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SUMMARY

Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers

presents unique computational challenges. Here, we developed an efficient 13C-tracer dynamic meta-

bolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We

used B-splines to generalize the flux parameterization system and to improve the stability of the opti-

mization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely

metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular

pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased

faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than

the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux

dynamics suggests that glucose catabolism is additionally regulated beyond uptake to help shunt

glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular

fluxes to understand metabolic function and pathway regulation.

INTRODUCTION

Cellular metabolism is dynamic, responding to an ever-changing environment (Kotte et al., 2010; Wegner

et al., 2015). The cell’s metabolic network is a complex ensemble of fast and slow interacting processes,

including feedback mechanisms, but these dynamic behaviors are overlooked in a steady-state step-

change experiment (Link et al., 2015) (Figure 1A). Thus we need the ability to quantify metabolic responses

over time.

Although metabolomic data are proxy for metabolic responses (Liu and Locasale, 2017), they are not

definitive measures of pathway activities (Lee et al., 2017). For instance, when a metabolite decreases,

this could be due to reduced synthesis and/or increased degradation (Yugi et al., 2019). Thus, we

need to perform flux analysis to quantify the flow of metabolites through metabolic pathways and

subsequently reconstruct how the activity of these pathways is altered. This is now commonly accom-

plished with stable isotope 13C tracer experiments because they generate metabolite enrichment data

that have quantitative flow information embedded (Cordes and Metallo, 2016; O’Brien et al., 2015).

Fluxes that best explain the observed enrichment patterns can be deciphered by modeling, recov-

ering turnover rates and routes of synthesis from isotopically non-stationary metabolite enrichments

(Figure 1B).

However, 13C flux analysis is challenging because we need to track substrate atoms, often through an

intertwining network of reactions in central carbon metabolism (Buescher et al., 2015). Network-level

deconvolution by mainstream 13C flux analysis packages is largely limited to steady-state metabolism,

where fluxes and metabolite levels are constant. More recent software can cater for data sampled

from isotopic non-steady state conditions (i.e., metabolism remains constant but with label enrich-

ment increasing over time), but these systems are still studied in a metabolic steady-state (Kogadeeva

and Zamboni, 2016; Weitzel et al., 2013; Young, 2014). Techniques like Kinetic Flux Profiling can be

used to estimate non-steady fluxes (Alves et al., 2015; Horl et al., 2013; Yuan et al., 2008), but their

scope is limited to metabolic pathways with simple label mixing. The current state of the art to infer

1Charles Perkins Centre, The
University of Sydney, Sydney,
NSW 2006, Australia

2School of Mathematics and
Statistics, The University of
Sydney, Sydney, NSW 2006,
Australia

3School of Life and
Environmental Sciences, The
University of Sydney, Sydney,
NSW 2006, Australia

4Sydney Medical School, The
University of Sydney, Sydney,
NSW 2006, Australia

5Department of Biological
Sciences, Graduate School of
Science, University of Tokyo,
Hongo 7-3-1, Bunkyo-ku,
Tokyo 113-0033, Japan

6Institute for Advanced
Biosciences, Keio University,
Tsuruoka, Yamagata
997-0052, Japan

7AMED-CREST, AMED, 1-7-1
Otemachi, Chiyoda-Ku,
Tokyo 100-0004, Japan

8Department of
Computational Biology and
Medical Sciences, Graduate
School of Frontier Sciences,
University of Tokyo, 5-1-5
Kashiwanoha, Kashiwa, Chiba
277-8562, Japan

9CREST, Japan Science and
Technology Agency,
Bunkyo-ku, Tokyo 113-0033,
Japan

10YCI Laboratory for
Trans-Omics, Young Chief
Investigator Program, RIKEN
Center for Integrative
Medical Sciences, 1-7-22
Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa
230-0045 Japan

11Faculty of Engineering and
Information Technologies,
The University of Sydney,
Sydney, NSW 2006, Australia

Continued

iScience 23, 100855, February 21, 2020 ª 2020 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.100855&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


network-level non-steady fluxes from 13C enrichment data is to use linear piecewise affine approxima-

tions of fluxes (PWA) (Abate et al., 2012; Schumacher and Wahl, 2015).

To model curves, PWA’s workflow first breaks time-dependent fluxes into linear pieces; then the fluxes are

estimated in segments. The first task of optimizing the number and the placement of these breakpoints

uses only metabolite abundances, but not enrichments (Schumacher and Wahl, 2015), as currently there

is no elegant way to use both. This is not ideal because, in balanced flux scenarios, the metabolite levels

will appear constant despite the underlying fluxes being dynamic (Figures S1A–S1D). When optimized

A B

DC

E F

Figure 1. 13C-DFMA Performed Using B-Splines to Investigate Acute Insulin Metabolic Response

(A) Trajectories of metabolic response and information missed by steady-state measurements.

(B) The trajectory of metabolite P enrichment is a measure of pathway flux contribution and turnover rate. P is produced

from unlabeled S1 and labeled S2. Relative to baseline (black), increasing v2 flux (red) increases the speed and amount of

P enrichment. Increasing P abundance (blue) reduces the speed of P enrichment.

(C) 3T3-L1 adipocyte tracer experiment showing simultaneous addition of insulin and uniformly labeled glucose and the

subsequent sampling time points.

(D) Examples of metabolomics data collected, isotopologues of glucose 6-phosphate (G6P), and malate. Optimized

solutions shown as trend lines. Data are represented as mean G23SEM of 3 biological replicates.

(E) The optimization strategy used in 13C-DMFA to solve the inverse problem by iterative simulation of isotopologues by

estimating system’s parameters.

(F) The shape of B-splines is manipulated by controlling the coordinates of the control points (CP). More complex curves

have more CPs and are produced by increasing knots and order.

See also Figure S1.
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breakpoints are too sparse to capture the underlying curvature, the latter flux estimation will struggle to

produce a good fit.

Fluxes are estimated by least-square optimization (Wiechert et al., 2001), but this task is computationally

intensive when dealing with a regular-sized central carbon metabolism model. The tracking of tracer

atom propagations involves solving isotope balance equations. These ordinary differential equations

(ODE) form a stiff problem owing to the coexistence of very slow and very fast reactions. Implementing

non-steady fluxes worsens the situation because metabolite pool sizes are changing at different paces

as well. Any task that involves running optimization repeatedly becomes overwhelmingly slow, such as

model and data troubleshooting and sensitivity analyses by resampling. Thus, we aimed to make non-

steady-state metabolic flux analysis of stable isotope tracer data more generalized and implementable.

Here, we present a generalized computational framework for performing 13C dynamic metabolic flux anal-

ysis (13C-DMFA). The crux of our solution was using B-splines to model time-dependent fluxes (Martı́nez et

al., 2015), analogous to drawing curves in vector-based graphics. B-splines made it possible to (1) use

higher-order curves to reconstruct a variety of flux trajectories and (2) apply a more stable algorithm to

speed up flux estimation.

As a proof of principle, 13C-DMFA was applied to characterize how cultured adipocytes process glucose in

response to insulin, which stimulates protein phosphorylation within seconds and glucose uptake within

minutes (Humphrey et al., 2013; Krycer et al., 2017). We found that flux rates varied substantially between

pathways, responding to insulin with differing speeds and to differing magnitudes. The modular organiza-

tion-portrayed pathway flux dynamics suggests that glucose catabolism was not simply an autonomous

cascade driven by glucose influx. Overall, this work provides a MATLAB-based package and a workflow

to perform 13C-tracer flux analysis on non-steady-state systems.

RESULTS

Network-Level Modeling Is Required to Extract Dynamic Flux Information

We previously examined how the adipocyte metabolome changed in response to acute insulin treatment

(Krycer et al., 2017). We used 3T3-L1 cells (Green and Kehinde, 1975), a mouse embryonic fibroblast cell line

that was differentiated into adipocytes before treatment. Briefly, 3T3-L1 adipocytes were exchanged to

media containing uniformly labeled 13C6-glucose and immediately treated with or without insulin (INS

and CTRL, respectively) (Figure 1C). Lactate in the media and 27 intracellular metabolites were then

measured at six time points (1, 5, 10, 20, 40, and 60 min) after treatment by mass spectrometry (capillary

electrophoresis-time of flight and electrospray ionization-tandemmass spectrometry) and then normalized

to protein content (units: pmol/mg protein). It was obvious that insulin altered pathway fluxes, if not,

metabolite abundances (Figure 1D). Insulin increased glucose uptake rapidly, and glucose propagated

into various metabolic pathways at different speeds (Krycer et al., 2017). This was assessed by examining

the levels and 13C-enrichment of individual metabolites, treating them as separate entities.

Here, we sought to apply network-level flux modeling to understand how adipocytes process glucose in

response to insulin. Enrichment states of themetabolites were increasing in a cascadingmanner, with distal

metabolites like tricarboxylic acid (TCA) cycle intermediates enriching slower than metabolites proximal to

glucose uptake. The lag observed in the metabolite enrichments is intricately linked to how metabolic

fluxes are changing with insulin stimulation and how the metabolites are connected. Thus we applied

mass conservation principles, namely, via metabolite balance equations and isotopologue balance equa-

tions (Antoniewicz et al., 2007; Quek et al., 2010), to infer these fluxes by modeling the transfer of carbon

atoms between metabolites. As the steady-state assumption is no longer valid, this raised the challenge of

estimating time-dependent fluxes by optimization, which we address in the following sections.

Non-steady Fluxes and Near-Zero Isotopologues Make the 13C-DMFA Problem Hard to

Optimize

Generalizing for a network of reactions, the isotopologues of metabolites over time X(t) can be expressed

as a function of the metabolic fluxes v(t) and the system’s boundary conditions, namely, the initial metab-

olite concentrations c(t=0) and the enrichment of input substrates Xsubstrate. X(t) is often expressed in the

intensive form x(t)=X(t)/c(t) as isotopologue fractions; note that
P

Xq = cqand
P

x = 1. This forward prob-

lem is a system of non-linear ODEs (Dai and Locasale, 2017), which means the inverse problem of
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estimating v(t) from x(t) is solved by least-square optimization (Figure 1E). Mainstream techniques are

limited to constant v(t) and x(t), i.e., steady-state metabolism (Buescher et al., 2015; Wiechert and de Graaf,

1997), due to the computational difficulties faced when optimizing non-steady fluxes.

The crux of dynamic flux analysis is to parameterize each v(t) independently, but this creates computational

issues during the optimization. When a metabolite’s total influx and efflux are not equal (i.e., imbalanced),

the metabolite’s concentration and isotopologue abundance will increase (influx > efflux) or decrease

(influx < efflux). The allowance for imbalanced fluxes significantly increases the encounter of infeasible

points where c(t)<0 and x(t)<0 during optimization, especially when effluxes can exceed influxes. Core to

this problem is that numerically ensuring c(t)>0 does not guarantee x(t)>0, as the latter is estimated numer-

ically with smaller steps.

The risk of encountering negative is ever present despite having established c(t)>0 numerically,

because (1) most x(t) are trending toward or away from zero in a pulse tracer experiment, (2) the initial

guesses for optimization are almost always infeasible, and (3) underdetermined parameters often settle

just within the feasible envelope. Negative c(t) and x(t) are not caused by numerical or truncation errors;

in an iterative method they are still mathematically valid outputs of v(t) because efflux exceeding influx

can lead to a deficit. However, as x(t) is an intensive variable, adaptive ODE solvers cannot progress

past the point of reaching negative x(t) due to subsequent numerical instability, causing the solver

to take even smaller steps.

Currently there is no way to avoid breaching the feasible envelope when ODE solvers are used during opti-

mization. In particular, infeasible points are difficult to anticipate numerically because negative values may

only emerge when smaller steps are taken (Figure 2A). The abrupt stalling of ODE solvers causes optimi-

zations to terminate prematurely, which occurs more frequently with larger models. Thus, we considered B-

splines as an alternative, to efficiently (1) contain the optimization in the feasible space and (2) guarantee

x(t) is positive when evaluated in the feasible space.

B-Splines Provide Means to Keep Optimization in the Feasible Space

Briefly, B-splines are piecewise polynomial functions that can be expressed as basis functions (Figure 1F).

They can be used to draw any curve, directly addressing our need to parameterize time-dependent flux

trajectories in a generalized manner. B-spline computation is fast because the system can be rendered

linear, enabling the use of matrix algebra.

Here, time-dependent trajectories of fluxes v(t) and metabolites c(t) are expressed as a linear combination

of B-spline basis functions N and !N, respectively (Equations 1 and 2). N and !N are coefficient matrices

generated by the Cox-de Boor recursion formulation, using a prescribed set of time steps, knot positions,

and order of splines (e.g., 1 = constant; 2 = linear; 3 = quadratic) (Figures S1E–S1H) (Martı́nez et al., 2015;

Vercammen et al., 2014). Using the stoichiometric matrix S, a matrix representation of the metabolite

balance equations (Quek et al., 2010), c(t) is calculated analytically by integrating v(t), given the initial

metabolite concentrations c0. The B-spline construction and integration are further elaborated in Trans-

parent Methods.

vðtÞ|ffl{zffl}
flux trajectory

R 3 T

= CP|{z}
control points

R 3 j

, N|{z}
coefficient matrix

j 3 T

Equation 1

cðtÞ|ffl{zffl}
metabolite trajectory

M 3 T

= S
R
vðtÞdt

= S|{z}
stoic: matrix

M 3 R

, ½ 0 CP �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
control points

R 3 ðj + 1Þ

,

Z
N|ffl{zffl}

coefficient matrix

ðj + 1Þ 3 T

+ c0|{z}
initial conc:

M 3 T

Equation 2

for R reactions, M metabolites, T time steps, and j = (order + number of internal knots).
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Figure 2. The SBR Algorithm Overcomes Stability Issue Encountered by Conventional ODE Solvers

(A) As SBR utilizes predetermined time steps, negative isotopologues are avoided when x(t) is evaluated at the given time

steps, even though negative values are part of the true solution. ODE solvers are unable to forecast the infeasibility

because time steps are determined dynamically.

