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Simple Summary: The aim of our study was to identify metabolites of bacterial origin that play role
in the pathogenesis of breast cancer. We identified indoxylsulfate, a metabolite of the amino acid
tryptophan, as a metabolite with cytostatic properties on breast cancer cells. Cytostatic properties were
dependent on increasing oxidative stress blocking the capacity of cancer cells to migrate, enter blood
vessels and to form metastases. Furthermore, indoxylsulfate reduced the proportions of cancer stem
cells that are highly resistant to chemotherapy and have vital role in initiating recurrence. We identified
that indoxylsulfate exert its effects through the pregnane-X receptor and the aryl-hydrocarbon receptor.
The expression of these receptors decrease with the progression of the disease, furthermore, the
expression of these receptors is low in cases with poor prognosis.

Abstract: Changes to bacterial metabolite-elicited signaling, in oncobiosis associated with breast
cancer, plays a role in facilitating the progression of the disease. We show that indoxyl-sulfate (IS), a
tryptophan metabolite, has cytostatic properties in models of breast cancer. IS supplementation, in
concentrations corresponding to the human serum reference range, suppressed tumor infiltration
to the surrounding tissues and metastasis formation in a murine model of breast cancer. In cellular
models, IS suppressed NRF2 and induced iNOS, leading to induction of oxidative and nitrosative
stress, and, consequently, reduction of cell proliferation; enhanced oxidative and nitrosative stress are
crucial in the subsequent cytostasis. IS also suppressed epithelial-to-mesenchymal transition vital
for suppressing cellular movement and diapedesis. Furthermore, IS rendered cells hypometabolic,
leading to a reduction in aldehyde-dehydrogenase positive cells. Pharmacological inhibition of
the pregnane-X receptor using CH223191 and the aryl-hydrocarbon receptor using ketoconazole
diminished the IS-elicited effects, suggesting that these receptors were the major receptors of IS in
these models. Finally, we showed that increased expression of the human enzymes that form IS
(Cyp2E1, Sult1A1, and Sult1A2) is associated with better survival in breast cancer, an effect that is
lost in triple negative cases. Taken together, IS, similar to indolepropionic acid (another tryptophan
metabolite), has cytostatic properties and higher expression of the metabolic machinery responsible
for the formation of IS supports survival in breast cancer.

Cancers 2020, 12, 2915; doi:10.3390/cancers12102915 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-6997-459X
https://orcid.org/0000-0002-6191-6616
http://dx.doi.org/10.3390/cancers12102915
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/10/2915?type=check_update&version=2


Cancers 2020, 12, 2915 2 of 23

Keywords: breast cancer; microbiome; oncobiome; oncobiosis; indoxylsulfate; EMT; oncometabolism;
cancer stem cell; oxidative stress; nitrosative stress; metastasis

1. Introduction

Oncobiosis refers to the transformation of the microbiome in patients with neoplastic diseases.
Several studies demonstrated oncobiosis in the distal gut [1–18], the breast microbiome [19–24],
and oral and urinary microbiomes [22] in breast cancer patients. A majority of the reports show
decreased diversity in breast cancer patients compared to controls [1–5,8,9,12–15,18]. Antibiotic use
can suppress diversity, and in murine experimental models of breast cancer, the combination of
Vancomycin, Neomycin, Metronidazole, Amphotericin, and Ampicillin aggravated the disease [25,26].
This observation is supported by suggestive supportive evidence in human population studies [27–34].
Furthermore, probiotic treatment may be protective against the incidence of breast cancer [35–38].
These observations suggest that oncobiosis has a role in the pathomechanism of breast cancer.

The molecular mechanism through which oncobiosis contributes to oncogenesis in breast cancer
is poorly characterized. Currently available data suggest that oncobiosis supports carcinogenesis in
breast cancer but has little or no role in initiating oncogenesis. Breast cancer oncobiosis modulates
the immune system, including lymphocytes and mast cells [16,25,32,39–43]. Furthermore, oncobiosis
supports epithelial-to-mesenchymal transition (EMT) [16,17,40,44], migration and invasion [17,40],
the reduction of oxidative stress [40,45], the proportions of ALDH1+ cancer stem cells [17,40], and
widespread metabolic alterations [16,17,40] in cancers cells. These elementary steps are translated into
enhanced tumor growth [16,17], aggressive tumor infiltration to the surrounding tissues [16,17], and
enhanced metastasis formation [16,17,41,46,47].

In addition to their immunomodulatory properties, bacteria can secrete metabolites that are
absorbed from the gut and carried to tumors through the circulation [48,49]. Among these metabolites,
short-chain fatty acids, lithocholic acid, cadaverine, and indole propionic acid, have cytostatic
properties [16,17,40,48,50]. These metabolites have pleiotropic effects and can block multiple
features of the carcinogenic processes. In breast cancer, the metabolic capacity of the microbiome is
suppressed [4,16,17,40,51], suggesting that the production of cytostatic metabolites decrease, probably
resulting in reduced bioavailability of bacterial metabolites in the serum and, consequently, in the
tumor [52].

Indoxyl-sulfate (IS) is a metabolite of tryptophan [53]. Bacterial metabolism converts tryptophan
to indole [53–55], which subsequently enters the systemic circulation. Indole is hydroxylated by
Cyp2e1 and sulfated by SULT1 and SULT2 enzymes in the liver [53]. The resulting IS reenters the
circulation and is excreted through the kidneys. Indole-derivatives can activate the aryl hydrocarbon
receptor [53,56] and the pregnane X receptor [40,57]. Tryptophan catabolism affects breast cancer and
high extracellular tryptophan levels are associated with worse survival in breast cancer (Table S8 [58]).
An indole metabolite, indole propionic acid, has cytostatic properties in breast cancer [40]. In addition,
the indole derivative, IS is downregulated both in estrogen receptor-positive and -negative cases ([59];
Additional File 3; Table S3, line 44). Furthermore, in breast tumors, there is a negative correlation
between Ki67 positivity (a proliferation marker) and IS levels ([59]; Additional File 9; Table S8, line 130).
These data suggest that the involvement of IS in breast cancer is likely. Therefore, we assessed the
molecular determinants of IS in the development of breast cancer.

