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A priori prediction of local failure 
 in brain metastasis 
after hypo‑fractionated stereotactic 
radiotherapy using quantitative MRI 
and machine learning
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This study investigated the effectiveness of pre-treatment quantitative MRI and clinical features along 
with machine learning techniques to predict local failure in patients with brain metastasis treated 
with hypo-fractionated stereotactic radiation therapy (SRT). The predictive models were developed 
using the data from 100 patients (141 lesions) and evaluated on an independent test set with data 
from 20 patients (30 lesions). Quantitative MRI radiomic features were derived from the treatment-
planning contrast-enhanced T1w and T2-FLAIR images. A multi-phase feature reduction and selection 
procedure was applied to construct an optimal quantitative MRI biomarker for predicting therapy 
outcome. The performance of standard clinical features in therapy outcome prediction was evaluated 
using a similar procedure. Survival analyses were conducted to compare the long-term outcome of 
the two patient cohorts (local control/failure) identified based on prediction at pre-treatment, and 
standard clinical criteria at last patient follow-up after SRT. The developed quantitative MRI biomarker 
consists of four features with two features quantifying heterogeneity in the edema region, one 
feature characterizing intra-tumour heterogeneity, and one feature describing tumour morphology. 
The predictive models with the radiomic and clinical feature sets yielded an AUC of 0.87 and 0.62, 
respectively on the independent test set. Incorporating radiomic features into the clinical predictive 
model improved the AUC of the model by up to 16%, relatively. A statistically significant difference 
was observed in survival of the two patient cohorts identified at pre-treatment using the radiomics-
based predictive model, and at post-treatment using the the RANO-BM criteria. Results of this study 
revealed a good potential for quantitative MRI radiomic features at pre-treatment in predicting local 
failure in relatively large brain metastases undergoing SRT, and is a step forward towards a precision 
oncology paradigm for brain metastasis.

Brain metastasis patients still suffer from poor prognosis despite the recent advances in cancer treatment1,2. 
The treatment options for brain metastasis include radiation therapy, surgery, and systemic treatment3,4. Radia-
tion therapy may be administrated through whole brain radiation therapy (WBRT), single-fraction stereotactic 
radiosurgery (SRS), or hypo-fractionated stereotactic radiation therapy (SRT). WBRT can decrease the risk of 
distant brain metastasis, but it is associated with side effects such as cognitive dysfunction and fatigue that may 
reduce quality of life5,6. Stereotactic radiotherapy, including SRS and SRT, is often used to treat patients with 
limited number of brain metastases7. SRT is frequently administrated for larger tumours. Nevertheless, about 
20% of brain metastases progress locally after stereotactic radiotherapy8,9. A priori prediction of local failure 
outcome for metastatic brain tumours treated with radiotherapy could facilitate early therapy adjustments or 
salvage treatments that are anticipated to improve survival and quality of life of patients.
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Over the past decades, medical imaging has advanced in four distinct aspects including medical devices 
(hardware), imaging agents, standardized protocols for quantitative imaging and digital image analysis10. Radi-
omics focuses on improvements in automated quantitative image analysis. It includes systematic procedures to 
derive, organize and mine high-dimensional data from medical images for hypothesis generation/testing and 
improved decision support11,12. Several studies have demonstrated that quantitative imaging with radiomics has 
diagnostic and prognostic value in oncology with potential to increase precision in cancer management13–22. A 
number of previous studies have integrated quantitative imaging and genomic data analysis for further biologi-
cal interpretation or better patient stratification in precision oncology23–30. Such parallel analyses have revealed 
important links between radiomic features and tumour genetics31–34.

