined as the total number of toppling events initiated by deposition of a single grain of sand. The 
mean-field solution to the BTW model is characterized by a distribution of cascade sizes, P(s), that exhibits a 
power law scaling with exponent −3/225. The same scaling describes the size of cascading events observed for a 
wide range of networks, from random regular networks13, through networks with narrow degree distributions26, 
to particular classes of scale-free topologies27.

System topology.  In this paper we consider the BTW process on a random 4-regular graph, R(4), (a ran-
dom network of degree-four nodes). As mentioned earlier, despite its simplicity, such topology shares the func-
tional form of the statistics of cascade size, P(s), with numerous other graphs. Additionally random regular 
graphs well approximate the real topologies of networks such as power grids13, making them a useful basic 
structure to explore.

To study the sandpile dynamics on interconnected networks, we generate independently two R(4) networks 
of the same size and connect nodes between them in a random fashion. We then refer to those original networks 
as layers A and layer B, respectively. The parameter p, which varies between 0 and 0.50, dictates the density of 
coupling between the layers. The value of p affects the degree distribution characterizing individual layers, which 
evolves from P(k) = δ(k − 4) at p = 0 to P(k) = (1− p)δ(k − 4)+ pδ(k − 5) at p > 0 . Thus at any p > 0 indi-
vidual layers are no longer pure random 4-regular graphs. Following the sandpile dynamics outlined earlier, the 
capacity of nodes to hold sand is set to (k − 1) , and thus 5-degree nodes have larger capacity than 4-degree nodes.

Control mechanism.  Since in numerous realistic scenarios exerting control through adjustments or 
changes to the network structure is not possible, in this paper we consider a protocol affecting solely the dynam-
ics of the sandpile process. However we keep the main features of the process unchanged. Namely the cascad-
ing mechanism of redistribution of sand from overloaded nodes and the dissipation rate are unaffected by the 
control protocol. The only remaining degree of freedom is the deposition of an initial grain of sand, which in the 
original sandpile model is done randomly. Thus rather than depositing a grain of sand on a randomly selected 
node, what might or might not result in a cascade, one sets to control the probability of initializing a cascading 
event. This is realized by an informed selection of the node to which a grain of sand is being added. With prob-
ability µ we deposit sand on a node that is at capacity (what causes a cascade) and with probability 1− µ we 
select a node that is below capacity (no cascade).

As demonstrated by Noël et al.24, the native sandpile model is recovered by setting µ = µ∗ , where particular 
value of µ∗ depends on system size and adopted dissipation. Furthermore, as shown on Fig. 1a, departure from 
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the condition of µ = µ∗ allows us to explore regions near the self-organized critical state. The setting of µ > µ∗ 
corresponds to preferentially depositing sand on nodes that are at capacity, thus initiating cascades more fre-
quently than in the native case. This strategy results in numerous small cascades and decreased occurrence of 
large size events, what is reminiscent of a subcritical state. An opposite strategy, µ < µ∗ , amounts to avoiding 
cascades at all cost by allocating the first grain of sand to nodes that are below their capacity. This choice however 
leads to accumulation of the sand on the network, since the dissipation mechanism acts only during evolution 
of a cascading process. As a result despite the fact that the average rate of failures drops, the system occasion-
ally suffers from rare but extremely large events. Thus the system is in a supercritical-like state, with maximum 
cascade size reaching the size of the network.

In the system composed of two interconnected networks, the settings of the controller are chosen indepen-
dently for each layer. At each instance of the slow part of the sandpile dynamics the layer on which a grain of 
sand is deposited is chosen at random. Next, if layer A is picked, with probability µA the grain is deposited on 
at-capacity node belonging to that layer. If layer B is selected, deposition of sand on at-capacity node of layer B 
happens with probability µB . This approach allows us to specify the occurrence of cascades in individual layers 
and to observe how that choice is affected by coupling between layers.

