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Abstract

Background

Despite increased testing efforts and the deployment of vaccines, COVID-19 cases and

death toll continue to rise at record rates. Health systems routinely collect clinical and non-

clinical information in electronic health records (EHR), yet little is known about how the mini-

mal or intermediate spectra of EHR data can be leveraged to characterize patient SARS-

CoV-2 pretest probability in support of interventional strategies.

Methods and findings

We modeled patient pretest probability for SARS-CoV-2 test positivity and determined

which features were contributing to the prediction and relative to patients triaged in inpatient,

outpatient, and telehealth/drive-up visit-types. Data from the University of Washington (UW)

Medicine Health System, which excluded UW Medicine care providers, included patients

predominately residing in the Seattle Puget Sound area, were used to develop a gradient-

boosting decision tree (GBDT) model. Patients were included if they had at least one visit

prior to initial SARS-CoV-2 RT-PCR testing between January 01, 2020 through August 7,

2020. Model performance assessments used area-under-the-receiver-operating-character-

istic (AUROC) and area-under-the-precision-recall (AUPR) curves. Feature performance

assessments used SHapley Additive exPlanations (SHAP) values. The generalized pretest

probability model using all available features achieved high overall discriminative perfor-

mance (AUROC, 0.82). Performance among inpatients (AUROC, 0.86) was higher than tel-

ehealth/drive-up testing (AUROC, 0.81) or outpatient testing (AUROC, 0.76). The two-week

test positivity rate in patient ZIP code was the most informative feature towards test positivity

across visit-types. Geographic and sociodemographic factors were more important predic-

tors of SARS-CoV-2 positivity than individual clinical characteristics.
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Conclusions

Recent geographic and sociodemographic factors, routinely collected in EHR though not

routinely considered in clinical care, are the strongest predictors of initial SARS-CoV-2 test

result. These findings were consistent across visit types, informing our understanding of

individual SARS-CoV-2 risk factors with implications for deployment of testing, outreach,

and population-level prevention efforts.

Introduction

As of January 20, 2021, over 96 million confirmed cases of COVID-19 and over 2 million

COVID-19-related deaths have been reported worldwide [1]. Despite Public health mandates,

daily cases and deaths in the United States continue to climb at record-setting rates towards

the predicted trajectory of COVID-19 transmission [2]. With the deployment of vaccines,

national strategies have adopted ethical principles to prioritize those most vulnerable to

COVID-19 effects [3]. Health systems contain a wealth of medical knowledge about their

patient populations with expanded testing capacities for SARS-CoV-2 occurring in hospitals,

outpatient clinics, and community drive-up testing sites [4]. Despite that, identifying features

that explain transmission patterns and likelihood to test positive remains a technical barrier to

optimal community outreach. For meaningful interventions against further COVID-19 spread

and effects, vaccination efforts need to be informed with geographic and population character-

istics learned from testing efforts to maximize benefits and minimize harm [3].

A review of published diagnostic and prognostic models for COVID-19 revealed substantial

gaps in knowledge about factors contributing to individual outcomes [5]. In the early months

of 2020, health systems allocated tests to people on the basis of symptomatic presentation or

likelihood of exposure event, which introduced deficiencies in representing asymptomatic

patients [6–9]. These studies often utilized clinical features attributable to the emergency and

intensive care unit inpatients setting, but are seldom available in other healthcare settings [10–

13]. Epidemiological information, insights about vulnerable population locations, and social

determinants of health have since been highlighted as critical characteristics for equitable test-

ing, vaccination, and phased-reopening strategies [3, 14–16]. Few studies to date examined

patient-level social determinants of health (e.g., patient race/ethnicity, occupation category,

recent employment status) and ecological factors (e.g., population density, median annual

household income in patient ZIP code, or recent positivity rate in ZIP code at the time of test)

in the Seattle Puget Sound region [17, 18]. No studies to date examined these features across

healthcare visit-types along with clinical vital signs, medical and medication history for their

contributing value to predict SARS-CoV-2 test positivity.