2. Results

2.1. Indoxyl Sulfate Reduces the Severity of Breast Cancer In Vivo

Balb/c female mice were grafted with 4T1 breast cancer cells. Half of the mice received vehicle
(sterilized tap water) as a control, while the other half received IS (2 µmol/kg bodyweight). The IS dose
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corresponds to a 4 µM serum concentration similar to the serum reference range of IS in humans [60].
Per os IS treatment did not inhibit tumor growth (Figure 1A–C), however, IS significantly reduced the
infiltration of the primary tumor to the surrounding tissues (Figure 1D). Furthermore, IS treatment
reduced the number and mass of metastases (Figure 1E–G). Histology of the primary and the metastatic
tumors were not different (Figure 1H).
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rates into the surrounding tissues were scored. (E) The number of mice with metastases (10 mice were 
in each group), (F) the total mass of metastases, and (G) the individual mass of metastases are shown. 
(H) Typical hematoxilin-eosine stained histology sections are displayed. Scale bar equals 40 µm. 
Numerical values are represented as mean ± SEM. Statistical significance was calculated using 
Student’s t-test (two-tailed) except for panel D, where a Chi-square test was used. * and *** indicate 
statistically significant differences between vehicle and IS groups at p < 0.05 and p < 0.001, respectively. 
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Figure 1. Indoxyl-sulfate (IS) treatment in tumor-bearing mice reduces the infiltration capacity of
tumors to the surrounding tissues and reduces metastatic capacity. Female Balb/c mice were grafted
with 4T1 cells and treated with IS (2 µmol/kg q.d. p.o.) or vehicle (VEH) (n = 10/10) for 14 days before
sacrifice. Upon autopsy, (A) the total number of primary tumors (20 mice were in each group) and
the (B) total and (C) individual mass of primary tumors were measured. (D) The tumor infiltration
rates into the surrounding tissues were scored. (E) The number of mice with metastases (10 mice
were in each group), (F) the total mass of metastases, and (G) the individual mass of metastases are
shown. (H) Typical hematoxilin-eosine stained histology sections are displayed. Scale bar equals
40 µm. Numerical values are represented as mean ± SEM. Statistical significance was calculated using
Student’s t-test (two-tailed) except for panel D, where a Chi-square test was used. * and *** indicate
statistically significant differences between vehicle and IS groups at p < 0.05 and p < 0.001, respectively.
The whole western blot images of Figure 1 please find in Supplementary Materials Figure S1.

2.2. Indoxyl Sulfate Treatment Inhibits the Proliferation of Breast Cancer Cells

IS, similar to other cytostatic metabolites [16,17,40,45,61,62], reduced proliferation in multiple
cell lines (SRB assays in 4T1, MCF7, SKBR-3, MDA-MB-231, ZR75-1) at lower concentrations
(Figure 2A). The anti-proliferative effects were confirmed in 4T1 cells using clonogenic assays (Figure 2B).
The proportions of apoptotic and necrotic cells in culture did not change significantly after treating
with IS concentrations corresponding to the human reference concentrations (Figure 2C). IS had no
effects on non-transformed, primary human-skin-derived fibroblasts (Figure 2D).
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Figure 2. IS has cytostatic properties without affecting cell death. (A) 4T1 (1500 cells/well), MCF7
(4000 cells/well), SKBR-3 (5000 cells/well), MDA-MB 231 (3000 cells/well), ZR75-1 (3000 cells/well)were
seeded in 96-well plates and treated with IS at the concentrations indicated for 24 h. Total protein
content was evaluated using Sulphorhodamine B assays (n = 3). (B) 4T1 cells (500 cells/well) were
seeded in six-well plates and treated with IS at the indicated concentrations for seven days. Colonies
were stained according to May-Grünwald-Giemsa and counted using ImageJ software (n = 3). (C) 4T1
(75,000 cells/well); MCF7 (150,000 cells/well); SKBR-3 (200,000 cells/well), cells were treated with IS in
the concentrations indicated for 24 h. The ratios of necrotic and apoptotic cells were determined by
double staining with propidium-iodide and FITC Annexin, using the V/Dead Cell Apoptosis Kit, and
subjected to flow cytometry (n = 3). (D) Human fibroblasts (7500 cells/well) were seeded in 96-well
plates and treated with IS at the concentrations indicated for 24 h. Total protein content was evaluated
using Sulphorhodamine B assays (n = 3). (E) Human fibroblasts (200,000 cells/well) were seeded
in 6-well plates and treated with the indicated concentrations of IS for 24 h. The ratios of necrotic
and apoptotic cells were determined by double staining with propidium-iodide and FITC Annexin,
using the V/Dead Cell Apoptosis Kit, and subjected to flow cytometry (n = 3). Numerical values are
represented as mean ± SEM. Fold data were log2 transformed to achieve normal distribution. Statistical
significance was determined on panel (A,B,D) by one-way ANOVA followed by Dunnett’s post-hoc
tests; all samples were compared to controls. On panels C, and E two-way ANOVAs were conducted
followed by Tukey’s post-hoc tests. *, **, and *** indicate statistically significant differences between
control and treated samples at p < 0.05, p < 0.01, and p < 0.001, respectively.

2.3. Indoxyl Sulfate Inhibits Numerous Hallmarks of Cancer

We assessed whether IS can modulate cancer hallmarks that were modulated by other cytostatic
bacterial metabolites [16,17,41,47,61–65]. First, we assessed oxidative/nitrosative stress markers, as
these are major regulators of cancer hallmarks and cancer progression [66–70]. Levels of thiobarbituric
acid-reactive substances (TBARS) and 4-hydroxynonenal (4HNE), both markers of lipid oxidative
damage, increased when cells were treated with IS (Figure 3A,B). Next, we assessed nitro-tyrosine
(NTyr) levels that indicate protein damage and nitrosative stress [71,72]. NTyr levels were induced
by IS treatment (Figure 3C) suggesting increased damage to cells by reactive species and damage to
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cellular lipids and proteins. These changes correlated with the increased expression of inducible nitric
oxide synthase (iNOS) (Figure 3D) and the decreased expression of glutathione peroxidase 2 and 3
(GPX1 and GPX3), superoxide dismutase 3 (SOD3), and catalase (cat) (Figure 3D,E).
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Figure 3. Indoxyl sulfate treatment induces oxidative and nitrosative stress. (A) 4T1 cells
(500,000 cells/well) were treated with IS at the concentrations indicated for 24 h. Lipid peroxidation was
measured using TBARS assays (n = 3) and (B) 4HNE expression was determined by Western blotting
(representative figure, n = 3). (C) Nitrotyrosine was detected by Western blotting (representative
figure, n = 3). In the same cells (D) the protein levels of iNOS and NRF2 were determined by Western
blotting (representative figure, n = 3). (E) The mRNA expression levels of the indicated genes were
determined by RT-qPCR (n = 3). Numerical values are represented as mean ± SEM. Fold data were
log2 transformed to achieve normal distribution. Statistical significance was determined using ANOVA
followed by Dunnett’s post-hoc test, where all values were compared to control. *, **, and *** indicate
statistically significant differences between control and treated samples at p < 0.05, p < 0.01, and p < 0.001,
respectively. Abbreviations: thiobarbituric acid reactive substances (TBARS); 4-hydroxynoneal (4HNE);
nitro-tyrosine (NTyr); inducible nitric oxide synthase (iNOS); nuclear factor 2 (NRF2); glutathione
peroxidase 2 (GPX2); glutathione peroxidase 3 (GPX3); superoxide dismutase 3 (SOD3); catalase (CAT).
For 4HNE and NTyr blots whole lanes were subject to densitometry, while for iNOS, NRF2 and actin
the bands of interest was subject to densitometry. The whole western blot images of Figure 3 please
find in Figure S1.