Measure of risk.  The notion of control is naturally associated with perception of risk, and thus a measure of 
cost is associated with events occurring in the system. Since numerous complex systems, such as infrastructure 
or transportation networks, are characterized by nonlinear and non-local interactions, it’s natural to assume that 
the cost of cascading events is a nonlinear function of event size. Thus we define a cost function C(s) as a generic 
nonlinear function of the cascade size

capturing the fact that large cascades inflict disproportionately greater damage than small events, when imme-
diate and intermediate changes to system function are taken into consideration. The negative sign of the cost 
function associated with non-zero size cascades reflects the detrimental effect failures have on system function-
ality. Avoidance of cascading failures is considered beneficial to the system and thus incurs a positive cost of +1 
for zero size cascades. Since the probability of zero size cascades is directly defined by the control parameter, 
P(s = 0) = 1− µ , the average cost associated with given value of µ is

(1)C(s) =

{

+1 if s = 0

−csα if s > 0,

(2)�C(µ)� =

∞
∑

s=0

P(s)C(s) = P(s = 0)C(s = 0)+

∞
∑

s>0

P(s)C(s) = 1− µ+

∞
∑

s>0

P(s)C(s).

Figure 1.   Control parameter µ shapes the cascade size distribution, P(s), and as a result it determines the value 
of average cost, 〈C〉 , associated with given control strategy. (a) For a single network the chance of a non-zero 
size cascade is P(s > 0) = µ and the complementary probability of no cascade is P(s = 0) = 1− µ . The native 
BTW model corresponds to the sandpile dynamics simulated with control parameter µ∗ = 0.37 (black circles 
and red dashed line). Values of µ < µ∗ lead to supercritical dynamics characterized by increased probability 
of cascades equal to the system size (blue triangles), while values of µ > µ∗ result in a subcritical state, where 
probability of smaller size failures is increased (green diamonds). (b) System gains are proportional to the 
frequency at which cascades are avoided, thus G(µ) = 1− µ (blue squares). Cost associated with non-zero 
size cascades grows nonlinearly with cascade size, C(s) ∼ sα (red triangles), and parameters are selected such 
that average total cost is maximized at µ = µ∗ (green dots). Figures denote results of numerical simulations 
on random regular R(4) graph with N = 5000 , �k� = δ(k − 4) and dissipation parameter f = 0.05 . The cost 
function is C(s) = 1

2
s3/4.
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Here the first component denotes the gains due to avoidance of cascades, while the second term defines losses 
due to propagating failures. The balance between both terms determines to what extent adopted control setting 
is beneficial or detrimental to the system.

Risk in interconnected networks.  Interdependency of networks determines systemic risk, as actions of 
controllers operating in the individual layers reverberate across the system through interlayer connections. In 
the case of sandpile dynamics discussed in this paper, the control strategy determined by the choice of µ value in 
one layer will be affected by control settings in the other layer. As illustrated on Fig. 2a, we consider two control-
lers, each selecting a control protocol for its layer, independently of decisions made in the other layer. However 
with growing interlayer connectivity (Fig. 2b) cascades of failures might more likely spread across connected 
networks, modifying the original control settings and increasing risk beyond the value set by the controller 
operating the network.

We start from a configuration of two random regular networks, one operating with control setting µA , and the 
second working with control setting µB . The schematic presented in Fig. 2c outlines possible scenarios occurring 
during the sandpile process dynamics. The black dot denotes allocation of the initial grain of sand and color 
blocks illustrate cascades that might be a result of this deposition. The plot distinguishes between two layers, A 
and B, and allows for tracking how the interlayer coupling is influencing control settings set for each layer. In 
both layers, deposition of the grain of sand does not lead to a cascade, with probability 1

2
(1− µA) and 1

2
(1− µB) , 

respectively for layer A and B. Naturally then, a cascade occurs with probability 1
2
µA and 1

2
µB in each layer. How-

ever this event consists of two separate cases: one in which a cascade originates in layer A (B) and is contained 
in that layer, and second one in which a cascade is initiated in layer A (B) and spreads to layer B (A) through 
interlayer connections. The rate of those events is �A ( �B ) and θA ( θB ), respectively, where θA = 1−�A and 
θB = 1−�B . In general those rates are a function of both control settings µA and µB and interlayer coupling p.

Now let’s focus on events occurring in layer A, as corresponding relations can be easily written for layer B. 
We do not observe cascades in layer A in three cases: when a grain of sand is dropped in layer A and does not 
causes a cascade, when a grain of sand is dropped in layer B and does not lead to a failure and when a grain of 
sand dropped in layer B causes a cascade that is entirely contained in that layer. Thus the probability of observing 
cascade of size zero in layer A is:

Consecutively, non-zero events occur with probability:

The influence that the control setting chosen by layer B exerts on the sandpile dynamics observed in layer A is 
clearly visible through these expressions. Since the expected total cost incurred by layer A is

(3)P(sA = 0) =
1

2
(1− µA)+

1

2
(1− µB)+

1

2
µB�B(µA,µB, p).