While seemingly obvious, geographic features of recent COVID-19 cases are not well-stud-

ied with regards to the spectrum of patient-level clinical features. Spatial analysis of COVID-

19 incidence often used county-level or state-level aggregate or deidentified datasets to mini-

mize reidentification risks [14, 19]. In general, patient clinical and spatial-temporal character-

istics have not been accessible at finer resolutions. In response to COVID-19 research needs,

nationwide initiatives like the National COVID-19 Cohort Collaborative (N3C) formed to cre-

ate research-ready HIPAA Limited Datasets and enclave research infrastructure to facilitate

reproducible modeling [20]. With this information now co-located together, critical next steps

would be the analytical codebase and capacities to examine contributions of clinical and non-

clinical features towards prediction of test positivity and further preventative efforts.
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To better understand the value of routinely-collected EHR data, we examined the contribu-

tion of clinical, sociodemographic, and geographic features towards individualized risk of

COVID-19 infection.

Methods

Study overview

We developed a retrospective cohort to assess the relative contributions of patient demograph-

ics, medical history information, and spatial factors to predict initial SARS-CoV-2 test results.

We stratified the analysis based on the health system visit type (i.e. inpatient, outpatient, tele-

health/drive-up testing site) and characterized model performance using all features as well as

limited subsets of features. The University of Washington Institutional Review Board approved

this study as minimal risk and waived consent requirements. All analyses were performed in a

HIPAA-compliant compute environment. Our approach used an Observational Medical Out-

comes Partnership (OMOP) structured dataset [21] for transferrable modeling and research

with N3C efforts [20]. The codebase is available to facilitate further pattern identification with

COVID-19 testing resources.

Data collection

The CONSORT diagram depicting study inclusion/exclusion criteria is shown in Fig 1. In

brief, UW Medicine patients who had at least one visit prior to initial SARS-CoV-2 RT-PCR

Fig 1. Patient inclusion and exclusion from model development and analysis. EDW = UW Medicine Enterprise

Data Warehouse; Established patients = has one or more prior visit to the first SARS-CoV-2 test; SARS-CoV-

2 = Severe acute respiratory syndrome coronavirus 2; COVID-19 = previously known as novel coronavirus disease

2019; RT-PCR = Reverse-transcriptase polymerase chain reaction assay; conclusive lab tests = results of ’positive’,

’detected’, ’negative’, or ’not detected’; Baseline features = ’last temperature measurement’, ’age’, ’race’, ’gender’,

’ethnicity’, ’occupation status’, ‘ZIP’, ’county’, and ’visit type’.

https://doi.org/10.1371/journal.pone.0258339.g001
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testing between January 01, 2020 and August 7, 2020 were included. Exclusion of employee

data was required for UW IRB approval. UW Medicine EHR data were abstracted into the

OMOP common data model v5.3.1 for data analysis. Visit dates and times and ZIP code infor-

mation were retained, and all other identifiers were removed.

Data preparation

Patients were classified as test-positive or test-negative based on the lab-confirmed outcome of

their first recorded SARS-CoV-2 RT-PCR test. Those with inconclusive results or missing

essential features were omitted. We converted clinical EHR data into continuous, categorical,

or binary-valued features and merged rare categories. For example, patient occupation infor-

mation was categorized to 2018 Census Occupation Codes groups [22]. Highly collinear fea-

tures (Pearson R > 0.8) were removed. Data collected after the time of first SARS-CoV-2 test

collection were censored. For time-varying features such as clinical vital signs, transient symp-

toms, or laboratory test results, we included the most recent value and the mean from the two

weeks prior to the test. Table A3 in S1 Appendix displays delays between most recent values

and SARS-CoV-2 test. When test orders were not linked to a specific clinical encounter, we

inferred the latest visit prior to the SARS-CoV-2 test was the clinical interaction resulting in

test referral. Since not all telehealth interactions resulted in records in the visit database, we

considered encounters where no visit was recorded up to 36 hours prior to the test to be tele-

health visits.