The 4T1 cells reverted the epithelial-to-mesenchymal transition (EMT) after IS treatment, evidenced
by dose-dependent conversion of 4T1 cells to epithelial morphology (Figure 4A), coinciding with
increased resistance (Figure 4B). In good agreement with these findings, the mRNA and protein
expression of mesenchymal markers (vimentin (Vim), fibroblast growth factor-binding protein 1
(Fgfbp1), transforming growth factor beta-3 (Tgfb3), matrix metalloproteinase 9 (MMP9), snail family
transcriptional repressor-1 (SnaiI), and β-catenin decreased, while the expression of epithelial markers
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(E-cadherin and tight junction protein-1 (ZO-1) increased (Figure 4C,D). In addition, cells migrated
less in a Boyden-chamber experiment (Figure 4E).
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AMPK phosphorylation or FOXO1 expression (Figure 5B). AMPK activation upon IS treatment was 
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Figure 4. IS treatment induces mesenchymal-to-epithelial transition and blocks cellular migration.
(A) 4T1 cells (100,000 cells/well) were treated with IS in the concentrations indicated for 24 h then cellular
morphology was observed using Texas Red-X Phalloidin and DAPI staining (representative figure,
n = 3). Scale bar corresponds to 25 µm. (B) Total impedance was measured by ECIS (representative
figure, mean ± SD, n = 1). (C,D) After IS treatment of 4T1 cells, the expressions of the indicated genes
were determined using (C) RT-qPCR (n = 3) and (D) Western blotting (representative figure, n = 3).
β-actin was used as a loading control. (E) 4T1 cells (50,000 cells/well) were treated with the indicated
concentration of IS for 24 h and, subsequently, the percentages of migrated cells were determined
using a Corning Matrigel invasion chamber (n = 3). Cells were counted by the Opera Phoenix High
Content Screening System using Harmony 4.6 Software (Perkin-Elmer, Waltham MA, USA). Numerical
values are represented as mean ± SEM, except for panel B, where mean ± SD was plotted. Statistical
significance was determined using ANOVA followed by Dunnett’s post-hoc tests, except for panel A,
where a Chi-square test was conducted. For Dunnett’s tests, all comparisons were made to controls. *,
**, and *** indicate statistically significant differences between control and treated samples at p < 0.05,
p < 0.01, and p < 0.001, respectively.

IS treatment had a profound effect on cellular metabolism. IS treatment reduced extracellular
acidification rate (ECAR) rendering cells hypometabolic and metabolically less flexible (Figure 5A).
Surprisingly, the hypometabolic switch coincided with the induction of key energy sensors, including
AMPK phosphorylation or FOXO1 expression (Figure 5B). AMPK activation upon IS treatment was
marked by phosphorylation of its alpha subunit on Thr172 and the phosphorylation of a key AMPK
target protein, ACC on Ser79 (Figure 5B). Finally, the proportions of ALDH1-positive cancer stem
cells decreased upon treatment with IS (Figure 5C), a feature that is linked to changes in cellular
metabolism [73,74].
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Figure 5. IS treatment renders cells metabolically less flexible and reduces the proportions of
ALDH1-positive cells. (A) 4T1 cells (2000 cells/well) were treated with IS in the concentrations
indicated for 24 h then cells were subjected to a Seahorse XF96 analysis. The mitochondrial oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) were measured and plotted
(n = 3). (B) The expression levels of the indicated proteins were determined by Western blotting
(n = 3). β-actin was used as a loading control. (C) 4T1 cells (100,000 cells/well) were treated with the
indicated concentration of IS for 24 h then the proportions of aldehyde dehydrogenase-positive cells
were measured by Aldefluor assay using flow cytometry (n = 3). Numerical values are represented as
mean ± SEM. Fold data were log2 transformed to achieve normal distribution. Statistical significance
was determined using ANOVA followed by Dunnett’s post-hoc tests, except for C panel, where a
Student’s t-test (two-tailed) was used. For the Dunnett’s post-hoc tests, all comparisons were made to
controls. *, **, and *** indicate statistically significant differences between control and treated samples
at p < 0.05, p < 0.01, and p < 0.001, respectively. Abbreviations: phospho-AMP-activated protein kinase
(pAMPK); AMP-activated protein kinase (AMPK); phospho-Acetyl Co-A Carboxylase (pACC); Acetyl
Co-A Carboxylase (ACC) and Forkhead box protein O1 (FOXO1). The whole western blot images of
Figure 5 please find in Figure S1.

2.4. IS Exerts Its Effects through the AHR and PXR Receptors

As the next step, we wanted to assess which receptors are responsible for the IS-elicited
effects. Indoxyl derivatives exert their effects through the aryl hydrocarbon receptor (AHR) and
pregnane-X-receptor (PXR) [53]. We applied pharmacological inhibitors to interrogate the involvement
of AHR and PXR in IS signaling. The AHR inhibitor, CH223191, and the PXR inhibitor, ketoconazole,
were applied [75,76]. Both CH223191 and ketoconazole blocked IS-elicited mesenchymal-to-epithelial
transition (Figure 6A). Inhibition of AHR and PXR also attenuated the IS-induced increases in TBARS
(Figure 6B). In addition, IS-induced expression of E-cadherin was blocked by CH223191, but not by
ketoconazole (Figure 6C). In contrast, the phosphorylation of ACC and AMPK was blocked by both
agents (Figure 6C).

2.5. Higher Expression of the Isoforms of SULT and Cyp2e1 Correlate with Better Survival in Breast Cancer

Previously, we showed that higher expression of AHR and PXR, the receptors for IS prolong
survival in breast cancer patients [40]. Subsequently, we assessed how the expression of IS biosynthesis
enzymes affect the survival of breast cancer patients. To that end, we assessed an online database,
kmplot.com [77]. Higher expression of Cp2E1 and Sult1A1 and Sult1A2 in tumors correlated with
better survival in breast cancer patients (Figures 7 and 8, Tables 1–3). Furthermore, similar to other
bacterial cytostatic metabolites [16,17,40,45], the protective effect was lost in triple negative cases
(TNBC) (Figures 7 and 8, Tables 1–3).
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Figure 6. Pharmacological inhibition of aryl hydrocarbon receptor (AHR) and pregnane-X-receptor
(PXR) block IS-elicited antineoplastic effects. (A) 4T1 cells (100,000 cells/well) were treated with IS in
the concentrations indicated for 24 h with or without the inhibitors, as indicated. The actin cytoskeleton
and nuclei were stained using Texas Red-X Phalloidin and DAPI, then the morphology was assessed
using Leica PP8 confocal system (representative figure, n = 3). On the same cells, (B) lipid peroxidation
(TBARS assays) (n = 3) was measured. (C) Expression of the indicated proteins was determined by
Western blotting (representative figure, n = 3). β-actin was used as a loading control. Numerical values
are represented as mean ± SEM. Fold data were log2 transformed to achieve normal distribution.
Statistical significance was determined using ANOVA followed by Dunnett’s post-hoc tests, except for
panel C, where a Student’s t-test (two-tailed) was used. For Dunnett’s tests, all comparisons were made
to controls. *, **, and *** indicate statistically significant differences between control and treated samples
at p < 0.05, p < 0.01, and p < 0.01, respectively. Abbreviations: non-significant (ns); PXR inhibitor (PXRi);
AHR inhibitor (AHRi); phospho-AMP-activated protein kinase (pAMPK); AMP-activated protein
kinase (AMPK); phospho-Acetyl Co-A Carboxylase (pACC); Acetyl Co-A Carboxylase (ACC).
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Figure 7. Higher expression of Cyp2E1 prolongs survival in breast cancer patients. The effect of
expression of Cyp2E1 on survival in breast cancer was analyzed by kmplot.com, a freely accessible
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Figure 8. Higher expression of Sult1A1 or Sult1A2 prolongs survival in breast cancer patients. The
effect of expression of Sult1A1 and Sult1A2 on survival in breast cancer was analyzed by kmplot.com, a
freely accessible database. The data depicted stems from data acquired from microarray experiments
and patients were stratified as a function of receptor expression. Total survival rates were assessed, and
all samples are represented. The database was assessed on 30 March 2020.



