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Abstract

Motivation: Metagenomics studies have provided key insights into the composition and structure of microbial com-
munities found in different environments. Among the techniques used to analyse metagenomic data, binning is con-
sidered a crucial step to characterize the different species of micro-organisms present. The use of short-read data in
most binning tools poses several limitations, such as insufficient species-specific signal, and the emergence of long-
read sequencing technologies offers us opportunities to surmount them. However, most current metagenomic bin-
ning tools have been developed for short reads. The few tools that can process long reads either do not scale with
increasing input size or require a database with reference genomes that are often unknown. In this article, we pre-
sent MetaBCC-LR, a scalable reference-free binning method which clusters long reads directly based on their k-mer
coverage histograms and oligonucleotide composition.

Results: We evaluate MetaBCC-LR on multiple simulated and real metagenomic long-read datasets with varying
coverages and error rates. Our experiments demonstrate that MetaBCC-LR substantially outperforms state-of-the-
art reference-free binning tools, achieving �13% improvement in F1-score and �30% improvement in ARI compared
to the best previous tools. Moreover, we show that using MetaBCC-LR before long-read assembly helps to enhance
the assembly quality while significantly reducing the assembly cost in terms of time and memory usage. The effi-
ciency and accuracy of MetaBCC-LR pave the way for more effective long-read-based metagenomics analyses to
support a wide range of applications.

Availability and implementation: The source code is freely available at: https://github.com/anuradhawick/MetaBCC-LR.

Contact: anuradha.wickramarachchi@anu.edu.au or yu.lin@anu.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics studies the genetic material of microorganisms dir-
ectly from their natural environments (Chen and Pachter, 2005).
Next-generation sequencing (NGS) technologies have enabled large-
scale studies, such as the Human Microbiome Project (The Human
Microbiome Project Consortium, 2012), to sequence different envi-
ronments while generating large amounts of short-read data.
Recovering the individual genomes present in microbial commun-
ities is a crucial step in such studies, as it aids characterization of the
function and behaviour of different species. An important step in
such analyses is to group the reads into individual bins representing
different species. Both the number of bins and the bin to which a
read belongs to have to be estimated and many binning tools have
been designed for this task.

Metagenomics binning tools are broadly of two types: (i) refer-
ence-based binning (taxonomic) and (ii) reference-free binning (tax-
onomy-independent). Reference-based binning tools make use of
features such as sequence similarity and compare them with sequen-
ces in a database of known reference genomes, e.g. LMAT (Ames
et al., 2013), MetaPhlAn (Segata et al., 2012) and Kraken (Wood

and Salzberg, 2014). Reference-based binning tools produce highly
accurate results when the dataset consists of known microbial
genomes. However, reference genomes are often unknown or in-
complete and, in such cases, these tools cannot be used. In contrast,
reference-free binning tools operate without the use of reference
databases. These tools group sequences into unlabelled bins com-
pletely based on the genomic signatures and sequencing informa-
tion. Examples include CLAME (Benavides et al., 2018), MetaProb
(Girotto et al., 2016), MrGBP (Kouchaki et al., 2019) and Opal
(Luo et al., 2019). Majority of these tools are designed and bench-
marked using short reads with very low error rates (McIntyre et al.,
2017; Pearman et al., 2019).

The use of short NGS reads is prone to ambiguous alignments or
fragmented assemblies due to repeats within individual genomes and
shared similar regions between different genomes (Pearman et al.,
2019). To overcome these limitations, the field of metagenomics has
demonstrated a rising interest towards making use of long-read data
generated by third-generation sequencing technologies, such as
PacBio and ONT, especially for metagenome assembly (Pearman
et al., 2019). However, only a limited number of studies have been
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carried out to benchmark the accuracy of binning from long and
error-prone reads (Pearman et al., 2019).

Among the binning tools which can handle long reads,
MEGAN-LR (Huson et al., 2018), Centrifuge (Kim et al., 2016) and
Kaiju (Menzel et al., 2016) perform reference-based binning where a
reference database is required for k-mer matching, indexing and
alignment. The tools MetaProb (Girotto et al., 2016) and BusyBee
Web (Laczny et al., 2017) support reference-free binning of long
reads. However, the current implementation of MetaProb (Girotto
et al., 2016) does not scale well to bin large and unknown long-read
datasets, while BusyBee Web (Laczny et al., 2017) is currently avail-
able as a web-based tool and has limits on the size of the input data-
set. To our knowledge, there is no reference-free tool that can
accurately bin large long-read datasets.