The standard imaging modality to detect brain metastasis is magnetic resonance imaging (MRI) which plays 
a crucial role in brain tumour management. Karami et al. have recently developed a radiomic framework to 
predict the local control/local failure (LC/LF) outcome in brain metastasis within three months after SRT35. 
The quantitative MRI features were derived from gadolinium-contrast-enhanced T1-weighted (CE-T1w) and 
T2-weighted-fluid-attenuation-inversion-recovery (T2-FLAIR) images acquired before and at the first follow-up 
after SRT. The framework could predict the therapy outcome with a cross-validated sensitivity and specificity of 
81% and 79%, respectively. Mouraviev et al. investigated whether MRI radiomic features in small brain metastases 
(median tumour volume of 0.12 cm3) complement standard clinical variables in predicting LC after SRS36.They 
developed predictive random forest models using MRI radiomic features and/or clinical variables. A total of 440 
features were derived from the tumour core and the peri-tumoural regions, using the CE-T1w and T2-FLAIR 
images acquired at pre-treatment. Their model with selected clinical variables could predict LC outcome with a 
mean area under the receiver operating characteristic (ROC) curve (AUC) of 0.67. They indicated that adding 
optimized MRI radiomic features to the clinical variables can result in 19% relative increase in resampled AUC. 
A recent study explored the efficacy of quantitative computed tomography (CT) biomarkers derived from treat-
ment-planning CT to predict local failure in brain metastasis treated with radiotherapy37. The predictive model 
developed in that study could predict the LC/LF outcome with an accuracy of 71% on an independent test set.

This study explored the efficacy of quantitative MRI coupled with machine learning techniques in a priori 
prediction of the LC/LF outcome in brain metastasis treated with hypo-fractionated SRT. Several predictive 
models were developed using the quantitative MRI and/or standard clinical features acquired at pre-treatment 
from 100 patients with brain metastases. The performance of the optimal models with quantitative MRI and 
clinical features were evaluated on an independent test set and compared. Further, the potential of quantitative 
MRI features in providing complementary information to improve the performance of clinical predictive models 
was investigated. Finally, the efficacy of the developed predictive models in differentiating patients in terms of 
survival was investigated and compared with those based on clinical criteria at post-treatment.

Materials and methods
Study protocol and data acquisition.  This study was conducted under the guidelines and regulations in 
accordance with institutional research ethics board approval from Sunnybrook Health Sciences Centre (SHSC), 
Toronto Canada. Imaging and clinical data were retrospectively acquired from 120 brain metastasis patients (171 
lesions) treated with hypo-fractionated SRT. The Sunnybrook research ethics board granted a permission to use 
the retrospective data in the study without individual consent. Out of the 120 patients, 82 patients had a single 
target lesions for SRT, whereas 38 patients had multiple target lesions. All patients were treated on a linear accel-
erator (LINAC) with 22.5–35 Gy of radiation dose over five fractions, depending on size of the tumour, location 
in the brain and whether there was any prior radiotherapy. The treatment protocol was uniform and standard-
ized within the institution, with a similar heterogeneity of dose in the target, prescribed at similar isodose38,39. 
Figure 1 presents an example of stereotactic radiotherapy plan with radiation isodose lines for a representative 
patient. CE-T1w and T2-FLAIR images were acquired for treatment-planning, and at follow-ups after the SRT 
on a 2–3 month schedule (up to six years) using a Philips 1.5 T Ingenia system (Best, Netherlands). The in-plane 
image resolution was 0.5 mm for both CE-T1w and T2-FLAIR images. The slice thickness was 1.5 mm and 5 mm 
for CE-T1w and T2-FLAIR images, respectively. The lesions were monitored longitudinally at follow-ups and 
the LC/LF outcome for each lesion was determined by a radiation oncologist and neuroradiologist using the 
serial imaging data. The LC/LF was defined as the outcome identified in the last patient follow-up. The RANO-
BM criteria were used to determine an outcome of LF (progressive disease) or LC (complete response, partial 
response, or stable disease) for each lesion6. Local progression was differentiated from adverse radiation effect 
(ARE) based on the report by Sneed et al.40. All cases of ARE were diagnosed based on serial imaging (includ-
ing the use of perfusion MRI), and/or histological confirmation41. Out of the 171 lesions, 108 lesions had an LC 
outcome whereas 63 lesions had LF after SRT (LF).