We identified patient residential ZIP code from billing records and linked them to the

American Community Survey’s 2018 ZIP Code Tabulation Area (ZCTA) to identify popula-

tion density (person per sq. mile) and median household income. For each patient, as a proxy

for disease prevalence near the patient’s home, we computed the positivity rate of all test results

from the same ZIP code during the preceding two weeks. For the first test from each ZIP code,

we treated this feature as missing.

Ultimately, 186 features were available for analysis. Further details on the processing steps

are provided in the S1 Appendix.

Modeling and analyses

We developed a binary classifier to predict the outcome of a patient’s initial SARS-CoV-2

RT-PCR test. To develop this model, we split data into three fixed partitions: training, valida-

tion, and testing (referred to as the “evaluation set”). we first withheld a random 20% of the

dataset for final model performance assessment (the ‘evaluation set’). From the remaining

80%, we randomly subsampled data in a 4:1 fashion into training and validation subsets,

respectively.

Our primary models were GBDT implemented using the LightGBM library [23]. GBDT

have demonstrated strong performance in clinical prediction tasks, including pretest probabil-

ity of SARS-CoV-2 positivity [10–12]. More details, including hyperparameters of the GBDT,

are provided in the S1 Appendix.

Our primary analysis characterized overall model performance across all visit types. Pri-

mary metrics for model performance were AUROC curves, which compare model sensitivity

versus specificity, and AUPR curves, which compare positive predictive value (PPV) to sensi-

tivity. These complementary metrics offer insight into the expected false positive rate of the

model in contexts where positive cases are rare. For all model evaluations, we report mean

AUROC and 95% confidence intervals computed using 1000 bootstrap resamples of the evalu-

ation set. Imputation of missing data was not performed as GBDT natively handles
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missingness as potentially informative, appropriate for a clinical setting in which the choice to

order a test reflects clinical judgment.

To characterize model performance across clinical contexts, we stratified patients by visit

type (inpatient, outpatient, and telehealth). To quantify the extent to which a given feature

contributed positively or negatively to model prediction in these clinical settings, we computed

SHAP values [24]. Using a mean absolute SHAP value, we indicate the average magnitude of

impact of that feature on the model’s predictions. This flexible framework allowed us to quan-

tify feature importance even for non-linear models, such as GBDT.

Finally, we examined the likely impact of data accessibility on model use in these settings by

training variants using subsets of features representative of those expected to be available in

inpatient, outpatient, or community testing scenarios. The intention of these feature sets was

to represent the information likely to be accessible for real-word application of the model in

that clinical environment. To do this, we first grouped the features into categories (“Chronic

conditions”, “Geography”, “Drugs”, “Demographics”, “Insurance”, “Labs”, “Symptoms”, and

“Vitals”), and then associated these categories with one of three feature sets: 1) minimal (those

expected to be available in all settings including community drive-up environments, including

demographic information, signs and symptoms, recent temperature checks, public and case

statistics based on the patients’ geography), 2) intermediate (those available in a typical outpa-

tient setting, additionally including chronic medical conditions, prescription medications,

vital signs, and insurance/payment information), or 3) full (complete information as available

in an inpatient setting, including provider order entry data about the indication for testing).

Table A1 in S1 Appendix contains the full mapping of individual features to these feature sets.

To validate our choice of GBDT as a primary modeling strategy, we performed compari-

sons with logistic regression using mean imputation to account for missing features (Fig A1 in

S1 Appendix). Python code used for the data preprocessing and analysis is available from:

https://github.com/microsoft/sars-cov2-pretest-probability.

Results

Study population

Ultimately, records for 63 996 patients were available for analysis. Similar numbers of included

patients were referred for testing from inpatient, outpatient, and telehealth visits. Data prepro-

cessing is summarized in S1 Appendix. Fifty one percent were female and 37% (n = 33747)

were non-White (Table 1). Approximately four percent (n = 2522) tested positive for

SARS-CoV-2 at the time of first testing, with observed differences by race, ethnicity, occupa-

tion status, and geography.