Cancers 2020, 12, 2915 10 of 23

Table 1. The number of patients at risk for Figures 7 and 8. Values were obtained from the kmplot.com
database. The database was accessed on the 30 March 2020.

Patient Group Probe
Time (Months)

HR
0 50 100 150 200 250

All cancers

CYP2E1 low 2012 1176 505 139 23 3 0.72
1431_at high 1939 1343 570 102 4 0 (0.65–0.8)
CYP2E1 low 1980 1177 482 133 16 2 0.68

209975_at high 1971 1342 593 108 11 1 (0.61–0.76)
CYP2E1 low 2091 1360 633 160 23 2 0.96

209976_s_at high 1860 1159 442 81 4 1 (0.86–1.07)
CYP2E1 low 1984 1171 487 113 12 0 0.78

222100_at high 1967 1348 588 128 15 3 (0.7–0.87)
SULT1A1 low 1979 1160 472 141 20 3 0.75

203615_x_at high 1972 1359 603 100 7 0 (0.67–0.83)
SULT1A1 low 1976 1150 463 139 22 3 0.77

215299_x_at high 1975 1369 612 102 5 0 (0.69–0.86)
SULT1A2 low 1979 1133 427 130 18 3 0.7

207122_x_at high 1972 1386 648 111 9 0 (0.63–0.78)
SULT1A2 low 1976 1149 440 133 18 3 0.73

211385_x_at high 1975 1370 635 108 9 0 (0.66–0.82)

ER+ cases

CYP2E1 low 1542 1004 436 125 19 3 0.78
1431_at high 1540 1112 483 76 3 0 (0.69–0.89)
CYP2E1 low 1542 1019 430 119 15 2 0.74

209975_at high 1540 1097 489 82 7 1 (0.65–0.85)
CYP2E1 low 1622 1125 531 130 19 2 0.94

209976_s_at high 1460 991 388 71 3 1 (0.83–1.07
CYP2E1 low 1606 1052 451 106 13 1 0.82

222100_at high 1476 1064 468 95 9 2 (0.72–0.93)
SULT1A1 low 1542 1021 428 123 15 3 0.84

203615_x_at high 1540 1095 491 78 7 0 (0.74–0.96)
SULT1A1 low 1542 1009 421 123 17 3 0.87

215299_x_at high 1540 1107 498 78 5 0 (0.76–0.98)
SULT1A2 low 1542 999 392 117 17 3 0.76

207122_x_at high 1540 1117 527 84 5 0 (0.67–0.86)
SULT1A2 low 1541 1004 390 111 16 3 0.81

211385_x_at high 1541 1112 529 90 6 0 (0.71–0.92)

Triple negative
cases

CYP2E1 low 99 41 10 2 0 0.85
1431_at high 99 42 9 0 0 (0.52–1.37)
CYP2E1 low 100 46 6 2 0 0.96

209975_at high 98 37 13 0 0 (0.59–1.55)
CYP2E1 low 99 33 5 0 0 0.8

209976_s_at high 99 50 14 2 0 (0.49–1.3)
CYP2E1 low 99 42 12 2 0 1.17

222100_at high 99 41 7 0 0 (0.72–1.9)
SULT1A1 low 100 41 10 2 0 0.98

203615_x_at high 98 42 9 0 0 (0.61–1.59)
SULT1A1 low 99 40 5 2 0 1.18

215299_x_at high 99 43 14 0 0 (0.72–1.91)
SULT1A2 low 99 46 14 2 0 1.34

207122_x_at high 99 37 5 0 0 (0.83–2.19)
SULT1A2 low 99 42 12 2 0 1.06

211385_x_at high 99 41 7 0 0 (0.66–1.72)

The effects of Cyp2E1 expression on survival in breast cancer were analyzed by kmplot.com,
a freely accessible database. Total survival rates were assessed, and all samples are represented in
different subpopulations of breast cancer. Numbers in bold represent statistically significant results.
The database was accessed on the 30 March 2020.

The effects of Sult isoform expression on survival in breast cancer were analyzed by kmplot.com,
a freely accessible database. Total survival rates were assessed, and all samples are represented in
different subpopulations of breast cancer. Numbers in bold represent statistically significant results.
The database was accessed on the 30 March 2020.
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Table 2. Link between Cyp2E1 expression and breast cancer patient survival.

Patient Group CYP2E1 (1431_at) CYP2E1
(209975_at)

CYP2E1
(209976_s_at)

CYP2E1
(222100_at)

HR p-Value HR p-Value HR p-Value HR p-Value

All breast Cancers n = 3951 0.72 *** 0.68 *** 0.96 0.460 0.78 ***
ER(+), PR(+), n = 577 1.29 0.170 1.02 0.920 0.76 0.140 0.84 0.340
ER(−), PR(−), n = 298 1.06 0.770 1.23 0.300 1.05 0.820 1.04 0.830

ER(−), PR(−), HER2(−) n = 198 0.80 0.500 0.96 0.860 0.80 0.370 1.17 0.520
ER(+), Luminal A, n = 1933 0.76 ** 0.68 *** 0.99 0.920 0.81 *

ER(+), Luminal A, Grade 1, n = 267 0.97 0.920 1.38 0.300 0.81 0.520 1.27 0.450
ER(+), Luminal B, n = 1149 0.79 * 0.81 0.030 0.87 0.160 0.74 **

ER(+), Luminal B, Grade1 n = 56 1.46 0.530 1.04 0.950 0.83 0.770 1.24 0.720
Grade1, n = 345 1.02 0.940 1.15 0.590 0.76 0.310 1.22 0.450
Grade2, n = 901 1.13 0.330 1.13 0.310 0.94 0.640 0.74 *
Grade3, n = 903 0.93 0.54 0.94 0.56 1.11 0.330 0.85 0.16

Basal subtype, n = 618 0.59 *** 0.62 *** 0.89 0.360 0.91 0.470
Luminal A, n = 1933 0.76 ** 0.68 *** 0.99 0.920 0.81 *
Luminal B, n = 1149 0.79 * 0.81 * 0.87 0.160 0.74 **

ER(+), HER2(+), n = 156 1.25 0.470 1.69 0.093 1.14 0.670 1.26 0.460
ER(−), HER2(+), n = 96 1.37 0.320 1.58 0.150 1.78 0.068 0.81 0.510

ER(+), PR(+),Lymph(+) n = 344 1.41 0.120 1.05 0.810 0.80 0.310 1.02 0.930
ER(+), PR(+),Lymph(−) n = 228 0.81 0.560 1.06 0.870 0.76 0.400 0.44 *
ER(−), PR(−),Lymph(+) n = 127 1.26 0.390 1.08 0.780 1.16 0.580 1.21 0.470
ER(−), PR(−),Lymph(−) n = 167 1.00 1.000 1.11 0.740 0.96 0.900 1.32 0.370

ER(+), Luminal A, Grade 2, n = 567 0.91 0.580 1.13 0.460 1.01 0.970 0.89 0.480
ER(+), Luminal B, Grade2 n = 253 0.65 0.051 0.82 0.360 0.46 ** 0.59 *

ER(+) n = 3082 0.78 *** 0.74 *** 0.94 0.3382 0.82 **

HR—hazard ratio. The p values were calculated using a Log Rank test. *, **, and *** indicate statistically significant
differences between the lowest and the highest quartile at p < 0.05, p < 0.01, and p < 0.01, respectively.