Since short reads may not contain enough species-specific sig-
nals, another approach is to assemble them into longer contigs and
use contig binning tools [e.g. MetaBAT (Kang et al., 2015, 2019),
MetaWatt (Strous et al., 2012), SolidBin (Wang et al., 2019),
MaxBin 2.0 (Wu et al., 2016), BMC3C (Yu et al., 2018) and
Autometa (Miller et al., 2019)]. However, these tools cannot be dir-
ectly applied to bin long reads by treating long reads as contigs.
First, contig binning tools require the coverage information for each
contig, but such coverage information is usually not available for a
single long read. Second, these tools use single-copy marker genes to
determine the number of bins, but long reads may be too error-
prone for such analysis and this may also result in an overestimated
number of bins (when the coverage of a genome is larger than 1).
Third, long-read datasets are much larger than contig datasets, and
these tools also are unable to address the challenge of scalability.
Therefore, there remains a need for a reference-free tool that can bin
large long-read datasets accurately and efficiently.

In this article, we design MetaBCC-LR, a scalable reference-free
binning tool to bin metagenomic long reads. MetaBCC-LR uses dis-
criminatory features, that capture species abundance and compos-
ition information, for finding the number of bins and developing a
statistical model for each bin. This is accomplished by using just a
sample of the input reads, enabling MetaBCC-LR to efficiently han-
dle large datasets. The statistical model allows us to accurately clas-
sify each long read into the bins through a maximum likelihood
framework. Our experimental results demonstrate substantial
improvements over state-of-the-art reference-free binning tools on
both simulated and real long-read datasets, using multiple evalu-
ation metrics. To evaluate how binning can improve downstream
tasks, we applied MetaBCC-LR to pre-process large long-read data-
sets and bin reads into individual bins for long-read assembly. This
not only reduced the running time and memory usage considerably
but also improved the assembly quality.

2 Materials and methods

The input set of long reads to MetaBCC-LR is sampled and two
types of feature vectors are computed for each sampled read. The
first feature is a k-mer coverage histogram and the second feature is
a trinucleotide composition profile. These two features are clustered,
after dimension reduction, in a step-wise manner to obtain the final
set of bins. Finally, the input set of long reads is classified into the
bins based on a statistical model.

The complete workflow has five steps, as shown in Figure 1. The
workflow accepts reads that are at least 1000 bp long (the reads
shorter than 1000 bp are filtered). Step 1 performs k-mer counting
for the entire dataset and builds a k-mer coverage histogram for
each sampled long read. Step 2 applies dimension reduction of the
histogram vectors and clusters long reads based on their k-mer
coverage histograms. Step 3 computes a trinucleotide composition
profile for each sampled long read. Step 4 performs dimension re-
duction of the composition profiles within each cluster and sub-
divides each cluster into smaller bins based on the profiles. Finally,
in step 5, a statistical model for each bin is built. All the long reads
are classified into bins according to the models using the reads’ k-
mer coverage histograms and trinucleotide composition profiles.

Each of these steps will be explained in detail in the following
sections.

2.1 Step 1: obtain k-mer coverage histograms for reads
Species found in metagenomic samples generally have varying abun-
dances which would result in different sequencing coverages for the
corresponding genomes. How can we infer such coverage information
of a single read? All-versus-all alignments between all the reads will
derive an estimated coverage of each read, but this approach is not
scalable to large metagenomic datasets. We estimate the coverage of
each read by breaking down the reads into k-mers (i.e. strings of length
k), and use the k-mer coverage histogram of each read for binning.

A k-mer is considered as genomic if it appears in at least one gen-
ome in the metagenomic dataset, otherwise it is considered as non-
genomic. Given a metagenomic dataset, the coverage of a k-mer is
defined as the number of times this k-mer appears in the entire data-
set. MetaBCC-LR uses the DSK (Rizk et al., 2013) tool to compute
the k-mer coverage for the entire dataset and stores the k-mers and
their corresponding counts as tuples in the form of
ðki; coverageðkiÞÞ, where coverageðkiÞ is the count of the k-mer ki in
the entire dataset. For each read, MetaBCC-LR retrieves the cover-
age of all its k-mers and builds a k-mer coverage histogram. We de-
note this feature vector by VC; in our experiments, we consider the
k-mer coverage from 1� to 320� and thus derive a vector of size 32
using an interval size of 10. Each k-mer coverage histogram is nor-
malized by the total number of k-mers in the corresponding read to
avoid any bias due to differences in read-length. Similar to previous
studies (Kolmogorov et al., 2019a; Lin et al., 2016; Ruan and Li,
2020) to process long reads, we choose the k-mer size in MetaBCC-
LR to be 15 (i.e. k ¼ 15). This k ¼ 15 choice is sufficiently large to
reduce random k-mer collisions and still fits into memory to facili-
tate efficient computations.