(B) Isotopologue propagation in a metabolic network is abstracted as a series of tanks andmodeled by mass conservation

equations.

(C) Schematic of the Sequencing Batch Reactors (SBR) algorithm. Each tank follows the cyclic sequence of fill, mix, and

drain. The drain step is not computed by the SBR algorithm.

(D) The schedule of the sequence shows that the ‘‘drain’’ step can be omitted because x(t+1) is an intensive value

calculated during the ‘‘mix’’ step.

iScience 23, 100855, February 21, 2020 5



Equations 1 and 2 show that we can control v(t) using just one very simple system of parameterization: the

number of control points (CP) and their XY-coordinates and order of the B-spline (Figure S1G). This system

resembles how we construct B-splines in graphic software. Note the number of knots is the number of CP

minus the B-spline order; c(t) is determined from v(t) and c0 (Equation 2). With reference to PWA, knots are

equivalent to breakpoints, the order is 2 (i.e., linear), and the formulation for v(t) and c(t) are exactly the

same. The main difference is that to model flux trajectories with greater curvature, the order of B-splines

can be increased as well instead of just the number of knots/breakpoints.

Most importantly, once the knot sequence and order of splines are prescribed, v(t) and c(t) are linear with

respect to the estimated parameters CP. This circumvents solving c(t) numerically, thus allowing the incor-

poration of c(t)>0 as linear constraints to define the feasible bounds for optimization.

Euler Method Improvised to Eliminate Negative Isotopologues

Next, we sought to eliminate negative isotopologues x(t)<0. To achieve this, first we will describe how X(t) is

calculated. Cell metabolism can be abstracted as a network of continuous stirred tank reactors, with the

contents of a tank and the flow between tanks representing the metabolite pool and their inter-conversion,

respectively (Figure 2B) (Cordes and Metallo, 2016). This abstraction can be dissected further at the sub-

molecular level, treating atoms or group of atoms of metabolites as separate tanks, for instance, to deal

with cleavage reactions.

This is accomplished by the Elementary Metabolite Unit (EMU) framework (Antoniewicz et al., 2007). Within

this framework, X(t) denotes isotopologue abundances at time t. An EMU of a metabolite is a distinct group

of the metabolite’s atoms. For example, three-carbon pyruvate can be decomposed into seven EMUs sized

from 1 to 3 (PYR1, PYR2, PYR3, PYR12, PYR23, PYR13 and PYR123, where PYRx denotes carbon X as a member of

that particular EMU). The propagation of 13C atoms through a network of isotopologues can be tracked by

mass conservation. Equation 3 represents a generalized form of the EMU balance equation, with X and x

now representing EMUs and their fractions. The EMU framework is elegant because it invokes the least

number of balancing equations and is compatible with mass spectrometry data.

dXq

dt|ffl{zffl}
EMU balance

=
dðc,xÞq

dt
=
X

ðvin,xinÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
EMU in

� xq,
X

vout|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
EMU out

for metabolite q Equation 3

where
P

Xq = cq and
P

x = 1

Equation 3 is often solved numerically using ODE solvers. The forward Euler Method (Equation 4) is the

simplest numerical approach but is sufficient to demonstrate that Xq, t+1 can become negative when the

EMU efflux term is too large. Xq, t+1<0 is difficult to avoid numerically because adaptive solvers reduce

the step size dynamically to suppress numerical error, but the sudden occurrence of negative X(t) would

destabilize the equation system and amplify numerical error as a result. This causes the ODE solver to

take even smaller steps, until the solver stalls completely because negative X(t) is indeed the solution. In

our hands, rounding negative values up to zero did not improve convergence rate of optimization. In

contrast, B-splines uses predetermined time steps and are not adjusted dynamically.

Figure 2. Continued

(E) The toy TCA cycle model used to test performance of the SBR algorithm.

(F) SBR is generally faster and convergesmore consistently at the theoretical solution thanMATLAB’s ODE45 andODE15s

solvers. Manhattan distances are used to measure deviations from the true solution, with bars showing median values.

Error bars show interquartile range of 100 replicates.

(G) Benchmarking SBR’s speed-accuracy trade-off at the scale of a real (i.e., adipocyte) model. EMUs generated by SBR

are as accurate as ODE solvers’, but will require as much computational time as ODE15s without the Jacobian, which is

slower than with the Jacobian. SSRs measure the weighted deviations of EMUs from the ‘‘true’’ measurements generated

by ODE15s (with Jacobian) using prototyping CTRL and INS solutions. Bars show median values. SBRx2.5 and SBRx20

refer to increasing SBR’s number of steps by 2.5- and 20-fold relative to the optimized SBR time steps showed in Figure 3D

(SBRx1). Error bars show interquartile range of 100 replicates.

(H) The expected error in the CTRL and INS datasets when corrupted randomly with one standard deviation noise.

(I) When optimized again using ODE15, five randomly chosen CTRL and INS solutions generated by SBR did not change

significantly relative to the rest of the SBR solutions.
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Xq; t +1 = Xq; t + Dt,
X

ðvin;t,xin;tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
influx

� Dt,xq;t,
X

vout;t|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
efflux

Equation 4

To eliminate the negative term altogether, we simply treated metabolite conversions as ‘‘sequencing

batch reactors’’ (SBR) (Figure 2C). The operation of SBR is composed of three stages, namely fill,

mix, and drain, cycled repeatedly in discrete steps to model the continuous conversion of metabolites

over time (Figure 2D). In each step, the SBR algorithm cycles through the three stages, first account-

ing for the bolus addition of new metabolites to the existing pool (fill), followed by mixing of the

new and existing metabolites (mix), and finally reducing the post-mix pool to produce the existing

pool for the next cycle (drain). The ‘‘mixing’’ equation sums the normalized EMU contributions of

source substrates ðvin;t + 1 ,cin;tÞ and the existing pool ðcq;t ,cq;tÞ at a given time step t (Equation 5).

Note that xt+1 is an intensive variable carried over to the next cycle and is calculated before the

‘‘drain’’ step.

xq;t +1 =
Xpost�mix

q;t + 1

Dt,
X

vin;t +1 + cq;t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mixing volume

=
Xpost�mix

q;t + 1P
Xpost�mix

q;t + 1

for metabolite q at time t; where

Xpost�mix
q;t + 1 = Dt,

X
ðvin;t + 1,xin;tÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{new metabolites

+ cq;t,xq;t
zfflfflfflffl}|fflfflfflffl{existing pool

Equation 5

The discretization in SBR takes advantage of how B-splines are calculated using predetermined

time steps. With the efflux term absent in Equation 5, xt+1 is always positive when Equation 5 is eval-

uated at time steps satisfying the constraint ct>0. Thus we circumvented negative values during opti-

mization as long as ct are positive at the time steps taken (Equation 2), even if solutions for c(t) or x(t)

include negative values. Despite eliminating the efflux term, mass conservation is still enforced

because the size of the existing pool cq,t is calculated analytically with respect to v(t) by B-spline

integration.

The SBR Algorithm Is Fast, Accurate, and Numerically Stable

The SBR approach was benchmarked against ODE optimization using an eight-reaction toy model repre-

senting the citric acid cycle (TCA) (Figure 2E, see Transparent Methods). Optimization solutions were

generated by solving Equation 3 using MATLAB’s ODE45 and ODE15s, and by the SBR approach using

Equation 5. All methods converged at the theoretical solution. The Manhattan distance between the opti-

mized values and the theoretical solution showed that SBR excelled by consistently converging at the op-

timum, whereas ODE solvers suffered failure rates of at least 60% (Figure 2F). The inability of the ODE

solvers to converge consistently at this toy scale, indicated by a large spread in the calculated Manhattan

distances when compared with the SBR approach, demonstrated potential optimization challenges for real

models.

SBR time steps with decreasing sizes were tested to evaluate the trade-off between the numerical accuracy

of calculating x(t) and runtime. For an SBR approach to be as accurate as ODE45, 35 steps were required,

but computation was still 10-fold faster based on the median runtime of optimizations that converged

(Figure 2F).

The above-mentioned results indicated that we have a good margin for calibrating SBR time steps

such that high/comparable computational accuracy is obtained without being slower than ODE

solvers. We next made a similar comparison, using INS and CTRL datasets. We found that to achieve

the same level of accuracy as ODE solvers, the SBR algorithm took as long as the ODE15s without the

Jacobian (Figure 2G). Matching the time taken by ODE15s with Jacobian, which was as accurate but

7- to 10-fold faster than ODE15s without the Jacobian, increased SBR errors (Figure 2G), but they

were still within the tolerance of noisy data (error <500, Figure 2H). As expected, the numerical errors

incurred for CTRL were greater than for INS because SBR time steps were calibrated using INS data-

set. We struggled to complete the optimizations when we used ODE solvers, but we showed that re-

optimizing SBR solutions using ODE15s with Jacobian neither shifted the SBR solutions significantly

nor improved the fit (Figure 2I). Thus the performance of the SBR algorithm is at least on par with

ODE solvers, but is significantly more stable.
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Using the Adipocyte Data to Design a Practical 13C-DMFA Workflow

Another advantage of the SBR approach is that it makes our workflow highly amenable to prototyping, the

iterative process of testing model-to-data fit followed by ad hoc modifications (Figure 3A). This takes

advantage of the ease to manipulate optimizations for speed over accuracy to achieve quicker learning cy-

cles to improve the model. For prototyping, the SBR time steps taken were coarse and arbitrary, 20 uniform

steps between sampling time points.

The optimization objection function (Equation 6) was defined based on isotopologue concentrations for 27

intracellular metabolites and extracellular lactate over time and the incorporation of radiolabeled
14C-glucose into glycogen and fatty acids at 60 min (Data S1). The construction and components of

Equation 6 are described in greater detail in Figure S2A and Transparent Methods. The optimization pro-

cedure implemented largely adhered to existing 13C-MFA methodologies (Quek et al., 2009) (see Trans-

parent Methods, Data S4). Briefly, CP and c0 (from Equation 2) were estimated by minimizing the sum of

squared residuals (SSR) calculated by the objective function (Equation 6), using MATLAB’s constrained

non-linear solver fmincon. Residual errors between the measured (dataexp) and simulated (datasim) were

weighted by the respective measurement errors (error weight). The objective function was scripted dynam-

ically to accommodate frequent changes during prototyping, as well as to deal with missing values and

gaps in the metabolite data (Figure S2B).

minðSSRÞ = min�
CP
c0

�X
�
dataexp � datasim
error weight

�2

Equation 6

subjected to c(t)>0, v(t)R 0

We used the adipocyte metabolite data to dictate the reconstruction of the central carbon model (Figures

3B and 4A, see Transparent Methods). Reaction pathways were assembled such that metabolites showing

significant enrichment were traceable to glucose. Redundant or alternative routes were included at first,

and subsequently marginalized by examining the fit of the candidate model against the adipocyte data (re-

sults not shown). For example, lactate had m+3 and m+2 label, but there was a lack of substantial m+3 and

m+2 labeling for glucose 6-phosphate (G6P) and phosphoenolpyruvate (PEP) respectively, suggesting that

gluconeogenic (or glyceroneogenic) flux was not significant relative to glycolysis; thus we eliminated PEP

carboxykinase. In addition, the high m+3 label in malate indicated that pyruvate anapleurosis should be

included. A single compartment model was adopted because, for adipocytes, metabolites are largely syn-

thesized or consumed in a single compartment. There is a general lack of parallel pathways that can give

rise to compartment-specific enrichment profiles. For example, as glucose and branched-chain amino

acids are the major substrates for de novo lipogenesis (Green et al., 2016), and reductive carboxylation

is negligible in adipocytes (Koh et al., 2004; Liu et al., 2016), the cytosolic synthesis of citrate from oxoglu-

tarate was omitted. Furthermore, due to the lack of compartment-specific metabolite data, it was more

conservative to use a single-compartment model to avoid overfitting. The availability of compartment-spe-

cific metabolite data in the future would enable the modeling of additional pathways such as the malate-

aspartate shuttle, which likely operates in our cell system but could not be resolved by our tracer dataset.

We also considered metabolic inputs and outputs to the reaction network, which are important to consol-

idate the metabolite data (Figure 3B). The former causes dilution of label at specific points of the network,

and the latter draws carbon out of the system to create flow through a pathway. Major inputs (glycolysis,

glutamine anapleurosis) and outputs (lactate production, aspartate catapleurosis) were specified upfront,

thenminor inputs and outputs were deduced from the data, either by inspection of the data or bymodeling

trial and error. For example, pyruvate and AcCoA influxes were found to be essential to create entry of un-

labeled substrates upstream of the TCA cycle in the CTRL dataset (Data S1). Unlabeled pyruvate can be

produced by alanine transaminase, and AcCoA, by fatty acid oxidation in the mitochondria.

The final adipocyte metabolic model used for flux estimation contained 66 reactions and 34 internal me-

tabolites; the same model was used for both INS and CTRL datasets to facilitate comparison (Data S1).