Table 3. Link between SultA1 expression, SultA2 expression, and breast cancer patient survival.

Gene SULT1A1
(203615_x_at)

SULT1A1
(215299_x_at)

SULT1A2
(207122_x_at)

SULT1A2
(211385_x_at)

Patient Group
HR

(Hazard
Ratio)

p-Value
(Log
Rank
Test)

HR
(Hazard
Ratio)

p-Value
(Log
Rank
Test)

HR
(Hazard
Ratio)

p-Value
(Log
Rank
Test)

HR
(Hazard
Ratio)

p-Value
(Log
Rank
Test)

All breast Cancers n = 3951 0.72 *** 0.77 *** 0.70 *** 0.73 ***
ER(+), PR(+), n = 577 1.16 0.430 1.19 0.330 1.18 0.370 1.22 0.270
ER(−), PR(−), n = 298 1.37 0.120 1.42 0.085 1.34 0.140 1.24 0.280

ER(−), PR(−), HER2(−) n = 198 0.98 0.940 1.18 0.510 1.34 0.230 1.06 0.810
ER(+), Luminal A, n = 1933 0.86 0.092 0.93 0.399 0.78 ** 0.70 **

ER(+), Luminal A, Grade 1, n = 267 0.83 0.560 1.59 0.150 1.01 0.960 1.13 0.700
ER(+), Luminal B, n = 1149 0.84 0.075 0.83 0.064 0.68 *** 0.84 0.078

ER(+), Luminal B, Grade1 n = 56 0.91 0.870 0.89 0.850 1.31 0.660 1.43 0.550
Grade1, n = 345 0.94 0.810 1.32 0.300 1.17 0.560 1.14 0.630
Grade2, n = 901 0.96 0.730 1.09 0.500 0.84 0.170 0.91 0.430
Grade3, n = 903 1.02 0.860 1.00 1.000 0.94 0.58 1.04 0.74

Basal subtype, n = 618 0.72 * 0.85 0.210 0.73 * 0.75 *
Luminal A, n = 1933 0.86 0.092 0.93 0.400 0.78 ** 0.77 **
Luminal B, n = 1149 0.84 0.075 0.83 0.064 0.68 *** 0.84 0.078

ER(+), HER2(+), n = 156 1.24 0.490 1.13 0.690 0.96 0.900 1.18 0.600
ER(−), HER2(+), n = 96 1.47 0.230 1.40 0.300 1.31 0.390 1.05 0.880

ER(+), PR(+),Lymph(+) n = 344 1.29 0.240 1.23 0.340 1.26 0.290 1.21 0.380
ER(+), PR(+),Lymph(−) n=228 0.89 0.720 0.87 0.680 1.08 0.820 1.33 0.380

ER(−), PR(−),Lymph(+) n = 127 1.54 0.110 1.22 0.470 1.32 0.310 1.25 0.400
ER(−), PR(−),Lymph(−) n = 167 1.41 0.270 1.10 0.760 1.39 0.290 1.12 0.720

ER(+), Luminal A, Grade 2, n = 567 1.12 0.500 1.51 * 0.92 0.620 1.06 0.720
ER(+), Luminal B, Grade2 n = 253 0.68 0.076 0.63 * 0.78 0.240 0.76 0.200

ER(+) n = 3082 0.84 ** 0.87 * 0.76 *** 0.81 ***

HR—hazard ratio. The p values were calculated using a Log Rank test. *, **, and *** indicate statistically significant
differences between the lowest and the highest quartile at p < 0.05, p < 0.01, and p < 0.01, respectively.
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3. Discussion

In this study, we identified a novel bacterial metabolite, IS, that possesses cytostatic features in breast
cancer, similar to the short-chain fatty acids [61,62], lithocholic acid [16,45,50,78–81], cadaverine [17,51],
and indole propionic acid [40]. Despite the conflicting results, the majority of breast cancer
microbiome studies show suppressed diversity and biosynthetic capacity in breast cancer-associated
oncobiosis [1–5,8,9,12–15,48], leading to limited biosynthetic capacity that lowers the level of protective
bacterial metabolites in patients [16,52]. Lower biosynthetic capacity is associated with ER cases [40,51]
or triple negative cases [9,12,13] that have worse clinical outcomes. In addition, the application
of antibiotics, which suppress microbial diversity, increases the risk for breast cancer in human
and animal studies [25–34,82]. On the other hand, probiotic treatment, which enriches the gut
microbiome, decreases the incidence of breast cancer [35–38]. These results demonstrate that oncobiotic
transformation in breast cancer has pathological relevance that is further supported by nutritional
studies [83]. We have previously shown that the indole-derivative biosynthetic capacity is suppressed
the most in the early stages of breast cancer (in situ carcinoma and stage 1) [40].

Previously, we showed that tryptophan catabolism is suppressed in breast cancer [40]. Suppressed
tryptophan catabolism is associated with worse survival in human breast cancer (Table S8) [58].
Furthermore, IS was shown to be downregulated in breast cancer patients ([59]; Additional File 3;
Table S3, line 44) and there is a negative correlation between the Ki67 positivity (proliferation) and
3-indoxyl sulfate levels ([59]; Additional File 9; Table S8, line 130). Taken together, the results presented
here can be translated to human breast cancer, whereby, IS production is suppressed in breast cancer
patients and is associated with poor outcomes.

IS exert its effects through the AHR and PXR receptors [53], and AHR seems to be the more
dominant receptor. Indolepropionic acid, another tryptophan metabolite with cytostatic effects in
breast cancer, seems to have more balanced effects on both receptors [40]. Lower AHR and PXR
expression correlate with higher disease stage, grade, and enhanced mitotic activity in the tumor [40].
Apparently, indole-induced signaling is gradually lost as breast cancer evolves.

IS administration reduces cell proliferation, infiltration into the surrounding tissues, and metastasis
formation in cellular and animal models. This feature is a common trait for other cytostatic metabolites
in breast cancer [16,17,40,45,50,51,61,62,78–81]. At the same time, IS did not affect non-transformed
cells, again a common trait for bacterial cytostatic metabolites in breast cancer [16,17,40,78], suggesting
that these metabolites have tumor cell-specific effects.