Although the set of genomic k-mers in a metagenomic dataset is
unknown, the coverage of a genomic k-mer correlates to the cover-
age of the unknown genome which it belongs to. It has been shown
that a high-coverage peak in the k-mer coverage histogram mainly
consists of genomic k-mers (for a sufficiently large k, e.g. k ¼ 15)
while a low-coverage peak in the same histogram typically corre-
sponds to non-genomic k-mers due to sequencing errors
(Kolmogorov et al., 2019a; Lin et al., 2016). For example, Figure 2a
plots the k-mer coverage histograms of long reads sampled from the
Zymo-1Y3B dataset (Section 3.1 has details of the dataset). It con-
sists of long reads sampled from genomes of species with low abun-
dance (15�), medium abundance (300�) and high abundance
(450�–550�). The two visible peaks around 120� and 180�–200�
in Figure 2a correspond to genomic k-mers in the medium-
abundance and high-abundance genomes, respectively. However,
genomic k-mers from low-abundance genomes get mixed with non-
genomic k-mers due to their low coverages. Figure 2a demonstrates
that long reads from genomes with different coverages exhibit differ-
ent k-mer coverage histograms. Thus, the histogram captures dis-
criminatory coverage information that is effectively used in
clustering in our next step.

2.2 Step 2: perform dimension reduction and clustering

based on k-mer coverage histograms
Before the clustering of histogram features, dimension reduction is
performed to aid visualization. Such visualization has been previous-
ly used to aid manual resolution of metagenomic data to determine
the number of bins present (Laczny et al., 2015). Similar to
Kouchaki et al. (2019), we use the popular Barnes-Hut t-distributed
Stochastic Neighbour Embedding (BH-tSNE) (Van Der Maaten,
2014). BH-tSNE is an efficient dimension reduction technique and
has been used in previous studies to bin contigs (Kouchaki et al.,
2019). Each histogram vector is reduced to two dimensions, that not
only aids visualization, but has been found to preserve the original
local data structure (locality and density), while being sufficient for
clustering (Kouchaki et al., 2019).

MetaBCC-LR uses the popular density-based clustering algo-
rithm, DBSCAN (Ester et al., 1996), to cluster the two-dimensional
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data points. We utilize the variation of nearest neighbour distance to
estimate the � parameter in DBSCAN (Satopaa et al., 2011). The ad-
vantage of using DBSCAN is that it enables clustering based on local

density and thereby discards outlier points that arise due to sequenc-
ing errors. Moreover, it automatically detects the number of
clusters.

Fig. 1. The Workflow of MetaBCC-LR

Fig. 2. (a) The k-mer coverage histograms of reads from species of different abundances in the Zymo-1Y3B dataset and (b) the clustering result after performing dimension re-

duction. Please note that colors in (a) are for illustration purposes which MetaBCC-LR is not aware of. MetaBCC-LR infers the colors (clustering result) in (b) from the mixed

signals in (a)
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Figure 2b shows the two-dimensional clustering of the histogram
vectors from reads in Zymo-1Y3B dataset after dimension reduction
using BH-tSNE and three clusters of reads inferred by DBSCAN.

Note that they correspond well to genomes with low, medium and
high coverages in Figure 2a. As seen in Figure 2a the application of

the first two steps results in long reads being well separated into
clusters such that reads in the same cluster come from genomes of
similar coverages. We further refine these clusters in the next two

steps using an independent source of information, the trinucleotide
composition of the reads.