In this study, the performance of standard clinical variables in predicting treatment outcome was also inves-
tigated and compared with quantitative MRI features extracted from treatment-planning images. The clinical 
variables included histology, total dose of radiation (TD), number of brain metastases (NBM), location of tumour 
(supratentorium/infratentorium), maximum diameter of tumour (Max Diam), previous WBRT (yes/no), previ-
ous SRS or SRT (yes/no), and targeted systemic treatment (yes/no; for example, trastuzumab for HER2-positive 
breast cancer). Table 1 summarizes the patient characteristics.

Data pre‑processing.  The treatment-planning contours and CE-T1w and T2-FLAIR images were applied 
under supervision of an expert radiation oncologist to generate the tumour and edema masks for both images 
(Fig. 2). The tumour-margin and lesion-margin masks were generated for each lesion within the brain with up 
to 5 mm expansion around the tumour/lesion (tumour + edema) using morphological operations (the regions of 
the 5-mm margin lying outside the brain were removed from the mask). All images were resampled with a voxel 
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size of 0.5× 0.5× 0.5 mm
3 to ensure a uniform scale in all directions when extracting the 3D features. The skull 

was stripped from the images using the skull stripper module in 3D slicer42. The image intensity was normalized 
within the brain in each image after skull stripping to have zero mean and unit variance.

The patients were partitioned into two independent sets of training (100 patients with 141 lesions) and test (20 
patients with 30 lesions) using a stratified random sampling method43. The stratified random sampling method 
was used to have all parts of the data space represented similarly by both sets. The training set was applied for 
feature reduction/selection and to develop the outcome prediction models (described below), whereas the test 
set was used to evaluate the developed models independently on unseen cases.

Feature extraction.  Quantitative MRI features were derived from the tumour, edema, tumour-margin, 
and the lesion-margin areas using the Pyradiomics package in python44. A total of 800 features were extracted 
from the CE-T1w and T2-FLAIR images acquired at pre-treatment. The extracted features comprised morpho-
logical features, first-order statistics, and second-order texture features. The morphological features included 
least axis length, major axis length, flatness, elongation, minor axis length, maximum 3D diameter, maximum 
2D diameter column, maximum 2D diameter row, maximum 2D diameter slice, mesh volume, surface area, 
sphericity, surface volume ratio, and voxel volume. The morphological features of tumour/tumour-margin 
and edema/lesion-margin were extracted from the corresponding region masks associated with the CE-T1w 
T2-FLAIR images, respectively. The first-order statistics including energy, uniformity, entropy, interquartile 
range, 10-percentile, 90-percentile, kurtosis, mean absolute deviation, robust mean absolute deviation, mean, 
median, maximum, minimum, range, skewness, root mean squared, total energy, and variance were extracted 
from the intensity histograms. The texture features were extracted based on four different statistical methods 
including gray-level co-occurrence matrix (GLCM), gray level dependence matrix (GLDM), neighborhood 
gray-tone difference matrix (NGTDM), and gray-level size-zone matrix (GLSZM). For texture analysis, the gray-
level intensities in the region of interest (ROI) were quantized into bins with a fixed width of 25 such that the 
bin edges were equally spaced from zero. The scheme of the radiomic framework applied in this study has been 
presented in Fig. 2.

Feature reduction and selection.  A multi-phase feature reduction and selection process was adapted to 
construct the optimal quantitative MRI biomarkers for outcome prediction. The features were initially analyzed 
through a correlation-based analysis followed by a ranking process (described below) to reduce the number of 
redundant features for the feature selection procedure. A Pearson correlation analysis was applied to estimate the 
coefficient of determination (R2) for each feature pair. From each set of highly correlated features ( R2 > 0.8) the 
feature with the highest prediction performance on the training set was retained as the representative feature and 
the other features were eliminated. The correlation-based feature reduction decreased the number of features 
from 800 to 192. These features were subsequently ranked using the minimal-redundancy-maximal-relevance 