Initially, the model could not recapitulate the unlabeled (m0) fractions, which were unexpectedly high

and stable (Figure S3A). Thus, nuisance parameters were introduced ad hoc to represent ‘‘stagnant’’ par-

titions (Antoniewicz, 2018), which improved data fitting significantly as shown by a reduction in Akaike in-

formation criterion (AIC) (Figure S3B).
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B-splines can model any flux trajectory, but careful parameterization of order and knot is needed to avoid

overfitting. Thus, in parallel to model reconstruction, we tested configurations of B-splines up to orders of

three, in combination with up to three internal knots (Figure 3C, see Transparent Methods). Using AIC to

balance overfitting and underfitting, we found that the final adipocyte model was best modeled using

quadratic fluxes (order = 3) and one internal knot. This meant four CP values were used to model each

v(t). The flux model had a total of 329 estimated parameters: 66 fluxes 3 4, 37 initial concentrations, and

28 stagnant pools. In comparison, INS and CTRL dataset each has a total of 750 and 671 data points,

A

B C

D E

Figure 3. A 13C-DMFA Workflow that Incorporates a Prototyping Phase to Improve Model Fit

(A) Overview of the 13C-DMFA workflow, showing iterative input revision and prototyping, followed by optimization and

results interrogation.

(B) An abridged diagram of adipocytes central metabolism showing placement of key inputs and outputs.

(C) AIC was used to help choose the B-spline orders and number of knots used for parameter estimation chosen based on

the lowest AIC for INS. Placement of the first (blue), second (red), and third (orange) knots shown, with correspondingly

colored cubic curves marking knots’ lower envelope.

(D) SBR time step configuration of [500, 400, 200, 75, 75, 50] steps between sampling points manually chosen at the elbow

point as a good compromise between numerical accuracy and computation speed. As reference for SSR calculations, a

synthetic ‘‘error-free’’ dataset was generated by SBR using uniform 30,000-step and the best prototyping INS solution.

(E) Optimized SBR time step (red cross) still showed a good compromise between accuracy and speed when retested

against actual INS solution and synthetic data generated by ODE15s (with Jacobian). Numerical error was less than

theoretical error estimated from measurement noise.

See also Figures S2 and S3.

iScience 23, 100855, February 21, 2020 9



5 min nim05nim02 nim03
net fluxes and metabolite abundances

INSCTRL

≥40
30
20

≤10

abundance
(pmol/mg)

net flux
(nmol/mg/min)

≥100000
10000

1000
0≤10

input
output
intracellular

ACCOA

ACCOA_out

AKG

ALA

ALA_out

ASNASN_out

ASP

ASP_out CIT

  DHAP

  E4P
F16BP

F6P

  FUM

G1P

G3P

G6P

GLC

GLC_in

GLN

GLU

GLYCOGEN_out

GLYOL3PGLYOL3P_out

LACC LAC_ext

MAL

OAA

OAA_in

PEP

PG2O3

PG6

  PRPP

  PRPP_out

PYR
PYR_in

RU5P

S7P

SUCCOA   SUCCOA_in

UDPGLC

GLN_in

GLYCOGEN_in

SUCC

RU5P_in

ACCOA_in

0

0.5

1.0

R
u5

P

0

0.5

1.0

03 06003 060
time (min)time (min)

0

20

40

M
AL

0

20

40

003 060 03 06

time (min)time (min)

enolase

time (min)

flu
x

transketolase (S7P forming)

time (min)

flu
x

pyruvate carboxylase

time (min)

flu
x

flu
x

flu
x

-4

-2

0

2

4

flu
x

0

1

2

PE
P

0

1

2

003 060 03 06

time (min) time (min)
ENO αKGDH

TK G6PDH

net PC PDH

temporal fluxes
(nmol/mg/min)

average fluxes
(nmol/mg/hr)

metabolite snapshots
(pmol/mg)

fast increase in glycolysis, magnitude glycolysis >> TCA cycle

selective increase in non-oxidative PP pathway activity

increase entry of pyruvate into TCA cycle, pyruvate carboxylation > decarboxylation

INS
CTRL

m5

m1 m2 m3
m4
m0

experimental data

0

2

4

6

0

10

20

30

40CTRLINS

CTRLINS

CTRLINS

0 20 40 60
0

50

100

0 20 40 60
0

50

100

0 20 40 60
0

5

10

15

20

2PG → PEP

RU5P + RU5P ⇌ G3P + S7P

PYR + CO2 + NTP → OAA

A

B

10 iScience 23, 100855, February 21, 2020



respectively; the difference is due to missing values. Underfitting was not an immediate issue as the calcu-

lated SSRs were larger than the chi-square limit.

The final prototyping task was to calibrate the SBR time steps (see Transparent Methods). The aim of this

calibration task is to reduce numerical error incurred by our SBR algorithm; commercial ODE solvers imple-

ment adaptive step size to achieve this. Smaller time steps are needed to more accurately model faster

rates of enrichment, thus the calibration was performed on INS rather than CTRL. Briefly, based on the

best prototyping solution of INS, we substituted dataexp with c(t) and x(t) to calculate datasim. We started

with a uniform 30,000 step as upper limit and tested various SBR time steps generated by a combination of

grid search and random sampling, with a uniform 20-step set as the lower limit. Employing a strategy anal-

ogous to the Elbowmethod for clustering optima, SSRs here were used to show that [500,400,200,75,75,50]

steps between sampling time points achieved a good balance between speed and accuracy (Figure 3D).

Indeed, this configuration reflected that metabolite enrichments in the INS dataset were rapidly increasing

within the first four time points (1–20 min). When final flux results were generated, we verified that the error

incurred by this optimized set of SBR time steps was small relative to the error associated to measurement

noise (Figures 2H and 3E). Compared with the uniform 20-step used for prototyping, this time step config-

uration was 10-fold slower; a single optimization generally took 30 h to complete (CPU 3.4 GHz).

To generate flux results in parameter estimation (Figure 3A), a multi-start procedure—repeating the opti-

mization using random initial values—was implemented to address the local optimum problem of

non-linear optimization (see Transparent Methods). In parallel, the multi-start procedure also sampled

for different knot positions, because this parameter was set before the optimization. Thus, knot optimiza-

tion incorporated both metabolite abundances and enrichments, unlike PWA. SSRs were sensitive to knot

position, with CTRL knots placed early and INS knots more spread out for the lowest 20% SSRs (Figure S3C).

Despite our best efforts, we could not bring the minimum SSR for both INS and CTRL below the chi-square

limits. Visually, the estimated fluxes have reproduced the respective dataset (Data S3), but the normal

probability plots of the residual errors showed a slight departure from normality (Figure S3E). However,

the data points with high residuals did not belong to specific pathway or metabolites (see Transparent

Methods). We may have underestimated measurement uncertainties because increasing the minimum er-

ror threshold from 1% to 5% can bring SSRs down to within the chi-square limits without significantly chang-

ing the optimized solution, as the optimum solutions with 5% minimum error were still within proximity of

the original Monte-Carlo solutions (Figure S3I). The application of a blanket 1% minimum error in our

modeling strategy mainly reflects the expected instrument accuracy of determining relative enrichment

of isotopologues (<1.5%) (Buescher et al., 2015), but this does not capture biological variance. Without

any apparent systematic bias as leads to troubleshoot, we proceeded without making any further modifi-

cation. Overall, this issue raised the caveat that although estimated fluxes were generally correct, they still

contained systematic biases. Nonetheless, we have validated that our optimization approach was able to

converge at the global optimum when challenged with a synthetic INS and CTRL dataset (Figure S3D).

Last, Monte-Carlo resampling was used to evaluate the spread of the estimated parameters; this included

knot positions (Figures S3F and S3H). We generated 50 corrupted sets of metabolite data per condition,

CTRL and INS, using one standard deviation of Gaussian noise, and multi-start optimization was again

performed on each set. By resampling, we verified that 50 iterations were sufficient because the medians

and standard deviations of the estimated parameters stabilized by the first 30 iterations of sampling (Fig-

ure S3G). By 50 samples, the standard deviations of 245 of 329 parameters have stabilized within 1%

(DSDone more sample/SD). Subsequent interrogations of flux results and their distributions were based on

these 2350 solutions.

Figure 4. Temporal Fluxes Showed Differences in Dynamics and Magnitude

(A) Network map showing median temporal net fluxes and metabolite abundances.

(B) Isotopologue data and fitted solutions generated by Monte-Carlo (left column). Experimental data are represented as

mean G23SEM of 3 biological replicates. Temporal fluxes generated to recapitulate the isotopologue data showed

differences in flux dynamics (middle column). Line shows median flux and shaded area shows interquartile range from 50

Monte-Carlo replicates. The distributions of average fluxes show summarized differences in flux magnitude (right

column). Average fluxes were calculated by integrating the area under the curve from 10 to 60 min.

See also Figure S4.
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Insulin Stimulates a Heterogeneous Metabolic Response beyond Glucose Uptake

We previously established that insulin treatment rapidly increased glucose influx and directed glucose flow

in a pathway-specific manner in cultured adipocytes (Krycer et al., 2017). This was corroborated here by an

elevation inmetabolic fluxes across central carbonmetabolism by insulin, with this effect sustained over the

time course (Figure 4A). On the other hand, CTRL-treated cells exhibited initially high fluxes that decayed

rapidly without insulin (Figures 4A and 4B), likely a result of media exchange (discussed in the next section).

Examining insulin-responsive changes in flux rates (INS-CTRL), we found that glycolytic flux only took

10 min to reach a new, higher steady state at about 40 nmol/mg/h (Figure 4B, Data S2). The acceleration

rate of glycolysis was consistent with published extracellular acidification rates of insulin-stimulated 3T3-

L1 cells (Schreiber et al., 2017). If glucose influx was the sole determinant of central carbon fluxes, we would

expect that a majority of glucose-dependent (13C-labeled) pathway fluxes rise concomitantly with glycol-

ysis in response to insulin. However, branching pathways reached differing magnitudes (Figures 4B and

S4A). For instance, pyruvate dehydrogenase (PDH) flux only increased from 0.21 to 0.72 nmol/mg/h

(Figure S4A). These pathways peripheral to glycolysis also showed a more gradual ramping in response

to insulin. The flux of pyruvate carboxylase (PC), transketolase (TK), and malic enzyme (ME) took about

30–40 min to reach maximum velocity (Figures 4B and S4A). Overall, these flux differences suggest that

glucose metabolism is driven by more than just glucose influx.

Furthermore, these flux differences were not always evident from the metabolite data itself. For instance,

metabolite abundances in both oxidative and non-oxidative arms of pentose phosphate pathway rose

concurrently in response to insulin (Krycer et al., 2017), but it was TK flux that substantially increased from

near zero to 4 nmol/mg/h, with G6P dehydrogenase (G6PDH) flux remaining constant at 0.2 nmol/mg/h

(Figures 4B and S4A). Parenthetically, in contrast,ME flux increased 3.7-fold to 41 nmol/mg/h by insulin (Fig-

ure S4A), reinforcing previous findings that ME is the primary site of NADPH generation in adipocytes (Liu

et al., 2016). Overall, this demonstrates the value of calculating fluxes to quantify pathway activity.

To explore these flux changes on a broader scale, we mapped insulin-dependent changes onto the meta-

bolic network to understand how adipocytes handle imported glucose. This revealed that adjacent steps

within pathways responded similarly to insulin but differed markedly from other pathways or even other

segments within the same pathway. We reasoned that flux-controlling steps regulated this modularity.

Thus, we identified modules by unsupervised K-means clustering, generating eight optimum clusters

(Figures 5A, S5A, and S5B, see Transparent Methods). When overlayed onto the pathway map, this analysis

revealed that segments of the glycolytic pathway responded differently to insulin (Figure 5B). For instance,

the flux rates in lower glycolysis (#7) increased more rapidly than upper glycolysis (#5), the latter showing a

potential overshoot. At the border between upper and lower glycolysis, the reversible aldolase and triose

phosphate isomerase steps (#4) were very active. The punctuation of flux dynamics at GAPDH reinforced

this enzyme as a flux-controlling step of glycolysis (Shestov et al., 2014). Thus, the enzymes downstream

of glucose transport were not simply driven by glucose influx. The modular system suggested a feedfor-

ward mechanism, whereby lower glycolysis pre-emptively increased in flux before glucose transport and

upper glycolysis.

Similarly, the TCA cycle was segmented, with pyruvate situated at the interface (Faubert et al., 2017). The

series of enzymes converting 2-oxoglutarate to fumarate were clustered together (#2), demonstrating that

the TCA cycle still operated in the canonical oxidative fashion (Figure 5B). Superimposed were the large PC

and ME fluxes that were increasing together (#5), albeit more gradually, in greater magnitude than the

oxidative half of the TCA cycle. The extracellular lactate m+2 fraction was unusually large (Figure S4B)

and directly constrained the model to produce high cyclic pyruvate carboxylation-decarboxylation flux,

a process that is coupled to pyruvate carbon being scrambled/inverted at symmetrical fumarate to pro-

duce the m+2 lactate signal (10% for CTRL, 19% for INS). This futile cyclic flux around PC andME was insulin

responsive and a potential avenue for cell to generate NADPH for lipogenesis from surplus NADH by

consuming ATP.

Overall, the formation of clusters based on flux dynamics and magnitude demonstrated that adipocytes’

central carbon metabolism is more complex than just a glucose overflow driven by uptake. This suggests

that metabolic pathways are organized into modules to better coordinate diversion and utilization of

glucose.

12 iScience 23, 100855, February 21, 2020



The Effect of Media Exchange Depends on Insulin Pre-conditioning

We expected the CTRL cells to remain in metabolic steady state, but we observed non-steady fluxes in

these cells (Figure 4B). ‘‘Constant flux’’ B-splines (order = 1, knots = 0) gave high SSRs (R5,000) and AIC

flux patterns of insulin responseA

B clustering of pathway flux dynamics
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Figure 5. Adipocyte Fluxes Responded Rapidly to Insulin in a Modular Fashion

(A) Eight clusters of insulin responses grouped based on the control points of temporal flux differences (INS minus CTRL).