2.3 Step 3: obtain trinucleotide composition profiles for

reads
Genomic signatures of microbes display patterns which are unique

to each species (Abe 2003). Hence, these genomic signatures have
been used in metagenomics binning. One of the widely used genomic
signatures is the oligonucleotide (k-mer for relatively small k) com-

position where studies have shown that oligonucleotide frequencies
are conserved within a species and vary between species (Wu et al.,
2016). Similar to the contigs (assembled from short reads), long

reads have sufficient length to inherit oligonucleotide composition
information of the underlying genome despite their high error rates.
Note that this is not true for short but accurate NGS reads. Figure 3
shows the violin plots of trinucleotide composition features of (a)
100 non-overlapping short reads (150 bp) and (b) 100 non-
overlapping long (PacBio) reads (10–15 kbp) simulated from the ref-
erence genome of P.aeruginosa. From Figure 3a we can see that the
trinucleotide frequencies of short reads show significant deviations
from that of their reference genomes due to their short lengths. On
the other hand, Figure 3b shows that the trinucleotide frequencies of
long reads follow a close pattern to that of the reference genome des-
pite their high error rates. Patterns similar to PacBio reads can be
seen in Nanopore (ONT) reads as well (refer to Supplementary
Section S1).

For each long read, MetaBCC-LR builds a profile vector VT con-
sisting of trinucleotide (3-mer or trimer) occurrences. Since there are
32 unique trinucleotides (combining reverse complements as well),
the resulting vectors will have 32 dimensions. The vector coordi-
nates are then normalized by the total number of trinucleotides in
the long read to avoid any read-length bias. For example, Figure 4a
shows the violin plots of trinucleotide composition profiles of long
reads obtained from the high abundance cluster in the Zymo-1Y3B
dataset from Figure 2b. Despite the high error rates, long reads
sampled from the same genome show similar trinucleotide compos-
ition patterns whereas reads sampled from different genomes show
varying trinucleotide composition patterns. Such discriminatory pat-
terns are utilized to further sub-divide the clusters obtained from
Step 2.

2.4 Step 4: perform dimension reduction and binning

based on trinucleotide composition
Similar to Step 2, MetaBCC-LR first uses BH-tSNE (Van Der
Maaten, 2014) to map the trinucleotide composition profiles to
two-dimensional vectors. Clusters of long reads derived from Step 2
are further divided into bins according to their trinucleotide com-
position profiles using DBSCAN. For example, Figure 4b shows the
two-dimensional plot of reads in the high-abundance cluster of
Zymo-1Y3B dataset after dimension reduction using BH-tSNE and
the two clusters inferred by DBSCAN that correspond to two
genomes with distinct trinucleotide composition in Figure 4a. All
the clusters obtained at this step form the final set of bins B. As
shown in Figure 1, MetaBCC-LR then bins the entire input set of
reads, not just the sampled reads, into these bins. This classification
is done by building a statistical model for each bin as explained in
Step 5.

2.5 Step 5: build models for bins and bin all the reads

according to these models
For the ith bin Bi, MetaBCC-LR builds a statistical model by calcu-
lating the mean lC

i and standard deviation rC
i for the vectors VC (i.e.

k-mer coverage histograms) and the mean lT
i and standard deviation

Fig. 3. Trinucleotide composition of (a) 100 non-overlapping short reads (150 bp)

and (b) 100 non-overlapping long reads (10–15 kbp) simulated from the reference

genome of P.aeruginosa. Short reads were simulated modelling an Illumina MiSeq

instrument with 300 bp mean read length. Error probabilities for long reads

(PacBio) are; indels 0.04, insertions 0.11 and substitutions 0.01 by default for

SimLoRD (Stöcker et al., 2016) simulator. For each read, the normalized frequen-

cies are obtained by dividing the number of occurrences of each trinucleotide in the

read by the total number of trinucleotides observed in the read

Fig. 4. (a) The trinucleotide composition of reads in the high-abundance cluster of Zymo-1Y3B dataset and (b) the binning result after performing dimension reduction. Please

note that colors in (a) are for illustration purposes which MetaBCC-LR is not aware of. Colors (clustering result) are inferred in (b) from the mixed signals in (a)
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rT
i for the vector VT

i (i.e. trinucleotide composition profile). For
each read vector �v, MetaBCC-LR computes the multivariate prob-
ability that it belongs to a bin with mean vector �l and standard devi-
ation vector �r using the following Gaussian distribution:

PDFð�v; �l; �rÞ ¼
Yj�v j

j

1ffiffiffiffiffiffi
2p
p

rj

e
�
ðxj�lj Þ2

2r2
j (1)

Here, j�vj stands for the size of each vector that we compare (i.e.
32). More specifically, a long read r, with a k-mer coverage histo-
gram VC

r and trinucleotide frequency vector VT
r , is assigned into a

bin in a maximum likelihood framework:

Bi ¼ arg maxi fPDFðVC
r ;l

C
i ; r

C
i Þ � PDFðVT

r ; l
T
i ; r

T
i Þg (2)

Finally, after assigning all the reads to the identified bins,
MetaBCC-LR will output a bin identifier for each read.