Figure 1.   Treatment planning CT with the radiation isodose lines for a representative patient treated with 
30 Gy in five fractions to a 2.7 cm frontal metastasis.
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(mRMR) criterion45, and the first 100 features in the list (as an upper-bound set of the appropriate features) were 
used in the feature selection procedure46. A sequential forward feature selection methodology was adapted to 
obtain the best feature set (optimal biomarker). To address the data imbalance issue during the feature selection, 
the majority class (LC) in the training set was undersampled by taking 501 random samples (without replace-
ment) with the same size of the minority class (LF). The samples of the minority class were combined and shuf-
fled with each of the undersampled subsets from the majority group to generate the balanced training subsets. 
To evaluate performance of different feature sets for feature selection, a stratified k-fold (k = 5) cross-validation 
was used on patient-level over each balanced subset, and the average cross-validated score was obtained over the 
501 subsets. The area under the curve (AUC) obtained from the receiver operating characteristic (ROC) analysis 
was applied as the score for feature selection. A similar feature selection procedure was applied for the clinical 
variable.

Outcome prediction.  A k-nearest neighbor  (k-NN) model (k = 5) was utilized with the selected features 
for LC/LF outcome prediction. Efficacy of the nearest neighbor methods in medical applications has recently 
been highlighted and explained in terms of theory and practice by Chen and Shah47. Similar to the methodology 
applied in feature selection, 501 balanced training subsets were generated to train different prediction models. 

Table 1.   Patient characteristics and SRT outcome.

Data set All Training Test

Age Range: 21–92 years
Mean: 63 years

Range: 21–92
Mean: 63

Range: 34–82
Mean: 64

Maximum diameter of tumour (Max Diam) Range: 0.4–7 cm
Mean: 2 cm

Range: 0.4–7 cm
Mean: 1.9 cm

Range: 1–6 cm
Mean: 2.2 cm

Sex

Male 48 patients (40%) 44 Patients (44%) 4 Patients (20%)

Female 72 patients (60%) 56 Patients (56%) 16 Patients (80%)

Number of brain metastases (NBM)

One lesion 42 patients (35%) 34 patients (34%) 8 patients (40%)

Two lesions 41 patients (34%) 37 patients (37%) 4 patients (20%)

Three or more lesions 37 patients (31%) 29 patients (29%) 8 patients (40%)

Histology

Lung cancer 86 lesions (50%) 71 lesions (50%) 15 lesions (50%)

Breast cancer 41 lesions (24%) 33 lesions (23%) 8 lesions (27%)

Melanoma cancer 15 lesions (9%) 15 lesions (11%) 0 lesion (0%)

Colorectal cancer 9 lesions (5%) 7 lesions (5%) 2 lesions (7%)

RCC cancer 9 lesions (5%) 5 lesions (4%) 4 lesions (13%)

Other 11 lesions (7%) 10 lesions (7%) 1 lesion (3%)

Location of tumour

Supratentorium 128 lesions (75%) 107 lesions (76%) 21 lesions (70%)

Infratentorium 43 lesions (25%) 34 lesions (24%) 9 lesions (30%)

Previous WBRT

Yes 61 lesions (36%) 51 lesions (36%) 10 lesions (33%)

No 110 lesions (64%) 90 lesions (64%) 20 lesions (67%)

Previous SRS or SRT

Yes 1 lesion (1%) 1 lesion (1%) 0 lesions (0%)

No 170 lesions (99%) 140 lesions (99%) 30 lesions (100%)

Total dose of radiation (TD) in SRT (over 5 fractions)

22.5 Gy 1 lesion (1%) 1 lesion (1%) 0 lesion (0%)

25 Gy 29 lesions (17%) 23 lesions (16%) 6 lesions (20%)

27.5 Gy 8 lesions (5%) 6 lesions (4%) 2 lesions (7%)

30 Gy 104 lesions (60%) 87 lesions (62%) 17 lesions (57%)

32.5 Gy 13 lesions (8%) 9 lesions (6%) 4 lesions (13)

35 Gy 16 lesions (9%) 15 lesions (11%) 1 lesion (3%)

Targeted systemic treatment

Yes 54 (32%) 43 (30%) 11 lesions (37%)

No 117 (68%) 98 (70%) 19 lesions (63%)

Outcome of SRT

Crude LC 108 lesions (63%) 91 lesions (65%) 17 lesions (57%)

Crude LF 63 lesions (37%) 50 lesions (35%) 13 lesions (43%)
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For each lesion in the test set, a max-voting over the 501 outcomes predicted by these models determined the 
final predicted outcome48.