The control points summarize the trajectory of each flux difference into five points in time, with the vertical axis normalized

to [-1,1] using the maximum flux and the horizontal axis representing time in minutes. Black lines represent centroid

location.

(B) Network reactions were colored using cluster information based on majority. Dashed arrows represent net flux.

Metabolites and enzymes in the glycolysis pathway outlined.

See also Figure S5.
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scores (Figure 3C). Indeed, ‘‘hockey stick’’ fluxes, characterized by a high but rapidly declining flux in the

first 10 min, were required to achieve fast and early enrichment of CTRL metabolites (Data S3).

We speculated that this was due to media exchange between the pre-incubation and labeling/treatment

periods (Figure 6A) (Krycer et al., 2017), involving PBS and DMEM washes to maximize glucose labeling at

�100%. Based on CTRL fluxes, the effects of these perturbations dissipated within 10 min (Figures 4B and

S4A). We explored this further, comparing media exchange to the effects of insulin stimulation. The

abundances of central carbon metabolites under CTRL and INS conditions were analyzed using

principal-component analysis (PCA). Principal component 1 (PC1) appeared to have captured the insu-

lin-dependent evolution of metabolite levels over time (Figure 6B). Unstimulated cells CTRL-10 and

CTRL-60 formed a tight cluster relative to the plotted trajectory of INS-1 to INS-60 and were proximal to

INS-1 and INS-5. This indicated that metabolite abundances in the CTRL dataset appeared to have normal-

ized quickly after media exchange, much like the transient initial fluxes (Figure 4B). Thus the effects of me-

dia exchange were neither significant nor prolonged.

We tested whether media exchange perturbed insulin-conditioned adipocytes more than untreated (naive)

cells. Here, adipocytes were first exposed to insulin for 50 min, and then the culture media was exchanged

from 12C- to 13C-glucose-containing media 10 min before harvesting (INS-100). Effectively, except for

INS-100, all media exchanges performed were on adipocytes in the naive state (Figure 6A). The distance

between INS-600 and INS-100 indicated that the metabolic perturbations by media exchange were

significant in adipocytes with an established insulin response (Figure 6B). The direction of shift along

PC2 indicated that the perturbations were very different from insulin responses observed in naive

adipocytes. These differences, and the proximity of INS-1, INS-5, and INS-10 to the cluster of CTRL data

points, provide evidence that the flux differences between INS and CTRL data were principally insulin re-

sponses. This validates our pathway clustering approach (Figure 5A).

Examining the glycolytic metabolites, media exchange prominently increased fructose 1,6-bisphosphate,

glyceraldehyde 3-phosphate (G3P), and dihydroxyacetone phosphate levels in insulin-conditioned, but not

naive, adipocytes (Figure 6C). These metabolites are upstream of GAPDH and are enriched by exogenous

glucose (Figure 6E). This suggested that media exchange caused a constriction of glucose catabolism at

GAPDH, and the effects were more apparent when glycolytic flux was high. The reciprocal depletion

and accumulation of nucleotide tri- and monophosphates, respectively, (Figure 6C) decreased the energy

charge (Figure 6D), supporting an imbalance between upper and lower glycolysis. This resembles the

‘‘phosphate stress’’ phenomenon seen in yeast (van Heerden et al., 2014). In contrast, naive adipocytes

did not show these responses to media exchange (Figures 6C and 6D). Overall, this further demonstrated

that GAPDH is a flux-controlling step of glycolysis.

Insulin Switched Adipocytes’ Substrates to Glucose

Last, we complemented our flux analysis with carbon book-keeping, enabling us to determine the pri-

mary fates of glucose. While insulin increased the incorporation of glucose carbon into most metabo-

lites (Figure 7A), the majority ended up as lactate at 58%, followed by glycogen at 17%. Despite being

fat cells, the conversion of glucose into lipogenic acetyl-CoA, determined by radiolabeling methods,

was trivial at less than 2%, with or without insulin. Lipogenesis did not appear to be a significant

sink for NADPH to balance out the large ME flux, although our estimates appeared consistent with

previous studies (Crown et al., 2015; Green et al., 2016). Furthermore, glucose oxidation rates (incorpo-

ration of 14C-labeled glucose into CO2) were significantly smaller than the lactate production rate

(Figure 7B).

In contrast, in the unstimulated state, 52% glucose carbon consumed lingered as intracellular glucose

(22%), G3P (12%), and other metabolites (18%), with a further 33% converted into lactate (Figure 7A). We

then used the flux models to extrapolate for the fates of non-glucose substrates (see Transparent

Methods). The results showed that TCA metabolites and lactate came from a variety of sources in unstimu-

lated adipocytes, but these sources were displaced by glucose upon insulin stimulation (Figure 7C). Insulin

constricted the uptake of non-glucose substrates, namely, glutamine and pyruvate (Figure 7D). For

instance, the shift from glutaminolysis to pyruvate anaplerosis by insulin was indicated by the increase of

net pyruvate carboxylation flux (PC minus ME flux) from �1.8 to 1.5 nmol/mg/h (Figure 4B). The large inter-

conversion between pyruvate, malate, and oxaloacetate caused a significant assimilation of unlabeled
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Figure 6. The Effects of Media Exchange Exacerbated by Insulin Preconditioning

(A) Media exchange experimental design, showing the timings of media exchange and harvest, contrasted against the

main 13C-DMFA experiment. Conditioned adipocytes denoted by the prime symbol (0).
(B) PCA plot of total abundances of central carbon metabolites (in triplicates). The ellipses demarcate the two groups of

adipocytes, naive and conditioned. INS-10 did not deviate from the insulin response trajectory captured by PC1, whereas

metabolite abundances of INS-100 and INS-600 were markedly different.

(C) Heatmap compares fold changes of metabolite levels between naive and conditioned adipocytes, showing build-up

of metabolites above GAPDH and mononucleotides in conditioned adipocytes. 2,3-DPG: 2,3-bisphosphoglycerate.

(D) Energy charge ratios summarize changes of nucleotide levels, showing a significant drop in energy charge whenmedia

exchange was performed on conditioned adipocyte (INS-100 ). Data are represented as mean G SD of 3 biological

replicates.

(E) Relative enrichment of glycolytic metabolites at 10 min. INS-100 enrichments suggest that flux constriction at GAPDH

was partial and glucose was still catabolized to pyruvate.
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CO2. Overall, the analysis of substrate fates suggested that insulin treatment reprogrammed adipocytes to

preferentially catabolize glucose.

DISCUSSION

In this study, we have developed a 13C-DMFA workflow to estimate non-steady-state fluxes from temporal

tracer metabolite data. The incorporation of B-splines and SBR was instrumental to overcome the

computational challenges faced when modeling fluxes in central carbon metabolism. The built-in

algorithm can model a variety of flux trajectories (e.g., ramp, decline, sigmoidal, and even no change).

The provided MATLAB package simplifies the user’s task to input manipulation and prototyping (Figures

A

B C

D

Figure 7. Insulin Altered the Profile of Substrates’ Fates

(A) The fates of glucose carbon, showing the increased conversion of glucose into lactate and glycogen. Pie charts report

median percentages of glucose carbon contained in the various end products.

(B) The partitioning of radiolabeled glucose into end products CO2, glycerol (TAG-Gly), and fatty acid. These pools

constituted a small fraction of the glucose consumed compared with lactate efflux determined by enzymatic assay. Data

are represented as mean G SEM of 3 biological replicates.

(C) The simulated redistribution profile of adipocytes’ major substrates at 60 min. The partial penetration of glucose into

TCA cycle metabolites compared with glycolytic metabolites shows that the increase in glucose oxidation by the TCA

cycle was relatively small compared with aerobic glycolysis.

(D) Unstimulated adipocytes showed a mixed substrate profile, with insulin subsequently shifting carbon sources away

from glutamine and pyruvate to glucose. The endogenous pool represents all the metabolites present before the

addition of glucose label and is a significant carbon source. Pie charts report medians of carbon uptakes.

16 iScience 23, 100855, February 21, 2020



1E and 3A). Here, we used 13C-DMFA to mechanistically interpret adipocyte metabolite data, showcasing

that the adipocyte dynamically coordinates numerous metabolic pathways to efficiently process glucose in

response to insulin.

Our analysis revealed a heterogeneous response to insulin, with segments of metabolic pathways being

differentially regulated by insulin (Figure 5B). The different flux dynamics between upper and lower

glycolysis implicated the role of GAPDH in regulating glycolytic fluxes in an insulin-dependent manner.

This corroborates our previous observations that insulin exerts a coordinated response at multiple sites

beyond GLUT4 to regulate adipocyte metabolism (Humphrey et al., 2013; Krycer et al., 2017; Ma et al.,

2015). It extends the concept of anabolic priming, complementing the demand-driven diversion of glucose

into appropriate sinks through fast protein phosphorylation events independently of glucose supply.

Altogether, this work demonstrates the value of acute tracer experiments in generating testable hypothe-

ses pertinent to metabolic regulation.

In particular, 13C-DMFA enabled us to compare the speed andmagnitude of pathway fluxes and facilitated

detailed carbon book-keeping (Figures 4A and 7A). This revealed that glycolysis operated faster than the

TCA cycle and that a major fate of glucose was lactate, together suggesting that aerobic glycolysis is a

major metabolic trait of adipocyte metabolism. Indeed, a preference for lactate production has been

well documented in primary adipocytes (DiGirolamo et al., 1992). Furthermore, aerobic glycolysis is a

cancer hallmark (Pavlova and Thompson, 2016; Vander Heiden and DeBerardinis, 2017), and may also be

utilized here in terminally differentiated adipocytes to facilitate insulin-stimulated anabolism.

Another rationale is that lactate production enables the rate of glycolysis to be rapidly elevated inde-

pendently of other pathways (Hui et al., 2017). In our data, glycolysis achieved substantially higher

fluxes than the oxidative TCA cycle and peripheral pathways (Figure 4A), with an acceleration match-

ing the dynamics of GLUT4 trafficking (Burchfield et al., 2013) and glucose uptake (Krycer et al., 2017)

in response to insulin. Thus, aerobic glycolysis serves to cater for the large glucose influx upon insulin

stimulation.

Exploring this further, we challenged insulin-stimulated adipocytes with media exchange, finding a signif-

icant drop in energy charge. This demonstrates the importance of prioritizing ATP harvesting before ramp-

ing up glycolysis because glycolysis is an autocatalytic cycle that has inherent potential to be unstable

(Barenholz et al., 2017). GAPDH regulation is a safeguard against glycolysis stalling (van Heerden et al.,

2014), but GAPDH itself was prone to disruption when glycolytic flux was high (Figures 6C and 6D). Paren-

thetically, although fluxes were perturbed by media exchange, the effect has no bearing on previous

observations of metabolic priming based onmetabolite data (Krycer et al., 2017), because naive adipocytes

10 min after media exchange stayed on course (Figure 6B).

Collectively, this suggests that adipocyte metabolism is rewired in response to insulin to cater for the rapid

influx of glucose, diverting glucose into relevant pathways, preventing ATP stress, and perhaps utilization

of lactate dehydrogenase to maintain cytosolic redox status. Future investigations should explore how

these metabolic responses by the adipocyte change with varying glucose availability, including insulin

resistance where glucose uptake is impaired.

Overall, 13C-DMFA caters for tracer experiments examining non-steady-state metabolism, its utility

demonstrated through the temporal resolution of insulin responses at the intracellular flux level. We

envisage that 13C-DMFA can be integrated or cross-validated with other datasets, such as gene expression

and protein modification data, to dissect how enzyme levels, allostery, and post-translational modifications

interact to acutely regulate metabolism.

Limitations of the Study

Our approach provides a substantial improvement on existing approaches to quantify dynamic flux rates. None-

theless, there are future avenues for improvement. For instance, we did not achieve statistically acceptable fit as

theminimumSSRsweregreater than thechi-squarecritical value.This indicatedthepresenceof systematicbiases

in the model and/or data that were not apparent, or we have underestimated the uncertainties of the experi-

mental data. A potential source of bias was the adoption of a single-compartment model to avoid overfitting,

which can impact interpretation of labeling dynamics whenmetabolite production has significant compartment
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dependency (Buescher et al., 2015). However, the methodology itself is sound because it can find true solutions

(Figure S3D), and the use of AIC to optimize B-spline order and number of knots provided countermeasure

against overfitting (Figure 3C). Furthermore, our model can be adapted to improvements in metabolite detec-

tion, such as the incorporation of compartmentalization in metabolomics data.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The metabolic model and intracellular metabolite datasets are provided in Data S1. MATLAB scripts and

adipocyte data are made available as a GitHub repository (https://github.com/lakeeeq/OpenFLUX). The

scripts provided are for the adipocyte dataset as Data S4, but can be customized for other datasets. It is

based on OpenFLUX’s framework but can run independently (Quek et al., 2009).
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Figure S1. Simulating dynamic fluxes using B-splines, Related to Figure 1. 

(A) Toy problem to demonstrate the value of enrichment data. The flux from A to B, when re-routed from v3 
(Condition 1) to v4 and v6 (Condition 2), goes through a large C pool. 

(B) The temporal fluxes for Condition 1 and Condition 2. 

(C) Temporal metabolite abundances were identical between Condition 1 and 2. 

(D) Metabolite enrichment data can resolve the differences between Condition 1 and Condition 2 because 
isotopologue concentrations of C and P were different due to the lag introduced by the presence of a large 
unlabelled (endogenous) C pool. 

(E) The coefficient matrix N used to produce B-spline is calculated using a tree-like approach based on the 
given knot position (represented as vector 𝑡). The order of B-spline determines the number of recursion 
starting from 0. The rows of the coefficient matrix are composed N’s at the tree level where the recursion 
stops. 