3 Experimental setup

3.1 Datasets
We used the following long-read datasets for our evaluation.

1. Oxford Nanopore GridION mock community dataset from the

ZymoBIOMICS Microbial Community Standards (Nicholls

et al., 2019) (denoted by Zymo-All). The original Zymo-All

dataset contains Nanopore (ONT) reads. Five additional PacBio

datasets (denoted by Zymo-1Y2B, Zymo-1Y3B, Zymo-2Y2B,

Zymo-2Y3B and Zymo-2Y4B) and five additional Nanopore

datasets (refer to Supplementary Section S2) are simulated using

the species found in the Zymo-All dataset.

2. Artificial Skin Microbiome datasets (NCBI BioProject number

PRJNA533970) consisting of four different mixes of five com-

mon skin bacteria with various noise levels (denoted by ASM-0,

ASM-5, ASM-10 and ASM-15). Each dataset consists of 10 000

reads which are of length 1000 bp or longer.

3. The Preborn infant gut metagenome (NCBI Accession No.

SRA052203) (Sharon et al., 2013). A PacBio dataset is simulated

using the five most abundant species with their corresponding

coverages (denoted by Sharon).

4. Simulated metagenome with 100 species (Wu et al., 2014). A

PacBio dataset is simulated using the 100 species found (denoted

as 100-genomes).

Note that simulated datasets were generated by the long-read
simulators SimLoRD (Stöcker et al., 2016) using default parameters
for PacBio reads (error probabilities: indels 0.04, insertions 0.11 and
substitutions 0.01) and DeepSimulator (Li et al., 2018) using default
parameters for ONT reads. Further details about each dataset can
be found in Supplementary Section S2.

3.2 Tools compared
We compared MetaBCC-LR with two recent reference-free binning
tools which support long reads, MetaProb (Girotto et al., 2016) and
BusyBee Web (Laczny et al., 2017). However, current implementa-
tions of MetaProb and BusyBee cannot process the entire long-read
dataset at once. Hence, we subsampled 10 000 reads from all the
datasets except for the ASM datasets to provide acceptable inputs to
MetaProb and BusyBee Web.

3.3 Evaluation criteria
Since the reference genomes for Zymo-All and ASM datasets are
available, we mapped the reads to these reference genomes using
Minimap2.1 (Li, 2018). The reads which had over 90% of the bases
mapped to a reference genome were considered for evaluation. For
the simulated datasets from known reference genomes, we used their

ground-truth label to evaluate the binning result. We determined the
precision, recall, F1 score and Adjusted Rand Index (ARI) for the
binning results of each dataset. The equations used to calculate these
evaluation metrics can be found in Supplementary Section S3.

4 Results

4.1 Binning results
We recorded the number of bins identified by each tool for all the
datasets and the values can be found in Table 1. It was observed that
MetaProb and BusyBee Web tend to produce more bins than the ac-
tual number of species present. In comparison, MetaBCC-LR was
able to identify a number closer to the actual number of species
present in all the datasets. Results of the five additional Zymo
Nanopore (ONT) datasets can be found in Supplementary
Section S4.

Figure 5 compares the precision, recall, F1 score and ARI of the
binning results of all the datasets obtained from MetaBCC-LR with
MetaProb and BusyBee Web. On average, MetaBCC-LR has the
best precision, recall, F1 score and ARI for binning long reads. Note
that MetaProb and BusyBee Web perform poorly on the ASM data-
sets when no sub-sampling is applied. This is because BusyBee Web
utilizes a pre-trained model based on a selected set of reference
genomes, whereas MetaProb requires overlapping k-mers to form
read groups which are used for clustering reads into bins. Note that
in the five simulated Zymo PacBio datasets, MetaBCC-LR improves
on precision (e.g. 6.1% average increase) with a bit of compromise
on recall (e.g. 0.5% average decrease) compared to other binning
tools.

Table 2 compares the mean and standard deviation of each
evaluation metric averaged over all the datasets for each tool.
MetaBCC-LR outperforms the other tools in all metrics. The in-
crease in F1 score and ARI is �13% and �30% respectively over
the best baseline method, MetaProb. MetaBCC-LR also has the
most consistent performance with the lowest standard deviation val-
ues (less than 10%) in all metrics.