Survival analysis.  The Kaplan–Meier survival curves were generated for the two patient cohorts in the 
independent test set with an LC or LF outcome49. Two independent analyses were performed using the outcomes 
identified at pre-treatment using the predictive model, and at post-treatment based on the RANO-BM criteria as 
described in Study protocol and data acquisition section (ground truth). A patient with at least one tumour with 
an LF outcome were categorized into the LF cohort. A log-rank test was used to assess for statistically significant 
differences between the survival curves of the two patient cohorts.

Results
The feature reduction/selection framework selected four radiomic features derived from treatment-planning 
CE-T1w and T2-FLAIR images as the optimal quantitative MRI biomarker for predicting outcome. The selected 
features included tumour elongation (Elongation-Tumour), GLDM gray level none-uniformity of edema in 
CE-T1w image (T1-GLDM-GLN-Edema), GLDM high gray level emphasis of tumour in T2-FLAIR image 
(T2-GLDM-HGLE-Tumour), and GLSZM large area high gray level emphasis of edema in CE-T1w image 
(T1-GLSZM-LAHGLE-Edema). Among the four features in the developed quantitative MRI biomarker, one 
describes the tumour shape, one quantifies the intra-tumour heterogeneity, and two characterize the heteroge-
neity in peri-tumoural areas (edema). Applying a similar feature selection procedure on the clinical variables 
resulted in four selected features as the best clinical feature set for outcome prediction including previous WBRT, 
targeted systemic treatment, TD, and histology.

Figure 3 illustrates the pre-treatment CE-T1w and T2-FLAIR images and the parametric maps of the three 
texture features in the developed quantitative MRI biomarker for two representative lesions, one with an LC 
and the other with an LF outcome. The parametric maps demonstrate substantial differences between the two 
lesions in terms of spatial heterogeneity within the tumour and edema. Results of outcome prediction on the 
independent test set using the radiomic and clinical features have been presented in Table 2. The predictive model 
with the optimal quantitative MRI biomarker could predict the LC/LF outcome of lesions treated with SRT with 
a sensitivity, specificity, accuracy, and AUC of 88%, 85%, 87%, and 0.87, respectively. The model with the four 
selected clinical features (best clinical feature set) could predict the outcome with a sensitivity, specificity, accu-
racy, and AUC of 62%, 65%, 63%, and 0.62, respectively. Specificity (sensitivity) in this study refers to the ratio 
of the lesions having an LC (LF) outcome that was predicted with the correct outcome by the model. Figure 4 
demonstrates the ROC curves associated with the outcome prediction models based on the best radiomic and 
clinical features, respectively.

The effects of adding clinical features to the radiomic features and vice versa for outcome prediction were 
investigated in a series of experiments. In the first set of experiments the selected radiomic features were added 
to the best clinical feature set incrementally, a new predictive model was developed, and the performance of 
the model was evaluated at each step on the independent test set. In the second set of experiments, the clini-
cal features were added to the best radiomic feature set incrementally to develop new models. The results of 
outcome prediction with these models have been presented in Table 2. The results demonstrated that adding 
radiomic features to the clinical feature set could improve the AUC by up to 16% of its original value (0.72 versus 
0.62). Particularly, incorporating the first radiomic feature (Elongation-Tumour) improved the AUC by 13%, 
and adding the second feature (T1-GLDM-GLNU-Edema) could improve the AUC by 16%. The results also 
demonstrated that adding clinical features to radiomic features does not necessarily result in an improvement 

Figure 2.   Scheme of the MRI radiomic framework for SRT outcome prediction.
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in the performance of the predictive model. Incorporating the clinical features into the optimal quantitative 
MRI biomarker developed in this study decreased the performance of the predictive model relatively by 19% 
on average in terms of accuracy.