(F) Knot sequence plotted on a time line. Knot multiplicity (i.e., placing as many knots as the order of spline) 
produces clamped ends such that the resulting B-spline starts and finishes at the terminal control points. 

(G) The position of knots is used to control the x-coordinate of CPs. 

(H) Graphs show N’s from panel E plotted in 7 different coloured pieces, with knot position marked as 
dashed vertical lines. Knots determine the local support of CPs; each CP’s span is shown above Ni,2(x). B(x) 
represents the final B-spline calculated by linear combination. 

  



 

Figure S2. Construction of the 13C-DMFA least-square objective function, Related to Figure 3. 

(A) The objective function is produced programmatically according to the available data. Due to instrument 
sensitivity threshold and natural isotopes, isotopologues acquired are less than what exists. Available 
isotopologues (X) were converted into apparent concentration (C’) and relative mass fractions (𝑥). The 
largest mass fraction is omitted. Simulated isotopologues were first calculated using EMUs and abundances, 
the stagnant pools, and the correction matrix (CM) for natural interferences, and then converted into 
apparent concentration and relative mass fraction using experimental data’s format. Ci,stagnant is the nuisance 
factor to account for the contribution of persistently unlabelled partition. EMUi_111111 is expressed as fractions, 
whereas EMUi_total represents isotopologue concentrations. For radiolabelled data, EMUs can be transformed 
to match 14C-glucose derived substrate contributions estimates (R). The transformation matrix T specifies 
the one-step conversion of glucose and non-glucose carbons into the EMU of interest. 

(B) INS and CTRL metabolite enrichment data sets showing the presence of missing values. 

 

  



 



Figure S3. Problems addressed during prototyping, Related to Figure 3. 

(A) The unlabelled fractions of metabolites at 60 minutes. Despite fast turnover rates, a significant fraction of 

glycolytic metabolites remained unlabelled, more so for control cultures. Data are represented as mean  
2×SEM of 3 biological replicates. 

(B) Incorporating stagnant partitions as estimated parameters in the optimisation improved fit. The best AIC 
values for each set are shown below the minimum line. 

(C) Placement of knots during prototyping. CTRL knots were sensitive to SSRs and were placed earlier than 
INS. 

(D) When challenged with corrupted INS and CTRL synthetic datasets, the optimisation procedure returned 
minimum SSRs that were consistent with noise residuals, and reproduced actual knot position. This meant 
that enrichment data simulated using optimised parameters did not deviated from true values more than 
biases introduced by measurement errors. 

(E) Normal probability plots of the residual errors from the best INS and CTRL solution. The departure from 
normality suggested some presence of systematic bias (poor model–data fit) and/or non-independent 
measurements. 

(F) Illustrating the Monte-Carlo resampling process, whereby input data is repeatedly corrupted and solved 
for optimum solution to quantify the variance of the estimated parameters. 

(G) Simulated distributions of the change (gradient) in standard deviations and medians as sample size is 
increased. Gradients were mostly near zero when sampling size was 30 or above. This confirms that 
resampling size of 50 was sufficient establish stable estimates of 𝑣(𝑡) and 𝑐(𝑡). 

(H) Placement of knots from the 50 flux models for each condition. Knots are mostly away from the lower and 
upper bounds, suggesting that knot range determined in Panel C contains the optimum. Knots for CTRL 
were the densest around 12 minutes (0.2), which can be attributed to the transient effects caused by media 
exchange. 

(I) Increasing the threshold for minimum error from 1% to 5%. The PCA plot shows that the re-optimised 
solutions (at 5% min error) was not very different compared our existing Monte-Carlo solutions and the 
original optimum solutions. At 5%, the best SSRs for both CTRL (385) and INS (384) were just under the chi-
square cut-off (385 for CTRL, 469 for INS). 

 

  



 

Figure S4. Additional information related to flux results. Related to Figure 4. 

(A) Temporal and average fluxes of key pathway enzymes. Actual fluxes were shown, apart from the net 
transketolase flux (in the S7P forming direction). Line shows median flux, shaded area shows interquartile 
range from 50 Monte-Carlo replicates. 

(B) Isotopologues of extracellular lactate, showing the increase in m+0, m+2 and m+3 fractions over time. 
The graphs highlight the increase in m+2 fraction in INS, which informed the high pyruvate-oxaloacetate-
malate conversion. The increase in m+0 fraction in CTRL showed that lactate was predominant produced 

from non-glucose sources. Data are represented as mean  2×SEM of 3 biological replicates 



 

 

Figure S5. Clustering of temporal flux differences, Related to Figure 5. 



(A) Heat map and clustergram show clustering information from the temporal flux differences between INS 
and CTRL. To generate flux differences, 500 random but non-redundant pairs were generated between the 
50 flux models from both conditions; each model is paired exactly 10 times. Rows and columns were 
arranged based on the flux parameters (row) and INS-CTRL pairs (column) dendrograms. The colours used 
matches the eight clusters shown in Figure 5. The number of members in a cluster shown below heat map. A 
flux parameter can be associated to more than one cluster, but were assigned to a cluster (colour on the 
pathway map Figure 5B) based on majority. Net reactions are indicated (bold). 

(B) Silhouette plots were used to determine optimum number of clusters based on squared Euclidean 
distance. Eight clusters produced the largest silhouette score. 

 

  



Transparent Methods 

Key resource table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, Peptides, and Recombinant Proteins 

D-[UL-13C6]-glucose Omicron Biochemicals Cat# GLC-082; CAS 110187-42-3 

D-[14C(U)]-glucose Perkin Elmer Cat# NEC042X001MC 

Insulin from bovine pancreas Sigma-Aldrich Cat# I5500-1G; CAS 11070-73-8 

L-Methionine sulfone Alfa Aesar Cat# A17027; CAS 7314-32-1 

2-(N-morpholino) ethanesulfonic acid Sigma-Aldrich Cat# 69889; CAS 145224-94-8 

D-Camphor-10-sulfonic acid Wako Cat# 037-01032; CAS 21791-94-6 

Critical Commercial Assays 

Pierce BCA protein assay kit Thermo 23225 

Glycerol assay kit Sigma Cat# FG0100 

Glucose assay kit Thermo Cat# TR15221 

   

Experimental Models: Cell Lines 

Mouse: 3T3-L1 cells Howard Green - 

Software and Algorithms 

MATLAB MathWorks R2017b (9.3.0.713579) 

Gurobi Optimizer Gurobi Optimization version 7.5, win64 

Other 

   

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the 
Lead Contact, Lake-Ee Quek (lake-ee.quek@sydney.edu.au). 

Experimental model and subject details 

3T3-L1 cells 

3T3-L1 fibroblasts were maintained as described previously (Fazakerley et al., 2015). Briefly, cells were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) foetal bovine serum 
(Life Technologies) and 2 mM GlutaMAX (Life Technologies) at 37 °C with 10% CO2. Differentiation was 
induced at 100% confluence by addition of 250 nM dexamethasone, 350 nM insulin, 0.5 mM 3-isobutyl-1-
methylxanthine and 400 nM biotin for 72 h (all of these reagents were from Sigma-Aldrich). Cells were then 
incubated in media containing 350 nM insulin for a further 72 h, and refreshed with naïve media every 2 d 
after. Adipocytes were used between days 9-12 after initiation of differentiation. We confirmed by visual 
inspection that at least 90% of the 3T3-L1 fibroblasts had differentiated into adipocytes prior to experiments. 
These cells were routinely tested for mycoplasma infection. 

Unless otherwise specified, prior to insulin stimulation treatments, cells were washed three times with 
phosphate-buffered saline (PBS) and incubated in serum-starvation media: serum-free DMEM containing 
0.2% (w/v) bovine serum albumin (BSA, Bovostar) and 2 mM GlutaMax. 

Method details 

CE- or IC-coupled MS metabolomics 

Following treatment in 6-well plates, cells were washed twice with cold 5% (w/v) mannitol on ice and lysed in 
500 µl cold methanol containing 25 µM internal standards (L-methionine sulfone, 2-(N-morpholino) 
ethanesulfonic acid, D-camphor-10-sulfonic acid). Two wells (on separate plates) were scraped and pooled 
for each sample. Polar metabolites were extracted from 400 µl lysate with 200 µl water and 400 µl 
chloroform, passing 400 µl of the aqueous phase through a 5 kDa-cutoff spin-filter column (Millipore). The 
filtrate was dried using a vacuum centrifuge and resuspended in 25 µl water containing 200 µM reference 
compounds (3-aminopyrrolidine, trimesic acid) prior to analysis by MS. 



All CE-TOFMS experiments were performed using an Agilent 1600 Capillary Electrophoresis system (Agilent 
technologies, Waldbronn, Germany), an Agilent G1969A LC/MSD TOF system (Agilent technologies, Santa 
Clara, CA), an Agilent 1100 series isocratic HPLC pump, a G1603A Agilent CE-MS adapter kit and a 
G1607A Agilent CE-electrospray ionization (ESI)-MS sprayer kit. In anionic metabolites analysis, ESI sprayer 
was replaced with a platinum needle instead of initial stainless steel needle (Soga et al., 2009), otherwise 
other conditions related to CE-ESI-MS sprayer were identical. For CE-MS system control and data 
acquisition, we used Agilent MassHunter software. 

For anionic metabolome analysis, a COSMO(+) capillary (50 µm i.d. x 105 cm, Nacalai Tesque, Japan) filled 
with 50 mM ammonium acetate (pH 8.5) as the electrolyte was used (Soga et al., 2009). Before to the first 
use, a new capillary was flushed successively with the electrolyte, 50 mM acetic acid (pH 3.4), and then the 
electrolyte again for 10 min each. Before each run, the capillary was equilibrated by flushing with 50 mM 
acetic acid (pH 3.4) for 2 min and then with the electrolyte for 5 min. Sample was injected at 50 mbar for 30 s 
and a negative voltage of 30 kV was applied. The temperature of the capillary and sample tray was 
maintained at 20 °C and 4 °C, respectively. Ammonium acetate (5 mM) in 50% (v/v) methanol/water solution 
that contained 0.1 µM hexakis(2,2-difluoroethoxy)phosphazene was delivered as sheath liquid at 10 µL/min. 
ESI-TOFMS was operated in the negative ion mode, and the capillary voltage was set at 3.5 kV. The 
nitrogen nebulizer pressure was set at 10 psig and the nitrogen drying gas was set at 300 °C with a flow rate 
of 10 L/min. In TOFMS, the fragmentor, skimmer, and Oct RF voltages were set at 100, 50, and 200 V, 
respectively. Automatic recalibration of each acquired spectrum was performed using the masses of 
reference standards ([13C isotopic ion of deprotonated acetate dimer (2CH3COOH−H)]−, m/z 120.03834 and 
([hexakis(2,2-difluoroethoxy)phosphazene + deprotonated acetate(CH3COOH−H)]−, m/z 680.03554). Exact 
mass data were acquired at the rate of 1.5 cycles/s over a 50 to 1000 m/z range. 

For cationic metabolome analysis, a fused-silica capillary (50 µm i.d. x 95 cm) filled with 1 M formic acid as 
the electrolyte was used (Soga and Heiger, 2000). A new capillary was flushed with the electrolyte for 20 
min, and the capillary was equilibrated for 4 min by flushing with the electrolyte before each run. Sample 
solution was injected at 50 mbar for 3 s and a positive voltage of 30 kV was applied. The temperature of the 
capillary and sample tray was maintained at 20 °C and 4 °C, respectively. Methanol/water (50% v/v) 
containing 0.1 µM hexakis(2,2-difluoroethoxy)phosphazene was delivered as sheath liquid at 10 µL/min. ESI-
TOFMS was operated in the positive ion mode, and the capillary voltage was set at 4 kV. The nitrogen 
nebulizer pressure was set at 10 psig and the nitrogen drying gas was set at 300 °C with a flow rate of 10 
L/min. In TOFMS, the fragmentor, skimmer, and Oct RF voltages were set at 75, 50, and 125 V, respectively. 
Automatic recalibration of each acquired spectrum was performed using the masses of reference standards 
([13C isotopic ion of protonated methanol dimer (2CH3OH+H)]+, m/z 66.06306) and ([hexakis(2,2-
difluoroethoxy)phosphazene + H]+, m/z 622.02896). Exact mass data were acquired at the rate of 1.5 
cycles/s over a 50 to 1000 m/z range. 

Furthermore, analysis of glucose was performed by CE-QqQMS analysis as described previously with slight 
modifications (Klampfl and Buchberger, 2001). Briefly, an Agilent 6410 Triple Quad LC/MS system was used, 
with other instruments being identical to those for CE-TOFMS analysis. A fused-silica capillary (50 µm i.d. x 
100 cm) filled with 300 mM diethylamine as the electrolyte was used. A new capillary was flushed with the 
electrolyte for 20 min, and the capillary was equilibrated for 5 min by flushing with the electrolyte before each 
run. Sample solution was injected at 50 mbar for 9 sec and a positive voltage of 20 kV was applied. The 
temperature of the capillary and sample tray was maintained at 20 °C and 4 °C, respectively. 
Isopropanol/water (80% v/v) containing 0.2% (v/v) diethylamine was delivered as sheath liquid at 4 µL/min. 
ESI-MS/MS was conducted in the negative mode, and the capillary voltage was set at 3.5 kV. The nitrogen 
nebuliser pressure was set at 7 psig and the nitrogen drying gas was set at 300 °C with a flow rate of 10 
L/min. The MRM parameters for the internal standards (D-camphor-10-sulfonic acid, 2-(N-morpholino) 
ethanesulfonic acid) and glucose (unlabelled and labelled) are optimised using the optimiser function for the 
MassHunter software. 