4.2 Metagenome assembly results
To demonstrate the effect of MetaBCC-LR on metagenomics assem-
bly, we assembled all the Zymo datasets (simulated and real) and
the 100-genomes dataset individually using two popular long-read
assemblers metaFlye (Kolmogorov et al., 2019b) (available in Flye
v2.4.2) and Canu v1.8 (Koren et al., 2017) (denoted as complete as-
sembly) and also assembled the partitioned reads of the individual
bins from MetaBCC-LR using metaFlye and Canu (denoted as

Table 1. Comparison of the actual number of species present and

the number of bins identified by the tools for different datasets.

The numbers of bins closest to the actual number of species pre-

sent are highlighted in bold text.

Dataset Actual

no. of

species

present

No. of bins

identified

by MetaProb

No. of bins

identified by

BusyBee Web

No. of bins

identified by

MetaBCC-LR

Zymo-1Y2B 3 6 23 3

Zymo-1Y3B 4 7 16 4

Zymo-2Y2B 4 8 21 4

Zymo-2Y3B 5 8 18 5

Zymo-2Y4B 6 9 18 6

Zymo-All 10 13 26 8

Sharon 5 8 123 4

ASM-0 5 11 10 5

ASM-5 5 13 8 4

ASM-10 5 14 14 4

ASM-15 5 22 10 5

100-genomes 100 22 74 89
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partitioned assembly). We evaluated all the assemblies using
MetaQUAST (Mikheenko et al., 2016). Please note that binning
results from MetaProb and BusyBee Web were not assembled as
they were not able to bin the entire dataset at once.

Table 3 shows the comparison between genome fraction (total
number of aligned bases in the reference/the genome size) of com-
plete and partitioned assemblies. Applying MetaBCC-LR to bin long
reads prior to assembly (i.e. partitioned assemblies) improves the
genome fraction over the complete assemblies. One possible reason
for such improvement is that partitioned assemblies allow assem-
blers to estimate more appropriate parameters for reads in each bin
rather than applying the same parameters to the entire dataset. This
may help to recover more genomic sequences, especially for low-
abundance species.

Table 4 shows the comparison of resource usage (assembly time
and peak memory) for complete assembly and partitioned assembly.
Assembly time of partitioned assemblies includes the CPU time
elapsed for binning using MetaBCC-LR (refer to Table 6) and meta-
genome assembly. As expected, partitioned assemblies have

consumed lesser time and memory than the complete assemblies.
The reduction in resource usage is more significant in Canu assem-
blies than in metaFlye assemblies because Canu is a generic assem-
bler whereas metaFlye is a dedicated metagenomics assembler.
Table 5 shows the average improvements of the partitioned assem-
blies after using MetaBCC-LR, compared to the complete assem-
blies. We observed improvements in genome fraction with
significant reduction in time and memory usage. These results show
that MetaBCC-LR can be used to improve metagenomics assembly
by binning long reads before assembly.

4.3 Running times and memory usage
Table 6 shows the times taken by MetaBCC-LR to bin the datasets
Zymo-1Y2B, Zymo-1Y3B, Zymo-2Y2B, Zymo-2Y3B, Zymo-2Y4B
and Zymo-All. Please note that the running times for MetaProb and
BusyBee Web were not recorded. They were not able to bin the en-
tire dataset at once and running times for BusyBee Web could not be
measured since it is a web application. These factors make it chal-
lenging to conduct a fair comparison of running time.

Please note that all the steps of MetaBCC-LR are performed
using under 5 GB of peak memory. Further information about mem-
ory usage can be found in Supplementary Section S6.

5 Discussion

Our approach, MetaBCC-LR, is a two-phased binning approach to
bin noisy long reads without the use of reference databases. The first
phase uses k-mer coverage histograms and the second phase uses tri-
nucleotide composition to separate reads. The two phases are exe-
cuted sequentially. The two phases of MetaBCC-LR and the final
step of building a statistical model for each bin, they all use a sample
of the input dataset. Finally, a bin is assigned to all the reads in the
input data.

We conducted experiments to see how alternative approaches
and read assignment would affect the final binning results.
Moreover, we conducted experiments to see how subsampling
improves the scalability of MetaBCC-LR without compromising the
binning quality. Furthermore, we conducted experiments to show
the importance of MetaBCC-LR in solving real-world metagenomics
binning problems.