Performance in predicting the first SARS-CoV-2 test

The primary model, fitted across all patients, achieved high discriminatory performance

(AUROC, 0.82 [95% CI, 0.80–0.84]) for prediction of positive versus negative first-test result

(Fig 2A). This model performed better among inpatients (AUROC, 0.86 [CI, 0.83–0.89]) than

among outpatients (AUROC, 0.76 [CI, 0.72–0.80]) and telehealth patients (AUROC, 0.81 [CI,

0.78–0.84]). Despite the low fraction of positives across visit types, precision-recall curves indi-

cate that the model distinguishes true positive cases with higher-than-expected sensitivity and

positive predictive value in inpatient and telehealth but not outpatient groups (Fig 2B). Tele-

health held the highest positive predictive value among the visit types. The low positive predic-

tive value among outpatients likely relates to the lower overall positive rate of tests performed

in this group (2.4%).
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Table 1. Key modeling variables and their availability in the study population.

Key variables Missingness, n (%) of 63

996

Study population, n (%) of

63 996

Mean (sd) of study

population

Positive cases, n (%) of

2522

Mean (sd) of

cases

Demographics

Age (years) 0 (0) 47 (19) 45 (20)

Sex = female 0 (0) 32826 (51) 1224 (49)

Ethnicity = Hispanic 10763 (17) 5298 (9.9) 582 (29)

Race

White 40249 (63) 1248 (49)

Black or African American 5896 (9) 345 (14)

Asian 5659 (8.8) 216 (9)

American Indian | Alaska

Native

1007 (1.6) 79 (3)

Native Hawaiian | Pacific

Islander

735 (1.1) 38 (2)

Unknown 10450 (16) 596 (24)

Occupation status

Full time 16438 (27) 521 (21)

Not employed 14179 (22) 555 (22)

Retired 9090 (14) 294 (12)

Part time 2113 (3.3) 91 (4)

Student (Full time) 1822 (2.8) 62 (3)

Self Employed 1705 (2.7) 49 (2)

On Active Military Duty 18 (0) 0 (0)

Unknown 18589 (29) 946 (38)

Vitals and labs

Glucose (mg/dL) in s/p 27636 (43) 111 (39) 118 (47)

Albumin (g/dL) in s/p 33537 (52) 4.2 (0.4) 4.0 (0.5)

Leukocytes (10^3 count/μL) in

blood

27295 (43) 8.2 (3.9) 7.4 (3.4)

Platelets (10^3 count/μL) in

blood

27233 (43) 243 (86) 237 (86)

Days since respiratory rate

measured

30839 (48) 8 (14) 10 (15)

Heart rate (bpm) 30228 (47) 79 (16) 81 (16)

DBP (mmHg) 30292 (47) 76 (13) 75 (13)

Weight (kg) 39653 (62) 81 (20) 80 (19)

Height (meters) 40272 (63) 1.7 (0.1) 1.67 (0.1)

Geography

2-week test positivity in ZIP (%) 46 (0) 4.1 (3.7) 6.3 (4.9)

Median household income in

ZIP ($)

2587 (4) 82187 (24538) 77383 (22196)

Population density (person/sq.

mile)

2530 (4) 6493 (6366) 6105 (4954)

Other variables

Visit type of first test = inpatient 0 (0) 19512 (30) 786 (31)

Visit type of first

test = outpatient

0 (0) 22841 (36) 568 (23)

Visit type of first test = telehealth 0 (0) 21643 (34) 1168 (46)

Insurance type = commercial 10825 (17) 24985 (39) 602 (24)

(Continued)
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Identification of important features

Fig 3A shows individual SHAP values for the top 20 most important features. Each point rep-

resents a single patient in the test set. Positive SHAP values indicate that the value of that fea-

ture (for that patient) prompted the model to assign a higher probability of positive

SARS-CoV-2 test outcome.