The performance of the optimal quantitative MRI biomarker was further evaluated on the independent test 
set through risk assessment in terms of survival analysis and compared with standard clinical criteria. Figure 5 
shows the long-term survival curves of the patients in the LC and LF cohorts identified using the predictive 
model at pre-treatment, and based on the RANO-BM criteria at the last patient follow-up after SRT. The trends 
of the survival curves associated with the counterpart cohorts are similar in the two plots. The median survival 
in the cohorts identified based on the predictive model versus RANO-BM criteria was 26.2 versus 27.3 months 
for the LC, and 13.5 versus 15.6 months, for the LF. Both plots in Fig. 5 show a statistically significant difference 
(p-value < 0.05) in survival between the two patient populations (LC versus LF).

Discussion and conclusion
This study investigated the potential of quantitative MRI radiomic features to develop an a priori predictive model 
for LC/LF outcome in metastatic brain tumours undergoing hypo-fractionated SRT. The radiomic features were 
derived from the treatment-planning CE-T1w and T2-FLAIR images to quantify morphology, signal intensity, 
and spatial heterogeneity of the tumour and peri-tumoural regions. The optimal quantitative MRI biomarker was 
constructed through a multi-phase feature reduction and selection procedure and includes features extracted 

Figure 3.   CE-T1w and T2-FLAIR images and parametric maps of the texture features in the optimal 
quantitative MRI biomarker for two representative lesions with LC and LF outcomes after SRT.

Table 2.   Results of a priori outcome prediction on the independent test set.

Features Accuracy (%) Sensitivity (%) Specificity (%) AUC​

Radiomic Features: Elongation-Tumour, T1-GLDM-GLN-Edema, T2-GLDM-HGLE-Tumour, 
T1-GLSZM-LAHGLE-Edema 87 85 88 0.87

Clinical Features: Previous WBRT, Targeted Systemic Treatment, TD, Histology 63 62 65 0.62

Radiomic Features + Previous WBRT 77 69 82 0.76

Radiomic Features + (Previous WBRT, Targeted Systemic Treatment) 67 54 76 0.65

Radiomic Features + (Previous WBRT, Targeted Systemic Treatment, TD) 70 62 76 0.69

Radiomic Features + (Previous WBRT, Targeted Systemic Treatment, TD, Histology) 67 54 76 0.65

Clinical Features + Elongation-Tumour 70 69 71 0.70

Clinical Features + (Elongation-Tumour, T1-GLDM-GLN-Edema) 73 62 83 0.72

Clinical Features + (Elongation-Tumour T1-GLDM-GLN-Edema, T2-GLDM-HGLE-Tumour) 67 54 76 0.65

Clinical Features + (Elongation-Tumour, T1-GLDM-GLN-Edema, T2-GLDM-HGLE-Tumour, 
T1-GLSZM-LAHGLE-Edema) 67 54 76 0.65
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from the tumour and edema regions. Results of outcome prediction on an independent test set demonstrated that 
the radiomics-based predictive model could classify the lesions at pre-treatment with a sensitivity, specificity, and 
accuracy of 85%, 88%, and 87% respectively. In comparison, the predictive model developed with the best clinical 
feature set classified the lesions with a sensitivity, specificity, and accuracy of 62%, 65%, and 63%, respectively.