The underlying molecular mechanism involved in IS effects on tumor progression is the reversal of
the epithelial-to-mesenchymal transition, similar to other metabolites [16,17,40,41,44,45,47]. Reverting
or inhibiting EMT slows cell movement, diapedesis, and metastasis formation, as was observed in our
study. In conjunction with the decreased EMT, we observed decreased expression of mesenchymal
markers (Vim, Fgfbp1, Tgfb3, MMP9, SnaiI, β-catenin) and a concomitant upregulation in epithelial
markers (E-cadherin and ZO-1). Suppressed EMT may be the leading cause of the suppressed cellular
movement, diapedesis, and metastasis formation.

We also observed increased oxidative and nitrosative stress due to increased iNOS expression
and suppressed NRF2 activation. These changes are key elements for cytostasis in breast cancer, and
occur with the indole derivative, indole propionic acid, also [45,69,84–86]. Increases in reactive species
suppress the proportions of cancer stem-cells [73,87–89] and contribute to cytostasis [40,45]. Very likely,
the metabolic alterations also contribute to cytostasis and to suppressing cancer stem cells [73,74,90].

From a broader perspective, our findings fit the puzzle of the pathomechanism of human breast
cancer, as tryptophan and indole metabolism are tightly related to breast cancer and breast cancer
survival [40,91,92]. Previously we showed that bacterial tryptophan metabolism is suppressed in early
stages of breast cancer, releasing the brake on breast cancer cells [16,17,40]. In that sense, IS behaves
similar to other cytostatic metabolites [16,17,25,32,39–43,45,46]. Of note, in addition to the loss of
cytostatic properties, the breast cancer oncobiome has an increased capacity for reactive estrogens
and increase estrogen enterohepatic circulation [1,93]. Consequently, parent estrogens, estrone and
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estradiol, boost cell proliferation, and their catechol-quinone metabolites cause oxidative DNA damage
and mutagenesis [94]. Taken together, the oncobiome seems to have a role primarily in breast carcinoma
progression, but little or no role in the initiation of the disease.

4. Materials and Methods

All methods were performed according to the relevant guidelines.

4.1. Chemicals

All chemicals, including IS and ketoconazole, were from Sigma-Aldrich (St. Louis, MI, USA)
unless otherwise stated. IS was used at concentrations of 2 µM and 4 µM, which correspond to the
normal human serum concentration of IS [53,95,96]. The aryl hydrocarbon receptor (AHR) inhibitor,
CH223191, was obtained from MedChemExpress (MCE, Monmouth Junction, NJ, USA) and was
applied at a concentration of 10 µM. Pregnane X receptor (PXR) downstream signaling was inhibited
using ketoconazole at a final concentration of 25 µM [75,76].

4.2. Cell Culture

The 4T1 murine breast cancer cells were maintained in RPMI-1640 (Sigma-Aldrich, R5886) medium
containing 10% FBS, 1% penicillin/streptomycin, 2 mM L-glutamine, and 1% pyruvate at 37 ◦C with 5%
CO2. MCF7 human breast cancer cells were maintained in MEM (Sigma-Aldrich, M8042) medium
containing 10% FBS, 1% penicillin/streptomycin, and 2 mM L-glutamine at 37 ◦C with 5% CO2. SKBR-3
human breast cancer cells were maintained in DMEM (Sigma-Aldrich, 1000 mg/L glucose, D5546)
medium containing 10% FBS, 1% penicillin/streptomycin, and 2 mM L-glutamine at 37 ◦C with 5% CO2.
ZR75-1 human breast cancer cells were maintained in RPMI-1640 (Sigma-Aldrich, R5886) medium
containing 10% FBS, 1% penicillin/streptomycin, and 2 mM L-glutamine at 37 ◦C with 5% CO2. Human
primary fibroblasts cells were maintained in DMEM (Sigma-Aldrich, 1000 mg/L glucose, D5546)
medium containing 20% FBS, 1% penicillin/streptomycin, and 2 mM L-glutamine at 37 ◦C with 5% CO2.

4.3. In Vitro Cell Proliferation Assays

Cellular proliferation was assessed using Sulphorhodamine B (SRB) and colony forming assays as
described in Miko et al. and Fodor et al. [16,97]. Cells were seeded in 96-well plates (4T1, 1500 cells/well;
MDA-MB-231, 3000 cells/well; SKBR-3, 5000 cells/well; MCF7, 4000 cells/well; ZR75-1, 3000 cells/well;
human fibroblast, 7500 cells/well) in complete medium and were cultured with different concentrations
of IS for 24 h. Then, cells were fixed by the addition of 50% trichloroacetic acid (TCA, final concentration:
10%) and the plates were incubated for 1 h at 4 ◦C. Plates were washed five times in water and stained
with 0.4% (w/v) SRB solution in 1% acetic acid. Unbound dye was removed by washing five times with
1% acetic acid. Bound stain was solubilized with 10 mM Tris base and the absorbance was measured
on an automated plate reader (Thermo Labsystems Multiskan MS, Walthman, MA, USA) at 540 nm.

For colony forming assays, cells were seeded in six-well plates (4T1, 500 cells/well) and treated
with the indicated concentrations of IS for seven days. After treatment, the plates were washed
twice with PBS. Colonies were fixed in methanol for 15 min, dried, and stained with the solution of
May-Grünwald-Giemsa for 20 min. Plates were washed with water and the colonies were counted
using Image J software [98].

4.4. Detection of Cell Death

IS induced cytotoxicity was assessed by simple propidium iodide (PI; Biotium, Fremont, CA,
USA, 40016) uptake assays, as described in Kovacs et al. [17]. Cells were seeded in six-well plates
(4T1, 75,000 cells/well; MCF7, 150,000 cells/well; SKBR-3, 200,000 cells/well; human fibroblasts,
200,000 cells/well) and treated with the indicated concentrations of IS for 24 h followed by staining
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with 100 µg/mL PI for 30 min at 37 ◦C. Adherent cells and supernatants were collected in FACS tubes,
washed once with PBS, and analyzed by flow cytometry (FACS Calibur, BD Biosciences).

To evaluate changes in necrotic and apoptotic cell death, we used an Annexin V+PI double
staining assay kit (Invitrogen, Carlsbad, CA, USA, V13242). Cells were seeded in six-well plates
(4T1, 75,000 cells/well; MCF7, 150,000 cells/well; SKBR-3, 200,000 cells/well; human fibroblast,
200,000 cells/well) and treated with the indicated IS concentrations for 24 h. Then, the collected cells
were stained with 100 µg/mL PI solution and 5 µL FITC Annexin V, according to the manufacturer’s
instructions. The numbers of apoptotic and necrotic cells were measured using a FACS Calibur
flow cytometer.

4.5. Electric Cell-Substrate Impedance Sensing (ECIS)

ECIS measurements (ECIS model Zθ, Applied BioPhysics Inc., Troy, NY, USA) were used to
monitor cell-to-cell and cell-to-surface connections. The 4T1 cells were seeded (40,000 cells/well) on
type 8W10E arrays. Cells were treated with vehicle or 2 µM or 4 µM IS for 20 h and total impedance
values were measured for 24 h. Multi-frequency measurements were taken at 62.5, 125, 250, 500, 1000,
2000, 4000, 8000, 16,000, 32,000, and 64,000 Hz. The reference well was set to a no-cell control with
complete medium. ECIS assays were performed similar to Miko et al. [16].