(4)P(sA > 0) =
1

2
µA +

1

2
µBθA(µA,µB, p) =

1

2
µA +

1

2
µB

(

1−�B(µA,µB, p)
)

.

Figure 2.   (a) Interdependency of systems poses challenges to the controllers operating in the individual 
networks. (b) Increasing the number of interlayer connections increases the chance for cascading failures to 
propagate from one layer to the other one. (c) In a system of coupled networks the probability of no cascade 
occurring in layer A is 1

2
(1− µA)+

1
2
(1− µB)+

1
2
µB�A , demonstrating the coupling between controller 

settings chosen by respective layers. Schematic figure illustrates how frequency of particular events (no cascade, 
cascade originating in layer A and propagating or not to layer B, etc.) is tied to the control parameter chosen 
in each layer. Black dot denotes a grain of sand deposited in a given layer, colored areas denote non-zero size 
cascade.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3276  | https://doi.org/10.1038/s41598-021-82843-8

www.nature.com/scientificreports/

both gains and losses are a function of the µ values selected by layer A and B.
In the following section, we will discuss in detail how particular choices of control parameters and strength 

of interlayer coupling affect the risk perceived by individual layers and the optimal settings which minimize 
incurred costs.

Results
Criticality as the state of optimal control.  A wide range of complex systems, including biological, 
physiological, financial, ecological and social systems have been identified as operating at or near criticality28. 
This dynamic state poised between order and disorder is believed to arise through evolutionary-like mechanisms 
as it is characterized by optimal trade-off between robustness and flexibility29, the highest level of computa-
tional capabilities30 and optimal dynamic range and memory31. Motivated by those observations we adopt a 
cost function C(s) such that the average total cost of cascades is maximal for µ = µ∗ , the value of the control 
parameter that corresponds to the critical state of the sandpile process. As illustrated on Fig. 1b, a cost function 
C(s) = 1

2
s3/4 results in a concave loss function. Since the gain decreases as a linear function of µ , the average 

cost function 〈C(µ)〉 retains the concave shape with a peak value near µ∗ . The values of the control parameter 
µ < µ∗ and µ > µ∗ result in a larger cost than one observed for µ∗ , denoting negative outcomes connected 
with the departure from the state of criticality. In the former case cascades are less frequent than in the classi-
cal sandpile model, however events encapsulating almost the entire system are more probable, resulting in an 
increase of the average cost. The latter range of parameters corresponds to a situation where increase in costs 
results from frequent small cascading events, which despite being all limited in size, on average result in bigger 
losses experienced by the system.

The choice that particular control settings have on sandpile dynamics in a system of interconnected networks 
is shown in Fig. 3. Consecutive panels correspond to increasing values of control parameter selected by layer A, 
µA , while x- and y-axis of the individual color maps correspond, respectively, to a range of interlayer coupling 
p and control parameter of layer B, µB . Values denoted by the color maps represent the average normalized 
cost experienced by the layer A, 〈CA

norm(µA,µB, p)〉 , to illustrate how control settings selected by that layer are 
influenced by control chosen in layer B, as well as how the interlayer connectivity is affecting those parameters. 
The normalization is defined with respect to the native sandpile model

(5)�CA� =

∞
∑

sA=0

P(sA)C(sA) = P(sA = 0)C(sA = 0)+

∞
∑

sA>0

P(sA)C(sA),

Figure 3.   Average cost of cascades experienced by layer A depends on control settings chosen by layer A and 
B, as well as on strength of interlayer coupling p. In all panels, the color denotes value of cost accrued by layer 
A normalized by the value obtained in fully uncontrolled case. Thick line denotes the value of normalized cost 
equal to 1. In the case of µA = 0.40 and µA = 0.50 all values of normalized cost are smaller then 1, and thus the 
thick line is absent from those two panels. Size of an individual layer is N = 5000 and all other parameters are as 
those used in Fig. 1.
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The thick line on the panels corresponds to �CA(µA,µB, p)� = �CA(µ∗,µ∗, p)� and values 〈CA
norm(µA,µB, p)〉 > 1 

denote cases where the control strategy selected by layer A, combined with the control set by layer B, results in a 
better outcome than when µA = µB = µ∗ . Similarly, the values 〈CA

norm(µA,µB, p)〉 < 1 denote choice of control 
that is more detrimental to the system than uncontrolled sandpile configuration.