In addition, analysis of succinate and methylmalonate was performed by capillary ion-chromatography(IC)-
coupled MS. Capillary IC-MS analysis were performed using a Dionex ICS-5000+ system equipped with a Q 
Exactive Orbitrap MS system (Thermo Fisher Scientific, San Jose, CA). Separations were performed on a 
Dionex IonPac AS11-HC-4 µm column (0.4 × 250 mm, 4 µm; Thermo Fisher Scientific) that was maintained 
at 35 °C, and the flow rate was 20 µl/min. The samples used for CE-MS were 10-times diluted with Milli-Q 
water and 0.4 µl were injected on column. The concentration gradient of KOH were as follows; 1 mM from 0 
min to 2 min, 20 mM at 16 min, 100 mM at 35 min and then retained at the same concentration until 40 min, 
followed by decreasing to an initial concentration within 0.1 min and kept for 5 min. Total analysis time was 
45.1 min. Isopropanol containing 0.1% (v/v) acetic acid was delivered as the sheath liquid at 5 µl/min. 

Q Exactive mass spectrometer was operated under an ESI negative ion mode, and the spray voltage was 
set at 4.0 kV. The capillary temperature was 300 °C, sheath gas flow rate was 20, the auxiliary gas flow rate 
was 10, the sweep gas flow rate was 0, and the S-lens was 50 (arbitrary units). The parameters of the full 



MS scan were as follows: resolution, 70,000; auto gain control target, 1×106; maximum ion injection time, 
100 ms; scan range, 70 to 1,000 m/z. The instrument was calibrated at the beginning of each sequence 
using the calibration solution provided by the instrument manufacturer.  

The raw data obtained by both CE-TOFMS and CE-QqQMS were processed using MasterHands (Hirayama 
et al., 2009; Sugimoto et al., 2010). The peaks were identified by matching m/z values and normalised 
migration times of corresponding authentic standard compounds. The raw data obtained by capillary IC-MS 
were analysed using TraceFinder (ver. 3.2) software. Summarised data provided (Data S1). 

Extracellular lactate by LC-MS 

20L of adipocyte culture media was combined with 80L of extraction buffer containing 1:1 (v/v) mixture of 
LC-MS grade methanol and acetonitrile and 0.25uM D-camphor-10-sulfonic acid internal standard. Mixture 
was vortexed and then centrifuged to pellet the precipitates. The supernatant was dried to completion using 

Eppendorf Vacufuge, resuspended in 20L H2O and transferred into HPLC vials. LC-MS analysis was 
performed using an Agilent Infinity 1260 LC coupled to an AB Sciex QTRAP 5500 MS. LC separation was 

achieved on a Synergi 2.5 m Hydro-RP column (Phenomenex, 2.1 mm I.D., 100 mm length) at ambient 
temperature using buffer A 95:5 (v/v) water:acetonitrile containing 10mM tributylamine and 15mM acetic acid 

(pH 4.9), and buffer B 100% acetonitrile. Injection volume was 2.5 L. MS source temperature was set at 

350 C. MRMs were calibrated to include lactate isotopologues, and acquisition was performed with a 40 ms 
dwell time. Calibration standards were injected using the same set up. Raw data was extracted into text files 
using ProteoWizard. Peak alignment and integration were performed using in-house MATLAB scripts. 

Glucose consumption assay 

Following treatment, the plate of cells was chilled on ice and media was removed. Media was centrifuged at 
2000 x g to remove debris and glucose content was measured using the glucose oxidase kit. Naïve 
treatment media was included as a control. Glucose consumption was determined by subtracting the glucose 
content of the conditioned media from the naïve media. 

Lactate secretion assay 

For media measurements, following incubation, the plate was placed on ice and an aliquot of media was 
removed. The media was assayed for lactate content as described previously (Prabhu et al., 2013). Briefly, 
an aliquot was diluted in water (100 μl total) and incubated with 100 μl assay buffer (1 M glycine pH 9.2, 0.4 
M hydrazine in 1.2 M NaOH, and 2.5 mM EDTA, adjusted to pH 9.2 with NaOH prior to addition of 4 mM 
NAD+ and 2 U/ml lactate dehydrogenase). Following incubation at room temperature for at least 1 h, the 
absorbance of NADH was measured at 340 nm. The media was assayed for glucose content using the 
glucose oxidase kit (Thermo Fisher Scientific) (Krycer et al., 2017). In both assays, naïve treatment media 
was included as a control. 

Glycogen assay 

Following treatment, glycogen was harvested as described previously (Thompson et al., 2000; Van Handel, 
1965). Briefly, the plate of cells were quenched by washing thrice with ice-cold PBS, after which the plate 
was aspirated dry and frozen at -20 °C. The plate was thawed on ice and each well was scraped in 200 μl of 
1 M KOH. Following the addition of 75 μl saturated Na2SO4 and 1.8 ml ethanol, lysates were vortexed briefly 
and centrifuged at 16000 x g and 4 °C for 15 min. The supernatant was removed and pellet resuspended in 
180 μl water using the ThermoMixer C (Eppendorf) at 1000 rpm and 70 °C. Ethanol (1.62 ml) was added, the 
mixture was vortexed briefly and centrifuged at 16000 x g and 4 °C for 15 min. The supernatant was 
removed and the pellet was dissolved in 400 μl water using the ThermoMixer C (Eppendorf) at 1000 rpm and 
70 °C. Samples were assessed for radioactivity by liquid scintillation counting. 

Radiolabelling experiments 

Cells were initially serum-starved for at least 1.5 h in DMEM buffered by HEPES (20 mM, pH 7.4), 
supplemented with 0.2% (w/v) bovine serum albumin, 25 mM glucose, 1 mM GlutaMAX, and 1 mM 
glutamine. Cells were then incubated in the same media, except supplemented with 10 mM glucose and [U-
14C]-glucose (1 μCi/ml). A lower glucose concentration was used to increase the specific activity of the 
radiolabelled glucose. Cells were incubated at 37 °C in a non-CO2 incubator for these experiments. 

For glucose oxidation experiments, cells were assayed as described previously (Krycer et al., 2018). Briefly, 
immediately upon addition of radiolabelled media and insulin (100 nM) treatment, gas-traps containing NaOH 
were installed and plates were sealed. Following incubation, the contents of each well was acidified with 
perchloric acid and plates were re-sealed. After at least 1 h, the NaOH in the gas-traps was assayed for 
radioactivity by liquid scintillation counting. Cell-free controls were performed to account for any cell-
independent, tracer batch-dependent changes in signal. 



For lipogenesis experiments, cells were assayed as described previously (Krycer et al., 2018). Following 
incubation with radiolabelled medium, cells were washed thrice with ice-cold PBS and plates were frozen dry 
at -30 °C. Plates were then thawed and cells were scraped in ice-cold 0.6% (w/v) NaCl. An aliquot was 
solubilised with addition of 0.1 vol of 10% (w/v) SDS and protein content was quantified by the BCA assay. 
The lipids were extracted from the remainder using CHCl3:MeOH (2:1)(Folch et al., 1957). An aliquot was 
evaporated to dryness and radioactivity was assayed by liquid scintillation counting. The remainder was 
evaporated to dryness and saponified: first, 1.5 ml of 1 M KOH was added and samples were incubated at 
70 °C for 15 min. 1 ml EtOH was then added and samples were incubated at 70 °C for 2 h. Following 
saponification, 0.25 ml of 9 M H2SO4 was added, and free lipids were isolated by 3 rounds of petroleum 
ether extraction (Stansbie et al., 1976). Lipids were then washed with 2.5 ml water to remove any 
contaminating aqueous metabolites, involving mixing with water, freezing and decanting the upper (organic) 
phase. The organic fraction was then evaporated to dryness and radioactivity was assayed by liquid 
scintillation counting. The saponified sample provided an estimate of glucose incorporation into fatty acids, 
whereas the difference between the saponified and unsaponified samples provided an estimate of glucose 
incorporation into the glycerol backbone of triacylglycerides. Naïve 0.6% (w/v) NaCl was processed in 
parallel to account for any background signal. 

B-spline construction 

A B-spline curve of nth order with clamped ends is constructed from linear combination of j ≥ n pieces of 
polynomials of degree < n (i.e., constant n =1, linear n = 2, quadratic n = 3, cubic n = 4) (Equation S1). The 
polynomial pieces (Figure S1H), or basis functions (Ni,n-1), are derived from the Cox-de Boor recursion 
formula (Equation S2, Figure S1E). There are j + n knots (or breakpoints), and j – n internal knots. Internal 
knots control the span of the polynomial pieces when j > n. t1, t2,…, tj+n are the series of knots, and can be 
placed over the domain [0, 1] or scaled to real-time (e.g., 60 minutes) (Figures S1G). A clamped-ends B-
spline curve passes through the two flanking CP values, CP1 and CPj. This is achieved using knot 
multiplicity, where t1 = t2 = … tn and tj+1 = tj+2 = … = tj+n (Figure S1F). 

𝐵(𝑥) = ∑ (𝐶𝑃𝑖 ∙ 𝑁𝑖,𝑛−1)
𝑗
𝑖=1  Equation S1 

𝑁𝑖,0(𝑥) = {
1 
0
 𝑖𝑓 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑁𝑖,𝑘(𝑥) =
𝑥−𝑡𝑖

𝑡𝑖+𝑘−𝑡𝑖
𝑁𝑖,𝑘−1(𝑥) +

𝑡𝑖+𝑘+1−𝑥

𝑡𝑖+𝑘+1−𝑡𝑖+1
𝑁𝑖+1,𝑘−1(𝑥) Equation S2 

𝑘 = 0,1,⋯ , 𝑛 − 1  

𝑖 = 1,2,⋯ , 𝑗 + 𝑛 − 1  

𝑡 = [𝑡1 ⋯ 𝑡𝑗+𝑛] 

Knot position define the local support of a CP (Figure S1H); it dictates the segment of the spline where a 
particular CP has non-zero contributions. More importantly, knot position must be specified upfront such that 
B(𝑥) can be expressed as a linear function of 𝑥. 

The same CP values are used to integrated B-splines (Equation S3). The new basis function (Ni,n) is 

generated as usual (using Equation S2), with the order increased by one and using tint. The integral form 𝑁𝑖,𝑛
𝑖𝑛𝑡 

is generated by scaling Ni,n using an upper triangular matrix with repeating row values according to the knot 
span (Equation S4). Clamped ends are maintained by duplicating the flanking knots (t1 = 0, tj+n = 1). The 
initial value is fixed to zero. 

∫𝐵(𝑥)𝑑𝑥 = ∑ (𝐶𝑃𝑖
𝑖𝑛𝑡 ∙ 𝑁𝑖,𝑛

𝑖𝑛𝑡)
𝑗+1
𝑖=1  Equation S3 

where 𝐶𝑃𝑖
𝑖𝑛𝑡 = [0 𝐶𝑃1 ⋯ 𝐶𝑃𝑗] 

𝑡𝑖𝑛𝑡 = [0 𝑡 1] 

[
 
 
 
 
𝑁1,𝑛

𝑖𝑛𝑡

𝑁2,𝑛
𝑖𝑛𝑡

⋮
𝑁𝑗+1,𝑛

𝑖𝑛𝑡
]
 
 
 
 

=
1

𝑛
∙
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𝑖𝑛𝑡 𝑡1+𝑛
𝑖𝑛𝑡 − 𝑡1
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𝑖𝑛𝑡

𝑡1+𝑛
𝑖𝑛𝑡 − 𝑡1

𝑖𝑛𝑡 𝑡1+𝑛
𝑖𝑛𝑡 − 𝑡1

𝑖𝑛𝑡

𝑡2+𝑛
𝑖𝑛𝑡 − 𝑡2

𝑖𝑛𝑡 𝑡2+𝑛
𝑖𝑛𝑡 − 𝑡2

𝑖𝑛𝑡

       0                 0      
0     0 

       ⋱ ⋮
            0      𝑡𝑗+1+𝑛

𝑖𝑛𝑡 − 𝑡𝑗+1
𝑖𝑛𝑡

]
 
 
 
 

∙

[
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 Equation S4 

Similarly, the derivative of B-splines can be calculated using the same CP values (Equation S5). The new 
basis function (Ni,n-2) is generated as usual (using Equation S2), with the order decreased by one and using 
tder. Clamped ends are maintained by eliminating the flanking knots t1 and tj+n. 

𝑑

𝑑𝑥
𝐵(𝑥) = ∑ (𝐶𝑃𝑖 ∙ 𝑁𝑖,𝑛−2

𝑑𝑒𝑟 )
𝑗
𝑖=1  Equation S5 

where 𝑡𝑑𝑒𝑟 = [𝑡2 ⋯ 𝑡𝑗+𝑛−1] 
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   Equation S6 

B-splines fluxes and concentrations 

B-splines support the generation of dynamic fluxes in any shape or form. The prerequisite for smooth fluxes 
sets the order of the B-spline to be 3 (quadratic) or above. More importantly, fluxes were made to satisfy 
mass conservation constraints at the metabolite level by imposing metabolite balancing and constraining 
metabolite abundance to be non-zero (c(𝑡) > 0). Metabolite balancing (mass conservation) is enforced by the 
stoichiometric matrix S. 

Each flux is independently parameterised, but has the same knot position. There are j free parameters for 
each flux (since there are j pieces of polynomials), where j ≥ n. 𝑣(𝑡) and c(𝑡) for a reaction network with R 
reactions and Q metabolites can be expressed in matrix form (Equation S7 and Equation S8). To impose the 
inequality constraint c(𝑡) > 0, the time slices from Equation S6 are assembled into a single large constraint 
matrix (Equation S9). 