The feature “two-week test positivity in ZIP” was the most informative, with high recent

positivity rates increasing positive predictions. Although age was also informative, the relation-

ship between age and predicted test positivity was not monotonic, as depicted by the mottled

coloring along the x-axis. Fig A2 in S1 Appendix shows SHAP values for informative features

within visit types.

Fig 3B reports the mean absolute SHAP value, stratified by visit type, showing a general

consistency of feature importance across visit types, with notable exceptions. For example,

although “reason for test” did not rank among the top features across all patients, Fig 3B dem-

onstrates that it is informative for inpatients (in practice, ‘reason for test’ was typically available

only for inpatients in this dataset). Similarly, leukocyte count appears informative when

available.

Table 1. (Continued)

Key variables Missingness, n (%) of 63

996

Study population, n (%) of

63 996

Mean (sd) of study

population

Positive cases, n (%) of

2522

Mean (sd) of

cases

Insurance type = military 10825 (17) 838 (1.3) 20 (1)

2-week test positivity in ZIP = the percent of patients in ZIP code who test positive within the prior 2-weeks; DBP = Diastolic blood pressure; bpm = beats per minute; s/

p = serum or plasma.

https://doi.org/10.1371/journal.pone.0258339.t001

Fig 2. Receiver-operating characteristic (ROC) and precision-recall curves. (A) The model achieves generally high

performance, which is unevenly distributed by visit type–performance in inpatient settings is the best. (B) Precision-

recall curves indicate significant class imbalances, reflective of the approximate 2–4% positive rate, where the

outpatient set observed the worst imbalance and fewest positive cases. Dashed lines indicate the reference performance

of a random classifier. TPR = True positive rate; FPR = False positive rate; PPV = positive predictive value. Solid lines

indicate the mean of 1000 bootstrap replicates of the evaluation set, while shaded areas are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0258339.g002
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Role of feature categories and data availability in treatment settings

We grouped individual features into prespecified categories to examine the overall importance

of these information classes on prediction. Ablation testing indicated that geography was the

most informative category (Fig 4A), demonstrating the greatest degradation in performance

when removed from the model, followed by insurance status and demographic factors. In

Fig 3. Feature-wise importance for predicting COVID-19 status in all patients and care-setting cohorts. (A) The

top 20 individual features are rank-ordered by mean absolute SHAP value, the measure of proportional importance

towards the prediction of positive test outcomes. Each point represents a single patient in the test set, colored by the

value that feature took on in that patient. For continuous features, color indicates feature value of green (high) to

purple (low). For categorical/binary features, color indicates different categories. Gray indicates missing value. The x-

axis is the SHAP value; positive values increase the model prediction and vice-versa. (B) The aggregate feature

importance is reported as mean absolute SHAP value. Importance is stratified by visit type; ranking is based on

importance to “All patients” cohort. Some features have a cohort-specific importance and greater role in prediction.

(most recent) = most recent record prior to the SARS-CoV-2 test; DBP = Diastolic blood pressure.

https://doi.org/10.1371/journal.pone.0258339.g003

Fig 4. Group-wise feature importance for prediction of SARS-CoV-2 test outcome by visit types. (A) Across the all

patient cohort, the feature categories were ablated to rank-order the group-wise importance towards the model

performance. The hatched region indicates the 95% confidence interval using all features. (B) Performance of three

hypothetical models using subsets of features (minimal, intermediate, full feature sets) shows differences in model

performance when stratified by visit type (color, x-axis). AUC = area-under-the-receiver-operating-characteristic

curve; Minimal feature set = symptoms, last available temperature, race, ethnicity, gender, age, occupation, zip, county,

population density, two-week test positivity in zip, median household income in zip, type of visit. intermediate feature

set = minimal features + chronic conditions, drugs, blood pressure, heart rate, respiratory rate, and oxygen saturation.