Figure 3 shows that the strategy chosen by layer A can result in three broadly defined outcomes. First, the 
condition of µA < µ∗ is the only one that leads to higher benefits than the classical sandpile case. Matched with 
layer B operating in the regime of µB > µ∗ and increasing interlayer coupling p, the layer A experiences posi-
tive effects of working in an interconnected system. We observe an opposite behavior for µA > µ∗ , when any 
configuration results in outcomes worse than ones obtained for µA = µ∗ . In particular the presence of layer B 
has a negative effect on the sandpile dynamics observed in layer A. The negative effect increases with the value 
of µB and interlayer coupling p. Finally the control in layer A set close to the native sandpile dynamics, µA ≈ µ∗ , 
requires either low interlayer coupling matched with wide range of settings chosen by layer B or stronger coupling 
p followed by µB ≈ µ∗ , in order to see positive outcomes.

In order to explain above observations we focus on a case where both layers operate with the same control 
setting, µA = µB . Such simplification of the dynamics allows us to investigate in detail how the average cost 
acquired by layer A is affected by the presence of a second layer and how varying control settings affect gains 
and losses incurred in the system. In order to determine the effects of interlayer coupling, we distinguish two 
types of cascading events: local ones, which are contained to the layer in which a cascade has started (denoted as 
AA or BB events) and inflicted ones, when a cascade spreads to the other layer (referred to as AB or BA events). 
Fig. 4a,b illustrate how frequency of both types of events varies with parameters of the system. With increasing 
interlayer coupling p the local cascades become less frequent, as connections between layers facilitate spread 
of failures. However the strength of this effect depends on the control parameter. In systems with low values 
of µ local cascades are less probable, since the sandpile dynamics operates in a supercritical regime leading to 
cascading events encapsulating an entire layer. Thus it is more likely that a massive cascade, progressing through 

(6)�CA
norm(µA,µB, p)� =

�CA(µA,µB, p)�

�CA(µ∗,µ∗, p)�

Figure 4.   The case of matching control settings, µA = µB , provides insight into the behavior of controlled 
sandpile dynamics showed in Fig. 3. (a,b) Interlayer coupling modifies the frequency of observed cascades, with 
AB cascades (cascades that start in layer A and spill over into layer B) becoming more frequent as coupling p 
increases. (c) Average cost of failures occurring in layer A is a function of interlayer coupling as well. However 
the functional dependence varies with µ , and for µ < µ∗ cost increases with p, while for µ > µ∗ the relation 
is opposite. (d) The balance between gains caused by the avoidance of cascades and losses brought by local or 
inflicted cascades follows the behavior of the average cost. All parameters are as those listed in Fig. 3.
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the layer in which it originated, will get transmitted to the opposite network rather than stay contained locally. 
Additionally, in the µA = µB case considered here, the second layer is characterized by a supercritical dynamics 
as well. Since this state corresponds to a near saturation of the network with sand, where a significant number 
of nodes are near their capacity, a cascade originating from the first layer has optimal conditions for spreading 
into the second layer. The opposite is true for systems operating with high values of µ , where sandpile dynam-
ics is reminiscent of a subcritical state. Here both layers operate in a regime where large cascades are less likely, 
effectively limiting the chance for spread of failures across layers.

The frequency of AA and AB events is one of the variables defining the average cost experienced by a network 
(see Eq. 5). In particular the chance of AB cascades corresponds to the rate θ , denoting the effect of interlayer 
coupling on the local sandpile dynamics. The average cost incurred by layer A (see Fig. 4c) retains the concave 
shape for any p, being low for low values of µ , then increasing for intermediate values of control and finally 
decreasing for high control settings. Furthermore, the value of µ = µ∗ is a transition point between two regimes, 
one in which average cost increases with interlayer coupling ( µ < µ∗ ) and second one where higher interlayer 
coupling leads to reduction in cost ( µ > µ∗ ). This change is derived from the shape of the cost function which is 
not symmetric with respect to µ∗ . As shown on Fig. 1b, the difference between the loss and the total cost decreases 
as a function of µ and the total cost incurred at larger µ is mostly due to losses rather than gains. At low values 
of µ , the selected control strategy and gains associated with it are responsible for higher percentage of total cost.