4.6. Immunocytochemistry

Immunocytochemistry was performed similarly to Miko et al. [16]. The 4T1 cells were grown on
glass coverslips for one day and treated with the indicated concentrations of IS and the AHR inhibitor,
CH223191 (10 µM), or the PXR inhibitor, ketoconazole (25 µM), for 24 h. Then, cells were washed
with PBS, fixed with 4% paraformaldehyde for 15 min, and permeabilized using 1% Triton X-100 in
PBS for 5 min. Cells were then blocked with 1% BSA in PBS for 1 h and incubated with TexasRed-X
Phalloidin (T7471, 1:150, Invitrogen, Carlsbad, CA, USA) for 1 h at 4 ◦C. Cell nuclei were visualized
with DAPI (R37606, 1:10, Thermo Fischer Scientific Inc., Rockford, IL, USA) and rinsed in PBS twice
for 10 min. Coverslips were mounted in Mowiol/Dabco solution. Confocal images were acquired
with a Leica TCS SP8 confocal microscope and were processed using LAS AFv3.1.3 software (Wetzlar,
Germany). Typical mesenchymal-like and epithelial-like morphology of 4T1 cells are represented in
Figures 4A and 6A and in Miko et al. [16]. Epithelial-type cells are more round in shape with the
actin cytoskeleton localized below the cell membrane. Mesenchymal-type are elongated, the actin
cytoskeleton is organized into fibers aligning with the longer axis of the cell.

4.7. mRNA Preparation and Quantitation

Reverse transcription-coupled PCR (RT-qPCR) was performed similar to Szanto et al. [99]. Total
RNA from cells was prepared using TRIzol reagent according to the manufacturer’s instructions
(Invitrogen Corporation, Carlsbad, CA, USA). For assessing the expression of the indicated genes,
2 µg of RNA was reverse transcribed using High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, USA). The qPCR reactions were carried out with the qPCRBIO syGreen
Lo-ROX Supermix (PCR Biosystems Ltd., London, UK) on a Light-Cycler 480 Detection System
(Roche Applied Science). Gene expression was normalized to the geometric mean of human 36B4 and
cyclophyllin values. Primers are listed in Table 4.

4.8. Seahorse Metabolic Flux Analysis

Changes in oxygen consumption rate (OCR, reflecting mitochondrial oxidative capacity) and pH,
termed extracellular acidification rate (ECAR, reflecting glycolysis) were measured using an XF96
oximeter (Seahorse Biosciences, North Billerica, MA, USA). The 4T1 cells were seeded in 96-well
Seahorse assay plates (4T1, 2000 cells/well) and treated with vehicle or the indicated IS concentrations
for 24 h. The OCR and ECAR values were recorded every 30 min to monitor the effects of IS treatment.
Data were normalized to protein content and normalized readings were used for calculations.
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Table 4. Murine and human primers used in reverse transcription-coupled PCR (RT-qPCR) reactions.

Gene Symbol Murine Forward Primer (5′-3′) Murine Reverse Primer (5′-3′)

CAT CCTTCAAGTTGGTTAATGCAGA CAAGTTTTTGATGCCCTGGT
VIM CTCCAGAGAGAGGAAGCCGAAAG CCTGGATCTCTTCATCGTGCAGT

FgfBp1 CAAGGTCCAAGAAGCTGTCTCCA AGCTCCAAGATTCCCCACAGAAC
Tgfb3 GGCGTCTCAAGAAGCAAAAGGAT CCTTAGGTTCGTGGACCCATTTC
MMP9 CATTCGCGTGGATAAGGAGT ACCTGGTTCACCTCATGGTC
GPX2 GTTCTCGGCTTCCCTTGC TTCAGGATCTCCTCGTTCTGA
GPX3 GGCTTCCCTTCCAACCAA CCCACCTGGTCGAACATACT
SOD3 CTCTTGGGAGAGCCTGACA GCCAGTAGCAAGCCGTAGAA

Cyclophilin A TGGAGAGCACCAAGACAGACA TGCCGGAGTCGACAATGAT
36B4 AGATTCGGGATATGCTGTTGG AAAGCCTGGAAGAAGGAGGTC

Gene Symbol Human Forward Primer (5′-3′) Human Reverse Primer (5′-3′)

AHR TTGAACCATCCCCATACCCCAC GAGGTTCTGGCTGGCACTGATA
PXR AGTGAAGGTTCCCGAGGACATG TTGTCACAGAGCATACCCAGCA

Cyclophilin A GTCTCCTTTGAGCTGTTTGCAGAC CTTGCCACCAGTGCCATTATG
36B4 CCATTGAAATCCTGAGTGATGTG GTCGAACACCTGCTGGATGAC

4.9. Aldefluor Assay

Aldehyde dehydrogenase (ALDH) activity was determined using an Aldefluor Stem Cell kit
(StemCell Technologies, Vancouver, BC, Canada). The 4T1 cells were seeded on six-well plates (4T1,
100,000 cells/well) and treated with the indicated concentrations of IS for 24 h. Then, the collected cells
were processed according to the manufacturer’s instructions. The SKBR-3 cell line was used for positive
control samples based on the manufacturers’ instructions. Changes in the level of ALDH were assessed
by flow cytometry and the results were analyzed using Flowing Software 2.5.1 (Beckton-Dickinson,
Franklin Lakes, NJ, USA). The Aldefluor assay for assessing stemness was performed similarly to
references [17,100,101].

4.10. SDS-PAGE and Western Blotting

Protein isolation, SDS PAGE, and Western blotting were performed as described in Nagy
et al. [102]. Cells were lysed in RIPA buffer (50 mM Tris, 150 mM NaCl, 0.1% SDS, 1% TritonX
100, 0.5% sodium deoxycholate, 1mM EDTA, 1mM Na3VO4, 1 mM PSMF, 1 mM NaF, and protease
inhibitor cocktail). Protein extracts (20–50 µg) were separated on 10% SDS polyacrylamide gels
and transferred onto nitrocellulose membranes by electroblotting. After blocking for 1 h in TBST
containing 5% BSA, the membranes were incubated with primary antibodies overnight at 4 ◦C. The
membranes were washed with 1× TBST solution, then probed with IgG HRP-conjugated peroxidase
secondary antibodies (1:2000, Cell Signaling Technology, Inc, Beverly, MA, USA). Bands were visualized
by enhanced chemiluminescence (SuperSignal West Pico Solutions, Thermo Fisher Scientific Inc.,
Rockford, IL, USA). Blots were quantified by densitometry using the Image J software and the results
of densitometry is uploaded alongside with the primary data to Figshare.com (https://figshare.com/s/
81c2f5906706c60e6c3f). The primary and secondary antibodies are listed in Table 5.