Full feature set = intermediate features + “reason for test” and all laboratory test results excluding those in class B. The

full feature set corresponds to all available features. Asterisk indicates the 95% confidence interval does not overlap

with using the full feature set.

https://doi.org/10.1371/journal.pone.0258339.g004
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contrast, selectively removing information regarding chronic medical conditions, vital sign

measurements, and medications results did not significantly impact performance. Across visit

types, use of more comprehensive feature sets uniformly improved the accuracy of predictions,

although even the minimal set (representing data expected to be available for use in telehealth/

community testing sites) maintained useful discriminatory power (AUROC > 0.7) (Fig 4B).

Discussion

In this study, we demonstrate that routinely collected EHR data can be used to build predictive

models of initial SARS-CoV-2 RT-PCR test results with high discriminative performance

across visit types. Overall, while a combination of both sociodemographic and clinical features

yielded the highest predictive performance, geographic, demographic, and socioeconomic fea-

tures were more strongly associated with initial SARS-CoV-2 test positivity than clinical char-

acteristics across all visit types examined. Recent test positivity rate in home ZIP code was the

most informative single factor. We also found that models using only a minimal set of vari-

ables, commonly available in most test settings, retained useful discriminative power. These

findings demonstrate that effective risk-stratification is possible in drive-up test settings and at

the population level, where individual clinical data (laboratory values, past medical history) are

not typically available.

Unlike prior studies [10–13], this study explores the role of social determinants of health,

ecological factors along with the clinical features that are routinely available in EHR data across

inpatient, outpatient, and telehealth visit types. The best performing prior model for prediction

of SARS-CoV-2 positivity among ED patients used pre-pandemic controls and examined vital

sign and blood gas measurements only among patients receiving blood tests and subsequently

admitted to the hospital, achieving an AUROC of 0.94 [10]. This approach limits generalizabil-

ity to patients who undergo testing to in-hospital settings. In contrast, our model, which

included all visit types, produced comparable performance to a study using only blood gas

measurements collected within 48 hours of the SARS-CoV-2 test [11] and markedly higher

performance than models without such time-constraints on the recency of available clinical

data (AUROC, 0.66) [12]. Present findings extend the applicability of prior works to a broader

range of clinical scenarios and provide general insight into the factors contributing to

COVID-19 transmission.

A unique aspect of this study was the derived feature “two-week test positivity in ZIP,”

which emerged as the most important single feature across all visit types and contributed more

to the prediction than clinical data. This feature is a useful proxy for recent disease prevalence

in the area and its relative importance in this context is consistent with the known epidemiol-

ogy of community-based transmission [25, 26]. We selected a 2-week period for incident rate

calculation based on viral incubation rates and associated guidelines for containment and

quarantine [16]. This construct provides a convenient and lightweight representation of up-to-

date regional transmission dynamics that has the potential to easily transfer across other

regions and times.

Other geographically derived factors also featured prominently within the list of important

model features. Most notable was the feature “median household income in ZIP”, with lower

income being associated with higher pretest probability of positivity. Alongside the presence of

commercial health insurance and occupation status, these features point to the importance of

including socioeconomic factors in models of test positivity. High population density areas

have experienced high exposure risks and transmission levels, which may in part be due to

high-density group occupancy [27, 28]. While it is difficult to draw strong conclusions regard-

ing the factors underlying these observations, they are consistent with other studies that

PLOS ONE Features predictive of SARS-CoV-2 test positivity across healthcare visit-types

PLOS ONE | https://doi.org/10.1371/journal.pone.0258339 October 14, 2021 9 / 14

https://doi.org/10.1371/journal.pone.0258339


highlight effects of neighborhood-specific socioeconomic factors on COVID-19 prevalence

[14, 19, 29, 30].

The relative importance of geographic features in our model is key because these features

are typically available in telehealth/drive-up test settings. Our finding that model discrimina-

tion varied by treatment setting was unsurprising but is important. Data availability (e.g., pres-

ence of laboratory values), reasons for testing, and underlying health status vary greatly

between inpatient, outpatient, and telehealth settings. Indeed, approximately half of the total

cohort did not have a clinical history meriting antecedent vitals and laboratory studies.