The optimal quantitative MRI biomarker developed in this study consists of four features including Elonga-
tion-Tumour, T1-GLDM-GLN-Edema, T2-GLDM-HGLE-Tumour, and T1-GLSZM-LAHGLE-Edema. Elonga-
tion quantifies the relationship between the two largest principal components in the shape of an ROI and its value 
(inverse of true elongation) is in the range [0,1]. Objects with a line and circle shape have an elongation value of 
zero (lowest value) and one (highest value), respectively. A GLDM measures gray-level dependency in an ROI. 
The gray-level dependency is defined as the number of connected voxels within a specified neighbourhood with 
little difference in gray-level intensity compared to the center voxel. The GLDM gray-level none-uniformity 
(GLN) metric quantifies the similarity of gray-level intensity values in the ROI, where a lower GLDM-GLN value 
is associated with a greater similarity in intensity values. The GLDM high gray level emphasis (HGLE) quantifies 
the distribution of the higher gray-level intensity values, with a higher value indicating a greater concentration 
of high gray-level intensities in the ROI. A GLSZM quantifies the size of gray-level zones defined as connected 
voxels with the same gray-level intensity in an ROI. The GLSZM large area high gray level emphasis (LAHGLE) 
quantifies the joint distribution of larger size zones with higher gray-level values in the ROI. Out of the four 
selected radiomic features in this study, two features quantify heterogeneity within the edema, one feature char-
acterizes intra-tumour heterogeneity, and one features describes the tumour morphology. The findings of this 
study confirm previous observations that heterogeneity in peri-tumoural areas is a crucial feature that should 
be quantified for therapy outcome prediction in brain metastasis35,36, and other malignancies14,16. Furthermore, 
the importance of tumour morphology features and especially tumour elongation for outcome prediction is 
in line with the observations in36,37. The texture features selected in this study for optimal biomarkers, were 
extracted from both T1w and T2-FLAIR images, with the second feature derived from T2-FLAIR. This implies 
the importance of both of these MRI sequences for outcome prediction in brain metastasis, and is in agreement 
with the findings of the previous studies35,36,50.

Figure 4.   ROC curves associated with the outcome prediction models based on the radiomic and clinical 
features (presented in Table 2).

Figure 5.   The survival curves of the patients treated with SRT and had lesions with LC versus LF outcome 
determined at the last patient follow-up based on the RANO-BM criteria (left), and at pre-treatment using the 
predictive model with the optimal quantitative MRI biomarker (right).
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Our results demonstrated that incorporating radiomic features into the clinical predictive model could 
improve its overall performance in predicting LC/LF (16% relative improvement in AUC). Recently, Mouraviev 
et al. also reported a 19% relative increase in AUC for outcome prediction in brain metastasis undergoing SRS 
when radiomic and clinical features were applied together, compared to the clinical features alone36. The results 
of our study, however, demonstrated that adding clinical features to a radiomic-based outcome prediction model 
does not necessarily result in an improvement in its performance. Despite utilizing clinical features, such as 
histologic subtype, size of the tumour and radiation dose that have been shown to be predictive of survival of 
patients in several brain metastases studies, the radiomic features outperformed these factors38,51,52. One pos-
sible explanation is that clinical features of the relatively large tumours investigated in this study can partially 
be described by their morphological and textural features. In other words, these features are less predictive than 
the radiomic features applied in this study, and also do not complement the radiomic model. As such, forcing 
them into the model would only increase the dimension of the feature space, hence the complexity of problem, 
and can reduce the overall performance of the model.

The efficacy of the optimal quantitative MRI biomarker developed in this study was further assessed through 
long-term survival evaluations using the Kaplan–Meier analysis. The survival curves obtained for the patients 
with an a priori LC versus LF predicted outcome demonstrated a statistically significant difference. A similar 
difference was observed between the two patient cohorts identified many months later at post-treatment using 
the RANO-BM criteria. The results imply the potential of the outcome prediction models based on quantitative 
MRI to stratify the brain metastasis patients at pre-treatment into low and high risk groups with significantly 
different long-term outcomes, consistent with those based on standard clinical criteria that are available many 
months later after the treatment.

In conclusion, the results of this study on outcome prediction and survival assessment at pre-treatment are 
promising and demonstrate a good potential of the proposed methodology in improving clinical risk assessment 
and treatment planning for brain metastasis patients. However, for further assessment of the efficacy and robust-
ness of the technique in the clinic and investigating its performance on smaller lesions and other dose/fraction 
regimens, subsequent studies are required on larger cohorts of patients and possibly with multi-institutional data.

Data availability
Data were collected and available at the Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, 
ON, Canada.
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