4.11. Determination of Lipid Peroxidation

Lipid peroxidation was measured by determining the production rate of thiobarbituric acid-reactive
substrate using the thiobarbituric acid-reactive substances (TBARS) assay as described in Mabley
et al. [103]. The 4T1 cells were seeded in T75 flasks and exposed to AHR (10 µM) and PXR (25 µM)
inhibitors together with IS (2 µM or 4 µM) for 24 h. Cells were rinsed in PBS and scraped, then
collected by centrifugation. After adding 8.1% SDS, 20% acetic acid, 0.8% thiobarbituric acid (TBA),
and distilled water to the cell pellet, the samples were incubated at 96 ◦C for 1 h. Samples were cooled
on ice and centrifuged. The absorbance of the supernatants was measured at 540 nm. The levels of

https://figshare.com/s/81c2f5906706c60e6c3f
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4-hydroxynonenal (4HNE)-modified proteins, as a marker for lipid peroxidation, were also assessed
using western blotting.

Table 5. List of antibodies used for Western blotting.

Antibody Dilution Vendor

4-HNE 1:1000 Abcam (ab46545)
Nitrotyrosine 1:1000 Millipore (06-284)

iNOS 1:1000 Novus (NB300-605)
NRF2 1:1000 Abcam (ab31163)

Phospho-AMPKα (Thr172) 1:1000 Cell Signaling (#2535)
AMPKα 1:1000 Cell Signaling (#5832)

Phospho-ACC (Ser79) 1:1000 Cell Signaling (#3661)
ACC 1:1000 Cell Signaling (#3676)

FOXO1 1:1000 Cell Signaling (#9454)
E-cadherin 1:1000 Cell Signaling (#3195)

ZO1 1:1000 Cell Signaling (#8193)
Vimentin 1:1000 Cell Signaling (#5741)

Snail 1:1000 Cell Signaling (#3879)
β-Catenin 1:1000 Sigma-Aldrich (C7082)
β-Actin 1:20000 Sigma-Aldrich (A3854)

Anti-rabbit IgG, HRP-linked antibody 1:2000 Cell Signaling (#7074)
Anti-Mouse IgG, Peroxidase antibody 1:2000 Sigma-Aldrich (A9044)

4.12. Invasion

Matrigel invasion assays were performed with 4T1 cells using Corning BioCoat Matrigel Invasion
Chambers (Corning, NY, USA). Cells were seeded in the chambers (50,000 cells/well) in serum free
medium and grown overnight. Then, the cells were exposed to the indicated concentrations of IS for
24 h. The lower chamber was filled with 4T1 medium with 100 ng/mL SDF1-alpha (Sigma-Aldrich,
SRP4388) as a chemoattractant. Cells were prepared and stained with Hematoxylin-Eosin (VWR, PA,
USA, 340374T 341972Q) dye according to the manufacturer’s instructions. Cells were then analyzed
on the Opera Phoenix High Content Screening System using Harmony 4.6 Software. Migration was
calculated from the percentage of migrated cells through the Matrigel control membranes.

4.13. Animal Study

Animal experiments were authorized by the Institutional Animal Care and Use Committee at the
University of Debrecen and the National Board for Animal Experimentation (1/2015/DEMÁB) and
were performed according to the NIH guidelines (Guide for the Care and Use of Laboratory Animals)
and applicable national laws. Animal studies are reported in compliance with the ARRIVE guidelines.

Experimental animals were BALB/c female mice between 14–16 weeks of age (20–25 g). Mice were
randomized for all experiments. Animals were bred in the “specific pathogen-free” zone of the Animal
Facility at the University of Debrecen and kept in the “minimal disease” zone during the experiments.
Five mice were housed in each cage (standard block shape 365 × 207 × 140 mm, surface 530 cm2; 1284 L
Eurostandard Type II. L from Techniplast). Cages were changed once a week, on the same day. The
dark/light cycle was 12 h and the temperature was 22 ± 1 ◦C. Mice had ad libitum access to food and
water (sterilized tap water). Animals had paper tubes to enrich their environment. The animal facility
was overseen by a veterinarian. A total of 20 female mice were used in the study, 10 randomly selected
control and 10 IS-fed mice.

The 4T1 cells were suspended (2 × 106/mL) in ice-cold PBS-Matrigel (1:1, Sigma-Aldrich) at a 1:1
ratio. Twenty female BALB/c mice received 50 µL injections to their second inguinal fat pads on both
sides (105 cells/injection site). Tumor growth and animal well-being were monitored daily.

IS was administered by oral gavage at a dose of 2 µmol/kg as a bolus once a day. The dose
correlated with the serum reference concentration of IS [53,95,96]. IS stock (60 mM) was prepared in
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sterilize tap water and stored at −20 ◦C. The IS stock solution was diluted on the day of treatment.
Animals were randomized into two groups: 10 mice were treated with IS, and 10 mice were treated
with vehicle (sterilized tap water). The researchers administering IS and vehicle solutions were blinded.
Treatment was carried out every day at the same time between 09:00 and 11:00. Animals were sacrificed
on day 14 post grafting by cervical dislocation, and primary tumors and metastases were harvested for
subsequent analysis.

During autopsy, primary tumors were visually assessed and scored based on their infiltration
rate into surrounding tissues and the macroscopic appearance of the tumor [16,17]. Tumors were
classified as “low infiltration” class if the primary tumor remained in the mammary fat pads without
any detectable attachment to muscle. “Medium infiltration” tumors attached to the muscle tissue
but did not penetrate the abdominal wall. If the tumor grew into the muscle tissue and penetrated
the abdominal wall, the tumor was scored as a “high infiltration” tumor. Researchers involved in
scoring primary tumor infiltration rates were blinded. The tumors outside the primary transplantation
sites were considered metastases. Both primary and metastatic tumor masses were removed from the
animals and measured on an analytical balance in pre-weighed Eppendorf tubes.

4.14. Database Screening

The kmplot.com database [77] was used to examine the connection between gene expression
levels (Cyp2E1, Sult1A1, and Sult1A2) and breast cancer survival in humans. Probe numbers are listed
in Table 3.

4.15. Statistical Analysis

For comparing the two groups, we used two-tailed Student’s t-tests, unless stated otherwise. Fold
data were log2 transformed to achieve normal distribution. Statistical significance was determined for
multiple comparisons with one-way analysis of variance (ANOVA) followed by Tukey’s or Dunnett’s
honest significance difference (HSD) post-hoc test, as stated in the figure captions. All data are
presented as mean ± SEM unless otherwise stated. Texas Red-X Phalloidin-labelled fluorescent pictures
were analyzed using Cell Profiler 2.0 (github.com/CellProfiler/CellProfiler) followed by Advanced
Cell Classifier 3.0 (www.cellclassifier.org). FACS results were analyzed using Flowing Software 2.0.
Statistical analysis was done using GraphPad Prism 7 (Graphpad Software Inc., San Diego, CA, USA)
software unless stated otherwise.

5. Conclusions

In this paper, we showed that indoxylsulfate, an indoxyl-derivative bacterial metabolite that is
further metabolized in the liver, has cytostatic properties in breast cancer. In a previous study, we
showed that bacterial tryptophan catabolism is suppressed in breast cancer, and in this studym we
show that higher expression of the hepatic enzymes producing indoxylsulfate lead to better survival
suggesting that the cytostatic properties conferred by indoxylsulfate production are suppressed in
breast cancer. Furthermore, the loss of the cytostatic properties are important in the pathophysiology
of breast cancer.
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