Researchers and practitioners considering implementation of such models should consider

treatment setting carefully when evaluating their application and potential performance across

these distinct clinical settings. Using this approach, we demonstrate that data routinely avail-

able to testing facilities, hospital systems, and public health officials can be usefully derived

using readily available EHR data without recourse to other disparate sources [31]. Heightened

risk may indicate need for targeted outreach to specific patient groups, deployment of mobile

testing services to specific communities, and expedited laboratory processing tiers for individ-

ual samples [32]. Consistently low risk levels may be good candidates for pooled testing or

environmental surveillance strategies [33–36].

While clinical measures, such as vitals and laboratory measures, were not the focus of this

study, these measures did contribute measurably to the predictive performance of models in

some settings and warrant examination. Several clinical markers predictive of SARS-CoV-2

positivity in this study have previously been associated with severe COVID-19, including

decreased white blood cell count [10, 11, 37, 38], platelet count [10, 38–40], serum albumin

levels [40–42], respiratory rate [43], and diastolic blood pressure [38, 43]. A strong predictive

feature newly identified in this study was patient height, where shorter stature was associated

with increased risk of SARS-CoV-2 positivity. It has been hypothesized that children and

shorter adults may observe increased exposure risks due to prolonged droplet retention at

lower breathing heights [44, 45]. Although patient height is related to body mass index, a

known risk factor for severe infection [46], patient weight was separately accounted for in the

model, suggesting that patient height is an important risk factor independent of body compo-

sition, age, and other demographics. As virulent strains continue to pose emergent threats, for

those without immunity and overwhelming risk factors, clinical measures and blood gas find-

ings may provide perspective on the patients’ health status and whether they are at greater pro-

pensity for severe COVID and hospitalization [10, 38]. Unfortunately, these clinical measures

are not reliably available in outpatient and community testing settings.

In the United States, COVID-19 vaccination strategies have prioritized social determinants

among their guiding principles [3]. These efforts and ongoing work to identify emergent

SARS-CoV-2 variants of clinical importance will continue to necessitate current, regional

information on populations at increased risk of SARS-CoV-2 transmission and development

of severe manifestations of COVD-19 once acquired. Our model provides an efficient method

of identifying those with a high probability of newly testing positive and represents a potential

approach to characterizing vulnerable populations [19, 27, 47]. In practice, different healthcare

settings have varying capacities for risk assessment tools. Our approach used an OMOP lim-

ited dataset structure, which bypasses the usual interoperability barriers of EHR-based

research [20, 21], providing the data structure necessary for portability to other health systems.

This study has some limitations. Data analyzed were drawn from a clinical care database

wherein patient referral for testing was influenced by regional guidelines that impact broader

generalizability [48]. For example, in Washington State, older adults were prioritized for test-

ing early in the pandemic and the reported role of age as a predictive factor may vary by time

and region. Similarly, patients for whom English is not a first language have reported barriers
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to test access [17]. SARS-CoV-2 presence testing for UW Medicine employees were excluded

from this study. Findings based on the catchment area of a single health system may not gener-

alize because of ascertainment and selection bias. Our proxy for home environment, ZIP code,

is imperfect. Patients who spent time in other ZIP codes and may have contracted disease

there. Moreover, ZIP codes are socially and environmentally heterogenous and US Census

ZCTA is an imperfect representation of the international Postal ZIP code [49, 50].

In conclusion, our study demonstrates that routinely collected non-clinical features in EHR

contribute significantly to prediction of initial SARS-CoV-2 test positivity across a variety of

visit types and clinical testing scenarios. The key role of sociodemographic features in the out-

come of SARS-CoV-2 testing has implications not only for prediction of individual test posi-

tivity but also for objective deployment of testing, outreach, and population-level prevention

efforts.
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