𝑣(𝑡) = [

𝐶𝑃1,1 ⋯ 𝐶𝑃1,𝑗

⋮ ⋱ ⋮
𝐶𝑃𝑅,1 ⋯ 𝐶𝑃𝑅,𝑗

] ∙ [

𝑁1,𝑛−1

⋮
𝑁𝑗,𝑛−1

] Equation S7 

𝑐(𝑡) = [

𝑆1,1 ⋯ 𝑆1,𝑅

⋮ ⋱ ⋮
𝑆𝑄,1 ⋯ 𝑆𝑄,𝑅

] ∙ [
0
⋮
0

𝐶𝑃1,1 ⋯ 𝐶𝑃1,𝑗

⋮ ⋱ ⋮
𝐶𝑃𝑅,1 ⋯ 𝐶𝑃𝑅,𝑗

] ∙ [
∫𝑁1,𝑛

⋮
∫𝑁𝑗+1,𝑛

] + [

𝑐0,1 ⋯ 𝑐0,1

⋮ ⋱ ⋮
𝑐0,𝑄 ⋯ 𝑐0,𝑄

] Equation S8 

where Sq,r is the stoichiometry of metabolite q in reaction r, and c0,q is the initial abundance of metabolite q. 

𝐶 = [
𝑐(𝑡 = 0)

⋮
𝑐(𝑡 = 𝑇)

] = [
𝐼 𝑆 ∙ ∫𝑁𝑛 (𝑡 = 0)
⋮ ⋮
𝐼 𝑆 ∙ ∫𝑁𝑛 (𝑡 = 𝑇)

] ∙ [
𝑐𝑜

𝐶𝑃𝑣]  Equation S9 

where CP𝑣 is the CP matrix (j columns  R rows) in vector form and ∫𝑁𝑛 is the corresponding basis function 

matrix. 

Verifying accuracy of SBR EMU modelling using a toy model 

The EMU framework provides a model system to track how atoms propagate through a network (Antoniewicz 
et al., 2007). A network of continuous stirred tank reactors (CSTR) is the most accurate abstraction of 
metabolite conversions (Figure 2B). Using the Sequencing Batch Reactors (SBR) approach, the continuous 
propagation of EMUs is modelled as discrete steps, which each step comprised of “filling” a tank with pre-
existing content with new contents through one or more channels, followed by “mixing” (Figure 3C). It models 
the continuous conversion of cellular metabolites as a network of batch reactors. SBR is an explicit numerical 
approach. To ensure that estimate parameters are accurate within tolerance (as numerical methods incur 
truncation error), we compared this new approach against MATLAB’s solver for ordinary differential 

equations, ODE45 and ODE15s. Note that c(𝑡) is calculated analytically from (𝑡) using B-spline integration, 
and not by a numerical approach. 

An 8-reaction toy model representing the TCA cycle was created, with pyruvate and 2-oxoglutarate as the 
main input and output respectively (Figure S2E, Supplemental Information Data S1). The toy model allows 
the production of 2-oxoglutarate by pyruvate carboxylase. Hypothetical (reference) dynamic fluxes were 
generated using order 3 B-spline and four fixed internal knots; initial concentrations were arbitrarily set to 
100. Flux and metabolite units are arbitrary. Pyruvate was modelled as uniformly labelled. Metabolite 
isotopologues were simulated for six metabolites (pyruvate, acetyl-CoA, citrate, oxaloacetate, 2-oxoglutarate, 
CO2) sampled across 10 timepoints (1, 5, 10, 15, 20, 25, 30, 40, 50 and 60 min). ODE45 was used to 
generate the metabolite data from the reference fluxes. The synthetic data was then corrupted with one 
standard deviation Gaussian noise. The error term was arbitrarily set to 5, i.e., approximately 5% relative 
error. Finally, the “experimental” data was subjected to optimisation for fluxes using MATLAB’s ODE solvers 
and the SBR algorithm. 

Numerical integration of Equation 3 was performed using ODE45, ODE15s with the analytical Jacobian 
matrix, and our SBR algorithm. With ODE15s, the analytical Jacobian matrix (J) was additionally provided, 

whereby 𝐽 =  
𝑑𝑓

𝑑𝑋
 with f representing Equation 3 (i.e., 𝑓 =  

𝑑𝑋

𝑑𝑡
). The ODE solvers call for adaptive time steps, 

hence our B-spline algorithm was modified such that the basis functions are modified accordingly by the 
solvers. MATLAB’s default error tolerance for ODE45 was used. 



For our method, 6 different uniform step sizes were tested: 5, 2, 1, 0.5, 0.2 and 0.1 minute, thus producing 
14, 35, 61, 121, 301 and 601 SBR steps (Figure 2F). For the 2-minute step size, additional steps at 1, 5, 15 
and 25 were added to match the steps with the sampling timepoints. We recorded the optimisation run time 
(up to 100 repeats). We used unweighted Manhattan distance to quantify the accuracy of the estimated 
parameters relative to the reference solution (Figure 2F). 

The reference solution was generated from the toy model by first creating an artificial set of solution, 
simulating the EMUs and corrupting them to make them resemble experimental data. Optimisations were 
repeated 200 times for the ODE solvers, and 100 times for each SBR configuration. The deviations of the 
optimised solutions from the synthetic true solution were reported as Manhattan distances. The best SSR 
value was 76; Optimisations returning SSR above 100 were treated as failed optimisations. The 
optimisations were timed from start to finish. 

 

Metabolic model construction 

The metabolic model contained reactions needed to connect labelled media glucose to enriched metabolites. 
27 metabolite isotopologues (units: pmol/mg protein) were chosen for 13C-DMFA because they were 
enriched (Data S1). Classical mammalian pathways were included, namely glycolysis, pentose-phosphate 
pathway (PPP), TCA cycle, glutaminolysis and anapleurosis via pyruvate carboxylase (PC) (Figures 3E and 
4A). Known insulin-stimulated outputs of adipocyte were added, such as lipogenic acetyl-CoA, glycerol 3-
phosphate, glycogen and lactate, to draw glucose through the network. The synthesis of alanine, aspartate, 
glutamate, glutamine, asparagine and phosphoribosyl pyrophosphate were included as potential sinks 
because these metabolites were enriched. Metabolite balance included ATP and redox (NAD and NADP 
lumped as one) to ensure that their consumption did not exceed supply. Oxidative phosphorylation was 
added to permit generation of ATP from redox surplus. Glycogen pool was modelled as glucose monomers, 
but influx glycogen is treated as unlabelled (i.e., endogenous glycogen pool >> synthesis). Atom transitions 
were collated from published works and KEGG pathway maps (Kanehisa et al., 2006; Suthers et al., 2007). 

Additional substrates sources were introduced, namely acetyl-CoA, succinyl-CoA, glutamine, oxaloacetate, 
pyruvate, glycogen and ribulose 5-phosphate, to account for active catabolism of non-glucose substrates. 
These precursors can be derived from amino acid catabolism (e.g., branch chain amino acids), 
transamination reactions, glycogenolysis and nucleotide turnover. The uptake of unlabelled CO2 was added 
to account for bicarbonate exchange. The final model is a single-compartment model with 66 reactions and 
34 internal metabolites (Supplemental Information Data S1). 

Most metabolites in the model were associated with data, but a few were without. These metabolites were 
glyceraldehyde-3-phosphate (G3P), pyruvate, oxaloacetate, CO2 and erythrose-4-phosphate (E4P). During 
modelling, the abundance of these metabolites were not constrained. 

Below are the metabolite abbreviations used in the adipocyte model: 

Abbreviation Name Abbreviation Name 

ACCOA acetyl-CoA GLYCOGEN glycogen 

ACCOA_out lipogenic acetyl-CoA GLYOL3P glycerol 3-phosphate 

AKG 
2-oxoglutarate / alpha-
ketoglutarate 

LACC lactate (cellular) 

ALA alanine LAC_ext lactate (extracellular) 

ASN asparagine MAL malate 

ASP aspartate NAD NADH / NADPH 

CIT citrate NTP ATP (nucleotide triphosphate) 

CO2 carbon dioxide OAA oxaloacetate 

DHAP 
dihydroxyacetone phosphate / 
glycerone phosphate 

PEP phosphoenolpyruvate 

E4P erythrose 4-phosphate PG2O3 
2-phosphoglycerate & 3-
phosphoglycerate 

F16BP fructose 1,6-bisphosphate PG6 6-phosphogluconate 

F6P fructose 6-phosphate PRPP phosphoribosyl pyrophosphate 



FUM fumarate PYR pyruvate 

G1P glucose 1-phosphate RU5P 
ribose 5-phosphate / ribulose 5-
phosphate / xylulose 5-phosphate 

G3P glyceraldehyde 3-phosphate S7P sedoheptulose 7-phosphate 

G6P glucose 6-phosphate SUCC succinate 

GLC glucose SUCCOA succinyl-CoA 

GLN glutamine UDPGLC UDP-glucose 

GLU glutamate   

Calibrating B-spline order and knots 

To address the concern of overfitting, we tested B-spline orders of 1 to 3, in combination with up to three 
internal knots (Figure 3C). Using Akaike Information Criterion (AIC) to penalise excessive parameters, we 
chose the configuration O3K1 (order of 3, one internal knot) as it gave the lowest AIC score for INS. For 
CTRL, this configuration ranked intermediate; O2K3 gave the lowest AIC score, with knots placed early (< 5 
minute). 

SSRs were most sensitive to the placement of the first knot according to the cubic envelope demarcating 
knots with lowest SSRs as a function of time (Figure 3C). SSRs for higher order B-splines, which have a 
greater capacity for curvatures, were less sensitive to knot placement. As knot position are estimated 
parameters as well, our strategy forward was thus to have the Monte-Carlo method sample knots within a 
reasonable interval narrowed by prototyping solutions. We used boundaries defined by knots within the 20th 
percentile (Figure S3C). 

SBR time step calibration and validation 

There is a speed and accuracy trade-off when integrating numerically. To strike a balance we ran large 
(>1000) random permutations of uniform and non-uniform time steps, ranging from 20 to 30,000 steps 
between a pair of sampling points. The aim is to choose the configuration with the least number of steps that 
still yielded SSRs within a given cut-off (Figure 2H). 

This calibration was performed using a synthetic data generated from prototyping INS optimisations. The INS 
set was used, rather than CTRL, because we expect a greater dynamics in this dataset and hence will 
require smaller time steps. For prototyping, large uniform 20-step between sample points was arbitrarily 
chosen. This configuration was quick to yield initial feasible solutions from random starts and near-optimum 

solutions, but caused the overestimation of (𝑡) due to a reduced rate of label propagation. 

For each set of the time step configuration (generated by random and supervised/manual permutations), 
weighted Euclidean (residual) distance was used to quantify the deviation of simulated data from the 

reference (Figure 3D). We elected for a residual distance cut-off of 500. This value is comparable to the 2 
critical value and the median residual distance observed during data corruption with one standard deviation 
Gaussian noise (Figure 2H). We chose the least total number of steps that satisfy this cut-off, which was 
[500, 400, 200, 75, 75, 50]. At this step-size configuration, the computational speed was 10-fold slower than 
prototyping, i.e., 10 times more steps. Thus, we could toggle computational speeds between fast/coarse 
prototyping and slow/accurate result generation. 

We verified that the optimised SBR time step configuration was adequate by repeating the above procedure 
using the final optimum solution from INS (Figure 3E). The residual distance (about 100) was less than the 
residual error caused by measurement noise (SSR = 480) (Figure 2H). Note that prototyping and final 
solutions are different because EMUs calculated using the prototyping (coarse) time step is less accurate. 
Here, the reference data was generated using a uniform 50,000-step. The optimised configuration produced 
a residual distance slightly over 100, and was located near the lower envelope (Figure 3E). At 30,000-step, 
the residual value less than 0.001 (c.f., actual SSRs were >1000), confirming that the reference generated at 
50,000-step was sufficiently precise. 

Since the SBR time step configuration of [500, 400, 200, 75, 75, 50] was calibrated heuristically, we needed 
to validate the accuracy of the approach. Hence, we took the final solutions from CTRL and INS generated 
from Monte-Carlo resampling and simulated the EMUs using ODE15s (with Jacobian). These simulated 
EMUs were then compared against EMUs generated using the existing time step configuration (termed 
SBRx1), and with step sizes density increased by 2.5- and 20-fold (SBRx2.5, SBRx20) to roughly match 
computation times of ODE15s with and without Jacobian, respectively. The ratios of steps between sampling 
timepoints were maintained. Note that ODE45 was 3- to 4-fold faster than ODE15s without Jacobian, but 
only simulations from ODE15s were shown (Figure 2G). Weighted error was calculated using the same 



objective function (Equation 6), except that reference data (datamea) was taken from EMUs simulated by 
ODE15s with Jacobian. Runtime was determined based on the time required compute the objective function 
using the respective approaches. 

MATLAB optimisation 

Optimisation is performed using MATLAB non-linear constrained programming solver fmincon. Essentially, 
we are “guessing” CP and c0 to minimize the sum of squared residuals (SSR) without depleting metabolite 
pools completely, i.e., 𝑐(𝑡) > 0. Bi-directional reactions are provided in the forward and backward pairs, 
rendering all fluxes positive 𝑣(𝑡) > 0. Solver implementation used Equation 1, 2 and 5, with Equation S9 
applied as a linear inequality constraint matrix. Equation 3 is customised to match input data (Figure S2A). 
Endogenous metabolites were assumed to be naturally labelled at t = 0. 