Thus in the regime µ < µ∗ , the total cost increases with p, since coupling to a second layer allows to reduce 
load, which leads to reduction in the chance of largest cascades normally observed in A, in turn reducing losses. 
High frequency of cascades present in the regime of µ > µ∗ causes an opposite effect, since here the system is 
penalized by cascades of any size, and an increasing connectivity drives the probability of inflicted cascades.The 
gain associated with selected control value remains relatively constant as a function of p, as demonstrated by 
Fig. 4d. Since the fraction of the average cost that is associated with gains follows the same dependence as the 
average cost, its absolute value must be independent of p, especially for low values of µ.

Therefore the high values of normalized average cost seen for µA < µ∗ at high values of µB and p (Fig. 3) stem 
from the fact that this particular configuration allows supercritical layer A to take advantage of the subcritical 
layer B by depositing excess load and thus reducing the size of cascades generated in A. At the same time system 
B produces mostly events of small size, which do not often propagate through interlayer connections affecting 
layer A. From this perspective the layer A plays a role of a parasite taking advantage of the control setting adopted 
by layer B, while layer B behaves like a host organism, experiencing the interlayer coupling negatively. At high 
values of µA the optimal configuration for layer A is that of low connectivity and/or one of layer B operating in 
supercritical regime. Both cases limit the probability of inflicted cascades, either structurally through restricted 
number of interlayer connections, or dynamically by coupling to a system in which cascades are rare.

Maximizing cost at extreme control settings.  In the previous section we discussed a case where the 
optimal control configuration, one associated with maximal benefits, corresponds to the critical dynamics of 
the sandpile model. That selection was motivated by the fact that numerous complex systems demonstrate the 
behavior reminiscent of a critical state, suggesting it being advantageous over other dynamical settings. Here 
however we set to analyze the dynamics from the perspective of a controller, one ultimately responsible for the 
damages caused by cascading failures propagating through the system. In this new framework, it is natural to 
expect that the controller prefers configurations limiting occurrences of cascades all together or ones that lead to 
cascades of small size. Thus we define a new cost function, one which reflects those preferences. The cost func-
tion of the form C(s) ∼ s3/4(1− µ2) has a convex shape with a minimum near µ∗ and two arms increasing as 
µ → 0 and µ → 1 (see Fig. 5a). Such a choice reflects the expectation of a controller that the regulatory setting 
leading to few cascades ( µ ≪ µ∗ ) or one leading to small cascades ( µ ≫ µ∗ ) should be beneficial to the system.

The convex shape of the cost function C(s) is retained in the average cost 〈C(s)〉 incurred by a layer of the 
two-network system (see Fig. 5b), with only weak dependence on interlayer coupling p. In the case shown on 
the Fig. 5b, µA = µB , the extreme values of µ incur almost 50% smaller cost than that experienced at intermedi-
ate values of µ . Next we relax the condition of µA = µB to the whole range of possible control values and we 
demonstrate that for any value of µA the optimal configuration is coupling with layer B operated in µB < µA 
regime. As shown on Fig. 6 this positive effect increases with interlayer coupling p. Here we need to note that the 
values shown on the color maps represent different normalization than one defined in Eq. 6. In order to address 
the issue of a control mechanism designed globally for a system of interconnected networks, we use the case 
µA = µB as reference, and thus values shown in Fig. 6 represent

Observed effects directly relate to the fact that dense interlayer connections facilitate spread of failures across 
layers of the system, and depending on the dynamical states of individual layers, the effects of the coupling can 
be either positive or negative. Layer operating in supercritical regime, µA ≪ µ∗ , generates few cascades and the 
coupling to a similarly supercritical network allows it to dissipate excessive load, thus decreasing the components 
of cost originating from losses. On the contrary coupling to a subcritical system leads to an increase in losses due 
to cascades occurring more easily in that layer and being transmitted through interlayer links.

(7)�CA
norm(µA,µB, p)� =

�CA(µA,µB, p)�

�CA(µA,µA, p)�
.
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Discussion
The dynamics of natural and man-made networks is usually nonlinear, making those systems complex not only 
with respect to their structure, but also with respect to their functional characteristics. Nonlinearieties, especially 
ones arising from feedback interactions, make it difficult to predict the impact of external perturbations on the 
system, and thus present severe obstacles to designing successful control protocols. In particular, structural cross-
layer connections between networks can lead to unique phenomena not observed in the individual systems10. 
In this paper we set out to approach the problem of controlling dynamics on interconnected networks, focusing 

Figure 5.   A cost function C(s) ∼ s3/4(1− µ2) captures the idea that both strategies: one of avoiding cascades 
( µ ≪ µ∗ ) and one of allowing only small cascading events ( µ ≫ µ∗ ), should result in small average cost, as rare 
large events as well as frequent small events might be associated with similar cost or cost versus risk trade-off. 
Panel (b) demonstrates how this modified cost definition affects the averaged total cost experienced by layer A 
in the case of µA = µB control settings. The values presented here are not normalized as in Fig. 4. They reflect 
absolute value of average cost 〈C(µ,µ, p)〉.