5.1 Alternative approaches for binning long reads
We conducted experiments on two alternative approaches: (i) separ-
ate long reads first by their trinucleotide composition and then by
their coverage (Composition first) and (ii) combining the k-mer
coverage histograms and trinucleotide composition profiles and
apply dimension reduction to bin reads (k-mer Coverage þ
Composition). Table 7 shows the comparison of results obtained for
the Zymo-2Y4B dataset using each of these methods with
MetaBCC-LR.

We observed that even though we obtained very high precision
values with the combined approach (k-mer Coverage þ
Composition), it resulted in poor recall and ARI values. Overall,
MetaBCC-LR has outperformed other alternative methods and pro-
duced better evaluation scores.

5.2 Read assignment
We conducted experiments to compare the performance of doing di-
mension reduction and binning on the entire dataset with our
method where we assign reads based on the models obtained from
doing dimension reduction and binning on the subsample of reads
from a dataset. Our method took 1 min and 19 s of wall time (on a
Linux system with Ubuntu 18.04.1 LTS, 16 GB memory and
Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz with 4 CPU cores and
8 threads) to bin and assign the reads of the Zymo-2Y4B dataset
(with a sample of 8620 reads) whereas when we performed dimen-
sion reduction and binning on the entire dataset at once, the process
did not finish even after 3 hours of wall time.

Table 2. Comparison of mean and standard deviation (STD) of each

evaluation metric averaged over all the datasets for each tool. The

best values are highlighted in bold text.

Tool Precision (%) Recall (%) F1 score (%) ARI (%)

Mean STD Mean STD Mean STD Mean STD

MetaProb 78.77 19.77 87.35 27.11 81.42 22.19 62.13 34.42

BusyBee Web 58.46 31.52 65.75 35.58 61.27 32.64 36.24 43.15

MetaBCC-LR 96.66 2.40 94.12 8.08 95.27 5.35 92.28 9.61

Fig. 5. Binning precision, recall, F1 score and ARI over different datasets
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We observed that the precision values of clustering of sampled
reads and read assignment afterwards remain similar. Initial uni-
form sampling was done to obtain a smaller representation of the
dataset considering the computational complexity of BH-tSNE.

Read assignment is labelling the unsampled reads to the bins identi-
fied from the sampled set of reads. Table 8 shows the precision and
recall of the initial sampled binning and final binning after read as-
signment for the Zymo-1Y2B, Zymo-1Y3B, Zymo-2Y2B, Zymo-
2Y3B, Zymo-2Y4B and Zymo-All datasets. Even though the preci-
sion has reduced slightly after read assignment, we obtained a sig-
nificant performance gain by using this method over doing
dimension reduction for the entire dataset.

5.3 Effect of initial sample size
We conducted experiments to check the effect of varying initial sam-
ple sizes on the final binning results. We selected sample sizes 0.5, 1
and 1.5% of reads from each of the complete simulated Zymo data-
sets to determine the number of bins and build their corresponding
statistical profiles. Then, we calculated the precision, recall, F1-
score and ARI for the binned sample of reads and the values can be
found in Supplementary Section S5. The average results obtained for
the simulated Zymo datasets for 0.5, 1 and 1.5% are shown in
Table 9 as we observed the most significant gain in performance
when the sampling size was increased from 0.5 to 1%.

We observed that the final binning precision and recall after per-
forming read assignment remains very similar for each sample size.
Finally, 1% was chosen to retain reads of very low abundant species
during the clustering process.

5.4 Separate coral genomes from its symbiont

genomes
Many adult reef-building corals are known to be supplied through a
mutually beneficial relationship with its microbial symbionts that

Table 3. Comparison of the assembled genome fraction of the different assemblies for different datasets. The best values are highlighted in

bold text.

Dataset metaFlye assembly Canu assembly

Complete (%) Partitioned (%) Complete (%) Partitioned (%)

Zymo-1Y2B 93.12 99.60 78.74 98.69

Zymo-1Y3B 93.97 99.65 78.20 98.79

Zymo-2Y2B 93.90 97.78 57.28 97.18

Zymo-2Y3B 97.35 93.44 63.53 95.66

Zymo-2Y4B 94.55 97.59 71.35 86.69

Zymo-All 86.47 88.68 68.79 85.42

100-genomes 96.99 98.33 63.93 92.33

Table 4. Comparison of resource usage between complete assembly and partitioned assembly for the Zymo datasets. The best values are

highlighted in bold text.

Dataset Performance metric metaFlye assembly Canu assembly

Complete assembly Partitioned assembly Complete assembly Partitioned assembly

Zymo-1Y2B Assembly time (h) 12.15 9.25 74.61 58.01

Memory usage (GB) 35.34 24.21 13.18 8.01

Zymo-1Y3B Assembly time (h) 15.40 11.96 86.51 78.33

Memory usage (GB) 36.53 22.16 18.43 7.85

Zymo-2Y2B Assembly time (h) 13.41 10.43 75.20 61.12

Memory usage (GB) 35.41 23.42 19.45 11.46

Zymo-2Y3B Assembly time (h) 16.51 13.49 87.22 82.93

Memory usage (GB) 35.81 23.81 22.15 7.94

Zymo-2Y4B Assembly time (h) 20.74 15.63 102.13 101.16

Memory usage (GB) 54.84 21.65 25.78 12.44

Zymo-All (Nicholls et al., 2019) Assembly time (h) 45.95 36.45 437.99 258.00

Memory usage (GB) 129.36 16.19 108.50 21.76

Note: Assembly time for partitioned assemblies includes the CPU time elapsed for binning using MetaBCC-LR and metagenomics assembly.

Table 5. Average improvement in Genome Fraction (GF) due to

MetaBCC-LR considering only the Zymo datasets.

Assembly Complete Partitioned with MetaBCC-LR

GF (%) GF (%) Memory saved (%) Time saved (%)

metaFlye 93.23 96.12 87.48 24.64

Canu 69.65 93.74 79.94 41.09

Table 6. Memory and time taken by MetaBCC-LR to bin different

datasets.

Dataset Size (GB) Wall time (h)

Zymo-1Y2B 4.2 0.24

Zymo-1Y3B 5.45 0.32

Zymo-2Y2B 4.35 0.25

Zymo-2Y3B 5.65 0.33

Zymo-2Y4B 7.15 0.40

Zymo-All 14.24 0.86

Note: Wall times are recorded for the complete binning process using 8

CPUs.
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live inside the coral cells. However, this symbiotic relationship
makes it very challenging to separate adult coral from its microbial
symbionts as they live inside the coral cells (Ying et al., 2018 and
personal communication). To evaluate the utility of MetaBCC-LR
in coral studies, we simulated a PacBio dataset using the Coral
P.lutea and its microbial symbiont Cladocopium C15 found from
the Coral and its microbial symbiont communities from the
Orpheus Island, Australia (Robbins et al., 2019) (denoted by
Coral1Symbio). Details about the dataset can be found in
Supplementary Section S2. We used MetaBCC-LR to separate the
reads of coral from its microbial symbiont, to show the importance
of our tool in solving real-world metagenomics binning problems.

Figure 6 denotes the two-dimensional plot of the read clusters
obtained from the subsample of the CoralþSymbio dataset, (a) after

separating by coverage and (b) after separating by composition.
Figure 6a shows that using coverage (k-mer coverage histograms)
has failed to separate P.lutea and Cladocopium C15 as expected due
to their similar abundance in the CoralþSymbio dataset. However,
the trinucleotide composition allows us to identify two clearly sepa-
rated clusters corresponding to P.lutea and Cladocopium C15
(Fig. 6b) because they have different trinucleotide composition.
Moreover, MetaBCC-LR resulted in precision, recall, F1 score and
ARI of 98.21, 98.21, 98.21 and 92.97% for the final binning of the
entire CoralþSymbio dataset. Hence, it can be seen that MetaBCC-
LR can be used to solve real-world metagenomics binning problems.
However, if two species have similar abundances and similar com-
position, it would be more challenging to perform binning.

6 Conclusion

In this article, we design and evaluate MetaBCC-LR, a scalable
reference-free binning tool to cluster large long-read datasets.
MetaBCC-LR uses k-mer coverage histograms and oligonucleotide
composition of the reads to estimate the number of bins and classify
the input reads to the bins. Our extensive experimental results, on
several datasets with varying coverage and error rates, show that
MetaBCC-LR outperforms state-of-the-art reference-free binning
tools by a substantial margin.

Typically, assemblers erroneously assume uniform coverages and
low abundance species tend to be ignored—that can be ameliorated
by binning reads before assembly. We indeed observe that binning
long reads using MetaBCC-LR prior to assembly improves
assembled genome fractions. Further, this is achieved along with a
considerable reduction in time and memory usage. Binning is a cru-
cial step in many metagenomics studies and the efficiency and
accuracy of MetaBCC-LR can potentially lead to improved charac-
terization of microbial communities to provide valuable biological
insights. In future, we intend to extend this work to bin reads across
multiple samples to improve the overall binning result.
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