Figure 6.   Greedy control of cascading failures needs to take into account control settings chosen by the 
opposite layer as well as strength of the interlayer coupling p. For any µA only µB < µA settings chosen by 
layer B lead to positive outcomes for layer A. In all panels, the color denotes value of cost accrued by layer A 
normalized by the value obtained in the µA = µB case (see Eq. 7). Thick line denotes the value of normalized 
cost equal to 1.
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on regulating the dynamics of cascading failures. By formulating the control problem in terms of probability of 
occurrence of a cascade, we extent the dynamics of the sandpile model into both subcritical and supercritical 
regions. This allows us to test a variety of control strategies, from avoiding cascading events, through classical 
critical sandpile dynamics to limiting the size of failures.

We demonstrate that coupling between networks introduces dependencies between their dynamical states, 
leading to coupling between control settings adopted by controllers operating in respective layers. Thus actions 
selected by controllers having in mind maximizing benefits and reducing losses in the system they operate 
become affected by each other. The interlayer coupling causes failures to propagate from one system to the other, 
leading to positive or negative side effects, potentially turning the strategy optimal for an individual layer into a 
suboptimal configuration. Additionally this effect is mediated by the density of interlayer connections, where in 
some dynamical configurations high connectivity is beneficial, while in others detrimental to interacting systems.

In this paper we present two control strategies, one where controllers are penalized for departure from the 
critical state and second, where both subcritical and supercritical cascading dynamics is preferred, since both 
those states are characterized by small or infrequent occurrence of failures. Controller’s choice of objectives 
determines optimal configurations for interconnected layers and leads to diametrically different results in both 
cases. In the former case, where critical dynamics is preferred, an individual layer benefits from coupling to 
the other system only when one operator chooses µA < µ∗ , while the second one functions in the regime of 
µB > µ∗ . Thus, we observe that when coupling cascading dynamical systems posed near criticality, the optimal 
configuration is to depart from the critical state µ∗ . However, this optimal state is a parasitic arrangement, since 
only one layer experiences benefits from the interaction. By operating in a subcritical regime, one layer reduces 
frequency of cascades at the expense of experiencing very large rare events. Then, the size and impact of those 
avalanches is further reduced by coupling to a supercritical system. This second layer operates in a regime creating 
small events, and thus any cascade originating in subcritical layer dissipates in the supercritical layer, shedding 
excess load and finally decreasing its impact.

In the second control protocol, controllers no longer have a preference for the critical dynamics, but simply 
want to avoid frequent large cascading events. Here we first consider a single global controller operating in both 
layers simultaneously and equally and we study what happens when one layer breaks down the symmetry. Con-
trary to the former case, the optimal configuration corresponds to a wider range of system parameters, since we 
observe that when µB < µA , layer A operating at any value of µA perceives benefits. However, as in the earlier 
case, the relation is biased and inequitable, illustrating once again the impact of greedy, locally-designed control 
on the system’s performance.

Thus we show that in the interconnected systems, the symmetry and matching of dynamical states is neces-
sary for fairness of the whole configuration. In particular, coupling of a layer operating in a subcritical regime 
with a layer operating in a supercritical zone results in a skewed relation, where one system is at an advantage. 
Therefore, we demonstrate that more global, cooperative control protocols are necessary in networked settings, 
in order to avoid inequality.

Methods
The sandpile dynamics outlined above is evaluated on random regular networks with degree k = 4 . Each network 
has N = 5000 nodes and the dissipation parameter of the sandpile model is set to f = 0.05 . The probability 
distribution of cascade sizes observed in the individual layers is evaluated by iterating the sandpile dynamics for 
2× 106 time steps. At each time step a layer on which a grain of sand is being deposited is chosen at random and 
size of a cascade observed in each layer resulting from that deposition is recorded. The probability distribution 
of cascades observed in layer A (B), P(sA)(P(sB)) , is estimated through logarithmically binned histogram. This 
probability distribution is then used to calculate the average cost according to Eq. (5).
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