To improve the optimisation procedure, the fitted parameters CP and c0 were given sufficiently large linear 

bounds and then scaled to [0,1]. Fluxes were constrained to be within 10 and 1105 pmol/mg protein/min by 
setting these two values as the lower and upper bounds of CP, since 𝑣(𝑡) is contained within the convex hull 
of the control polygon defined by CPs (i.e., min (𝐶𝑃) ≤ 𝑣(𝑡) ≤ max (𝐶𝑃)) (Figure 1F). Initial metabolite 

concentrations were constrained to the range [min (𝑐𝑞) − 4𝜎,max(𝑐𝑞) + 4𝜎] pmol/mg protein, or [0.01, 1104] 

pmol/mg protein for metabolites without data. 

Customising 13C-DMFA objective function 

Equation 6 is a generalised form of the least-square objective function . Figure S2A explains how the 
experimental data (dataexp) and the simulated data (datasim) vectors were generated and put together in the 
objective function. Mainly, both measured and simulated data must represent the same entity, particularly 
when input data is heterogeneous and contains missing values (Figure S2B). Missing values are comprised 
of incomplete mass isotopologue distributions. In addition to isotopologues of intracellular metabolites, the 
input data was also included extracellular lactate time course, and radiolabelled data of glycogen and fatty 
acids at 60 minutes. Extracellular lactate was treated in the same manner as intracellular data. Glycogen and 
lipogenic acetyl-CoA were treated as accumulating pools. 

The raw data, acquired as isotopologue concentrations, was first converted into aggregated concentrations 
and relative mass fractions before being subjected to optimisation (Figure S2A). Missing values were 
prevalent among the dataset; only 150 out of 324 sets were complete (Figure S2B). To ensure consistency, 
both measured and simulated sets used aggregated concentrations and relative mass fractions calculated 
from non-zero isotopologue entries in the measured set. The correction for natural isotopic interference, 
based on user-specific ion formula, is thus made prior to normalisation using aggregated concentrations. 
Overall, this treatment avoids imposing zero constraints on missing values. 

The simulated EMUs, GLYCOGEN_out and ACCOA_out, at t = 60 minute were converted into units 
consistent with the outputs of radiolabelled assays (pCmol glucose/mg protein) (Figure S2A). The conversion 
involves mapping EMUs to the elementary components of the labelled substrate; glucose in this case 
because 14C-glucose was used. For glycogen, the main elementary components are fully labelled or 
unlabelled glucose. Minor components, comprised of single, double and triple labelled hexose backbone 
generated from reversible glycolysis and PP pathway, were omitted here. For acetyl-CoA, we used the 
complete set of elementary components because it has only 2 carbons. The transformation matrix T weighs 
the direct contribution of substrate to an EMU, and is generated based on the mappings of the elementary 
components to the input substrate. The columns of T contain mass isotopologue distribution of the 
elementary components calculated based on enrichment purity of the substrate. Illustrated in Figure S2A, T 
specifies the one-step conversion of 13C-glucose and naturally-labelled glucose carbons into 
GLYCOGEN_out and ACCOA_out EMUs. Hence, by inverting T, the number of labelled glucose carbon 
(pCmol glucose/mg protein) contained in glycogen and lipogenic acetyl-CoA isotopologues can be 
calculated. 

Note that during data fitting, glucose carbon was assumed to be 99% enriched, whereas endogenous 
metabolites and other input substrates were assumed to be 1.07% enriched. 

During prototyping, we discovered that the model could not recapitulate the unlabelled (m0) fractions, which 
were unexpectedly high and stable (Figure S3A). For CTRL, although unlabelled glucose level has plateaued 

at   15%, downstream metabolites generally remained ≥ 40% unlabelled. This discrepancy suggested that 
glucose did not fully displace endogenous metabolites due to non-ideal mixing, and/or the unlabelled pools 
were sustained by influx of non-glucose sources. The nuisance parameters for stagnant partition were thus 
incorporated when calculating the objective value. This ad hoc modification compensates for metabolites that 
have persistently unlabelled fractions that could not be explained by uptakes of unlabelled substrates. These 
parameters are expressed in concentration terms (pmol/mg protein), are converted into isotopologue 
concentrations assuming metabolites in the stagnant partition are naturally enriched (Figure S2A). Note that 
𝑐(𝑡) calculated by Equation 2 represents the active partition. 



Measurement variances used for error weighting were re-estimated by Monte-Carlo resampling (10000 
iterations). We used the standard deviations (of triplicates, with Bessel’s correction) of the isotopologue 
concentrations. The variance for concentration was then calculated after summing up the isotopologues. The 
variance of enrichment fractions was calculated after converting individual set of isotopologues, at each 
iteration, into mass fractions. We imposed a blanket minimum error of 0.01 to the mass fractions, which 
enlarged 61% of the error terms. This minimum error reflects isobaric interferences incurred during MS-
acquisitions (Buescher et al., 2015). Also, since mass fractions sum up to 1, one redundant data point for 
each isotopologue was omitted from SSR calculations; the largest mass was chosen (Figure S2A). 
Measurements were assumed to be independent, thus the error weight matrix in Equation 6 is a diagonal 
matrix containing re-estimated measurement variance. 

Optimisation workflow 

The proposed optimisation workflow attempts to balance computational demand and adequate determination 

of the optimisation solutions. With a total of 329 free parameters (66 fluxes  4 CPs each, 37 initial 
concentrations, 28 stagnant pools), irregular optimisation convergence is a significant issue, evident from the 
vertical spread of SSRs (Figure 3C). Mean computation times using coarse (prototyping) and fine (final) step 
sizes were about 6 and 40 hours respectively. Furthermore, optimum knot position is determined by repeated 
sampling during optimisation. As optimisations were performed on high performance computing clusters, the 
actual workflow carried out was performed in batches. 

First, optimisations were performed on the original dataset to narrow down the range of knot position used 
subsequently during Monte-Carlo optimisation. 100 optimisations were performed on each dataset, using the 
prototyping time step. Non-optimal knot placement only elevated SSR marginally compared to the variability 
of SSRs values caused by poor optimisation termination. Thus, by narrow down the knot range beforehand 
(Figure S3C), we could dedicate more computation time towards estimating CPs and c0. 

Secondly, we used a two-stage optimisation procedure. Each optimisation is initialised and solved using the 
prototyping step size (uniform 20-step). The solution produced is then subjected to another round of 
optimisation using the fine step size configuration [500, 400, 200, 75, 75, 50]. For the original (uncorrupted) 
dataset, we could afford to progress every “coarse” solution into the “fine” optimisation stage. For Monte-
Carlo optimisations using corrupted datasets (50 sets per condition), we performed multi-start optimisation 
20 times for each set using the prototyping step size, and only the best solution from each set proceeded to 
the next optimisation stage using the fine step size configuration. The 20 times multi-start optimisation is 
required to sample for an optimum knot position specific to that corrupted set. Based on past optimisation 
success rates (Figure S3D), 20 iterations appeared to be adequate. 

The minimum SSR for the INS and CTRL datasets obtained during final optimisations were 1603 and 1167 

respectively. Both exceeded the critical 2 values of 469 and 385 at 5% significance. However, by visual 
inspection our model reproduced the majority of the data points for both INS and CTRL, and errors were not 
associated to any specific pathway (Supplemental Information Data S1). We eliminated the possibility of 
unsuccessful optimisation convergence by challenging our workflow with a corrupted synthetic dataset. 
Knots were placed close to the true solutions and the SSRs returned (INS:546, CTRL:448) were consistent 

with both the residuals caused by data corruption and the 2 cut-off (Figure S3D). This eliminated poor 
optimisation termination as a cause of the high SSRs. As the source of the high residuals was not clear cut, 
we proceeded without making any further modification to the data. 

Quantification and statistical analysis 

Time steps used during results analyses 

Irregular step size was using during optimisation to generate the final temporal flux models. For our 
analyses, we took the optimised solutions and simulated flux and metabolite data with step size of 0.05 
minute. 

PCA plot 

A PCA plot was used to show changes in metabolite abundances caused by media exchange. Z-scores were 
generated from the total metabolite abundances of central carbon metabolites (Data S1). MATLAB Principal 
Component Analysis function pca was used on the z-scores. MATLAB’s default was used. Principal 
components were calculated based on 8 dataset: CTRL-10, CTRL-10’, CTRL-60, CTRL-60’, INS-10, INS-10’, 
INS-60 and INS-60’ (apostrophe represent data from media exchange experiment). INS-1, INS-5, INS-20 
and INS-40 were subsequently plotted after converting them using the same orthogonal transformation. 

Knots lower envelope 

A cubic function was generated to help visualise the lower boundary of knots, which were scattered in the 
time (x-axis) and SSR (y-axis) domain (Fig. 2c). The function is placed as close as possible to the lowest 



knots, thus capturing the how the minimum SSRs vary across time. To accomplish this, quadratic 
programming was performed in MATLAB using Gurobi Optimizer. The least-square distance of the cubic 
function from all knots was minimised, but at the same time the cubic function is constrained to be under all 
the knots. 

Average fluxes 

To summarise temporal fluxes, we integrated the area-under-the-curve (AUC) using B-spline integration 
(Equation S4). B-spline integration is analytically precise and not affected by time step configuration. 

 𝐴𝑈𝐶𝑓𝑙𝑢𝑥 = ∫𝑣(𝑡)𝑑𝑡 = [0 𝐶𝑃] ∙ ∫𝑁 Equation S10 

Average fluxes reported in Figures 4B and S4A were generated by integrating between t = 10 and t = 60, 
then divided the area by the integration time (50 minutes). The first 10 minutes were omitted due to 
confounding effects from media exchange. 

To calculate the total amount of substrates entered the system (Figure 6D), we calculated AUCflux by 
integrating between t = 0 and t = 60, and then multiplied by metabolites’ value by the number of carbons. 
Fluxes reported in Fig. 6f were also calculated by integrating between t = 0 and t = 60. 

The same procedure can be applied to calculate average metabolite concentrations (for residence time 
calculations) 

𝐴𝑈𝐶𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = ∫𝑐(𝑡)𝑑𝑡 = [0 0 𝐶𝑃] ∙ ∬𝑁 Equation S11 

Substrate redistribution 

The carbon contribution of substrates was simulated one substrate at a time. To examine glucose, 
extracellular glucose enrichment was modified such that all glucose carbon is 100% labelled, and at the 
same time, the enrichments of all other input substrates and endogenous metabolites were modified to be 
100% unlabelled. EMUs were then simulated using the temporal flux models for each condition. Finally, the 
redistribution of that substrate is calculated by multiplying the EMUs (in fraction) at t = 60 with the 
corresponding abundance and number of carbon (Figures 6A and 6C). Here, the time step used during these 
simulations was the same configuration as the final optimisation. Estimates for glucose distribution provided 
(Data S1). 

To generate the composite fractions (Figure 6C), the procedure above was repeated for CO2, glutamine, 
glycogen, pyruvate and acetyl-CoA. The method takes advantage on the fact that different substrates have 
different entry points. The same procedure is used for endogenous metabolites, except that all intracellular 
metabolites were assigned as fully labelled, and all input substrates as unlabelled. Calculations were based 
only on the active pool, whereas the stagnant pools were ignored. To generate the percentage value, the 
total carbon of a substrate in a particular metabolite pool was then divided by the total carbon of that pool. 
Substrate redistribution estimates provided (Data S1). 

Evaluating goodness-of-fit 

Figure S3E showed that the residual errors from the best INS and CTRL solutions were not normally 
distribution. The largest 10 residuals contributed to 20% of the SSR. Problematic data points were flagged 
(Supplemental Information Data S1). They were mainly mapped to the first timepoint, intermediate masses 
and extracellular lactate. Potential explanations are that (i) the initial condition defined for modelling differed 
from the actual, (ii) isobaric interferences causing higher than expect intermediate enrichments (m1 to m5), 
and (iii) mismatched lactate secretion rates because intracellular and extracellular data were obtained from 
separate adipocyte batches. Apart from (iii) affecting CTRL lactate efflux, trial removal of these data points 
did not appear to alter fluxes (results not shown). 

Flux difference mappings 

Monte-Carlo resampling yielded 50 solutions per condition. To subtract effects of media exchange, flux 
differences were calculated by subtracting CTRL fluxes from INS fluxes (INS – CTRL). To ensure adequate 
and unbiased representation, every solution from CTRL and INS is paired exactly 10 times chosen at 
random but without repeats. Flux differences are thus calculated from 500 unique pairs of CTRL and INS 
solutions. There is a total of 81 flux parameters: 66 original reactions and 15 net fluxes. This gives a total 
40500 observations (81×50×10). 

Clustering by CP coordinates  

B-splines show strong convex hull properties; it is contained within the control polygon with CPs representing 
the Cartesian coordinates of the edges. Thus, the clustering of temporal flux differences can be 
accomplished using coordinates of the CPs of INS – CTRL fluxes. Effectively, clustering is performed on the 
control polygon of the temporal flux difference, which still captures the dynamics of the flux trajectory. 



The addition and subtraction polynomial B-splines of the same order and number of internal knots can be 
performed on the CPs to yield the same output as performed directly on the B-splines. The CPs’ x-
coordinates must be aligned before the corresponding CPs’ in the y-coordinates are added or subtracted. 
Knot insertion algorithm is used to align knots of two B-splines with different knot sequence. Knot insertion 
alters knot sequence and CP values without changing the B-spline. 

CTRL and INS temporal fluxes were constructed using O3K1 B-splines; it has one internal knot. Performing 
INS – CTRL on a given reaction produces a B-spline with 2 internal knots derived from CTRL’s and INS’s 
knot, and one additional CP. The procedure involves inserting the conjugate knot in CTRL and INS, revising 
the CPs to reflect the new knot sequence, and finally producing the y-coordinates by taking the difference in 
CPs. CPs x-coordinates are calculated using the new knot sequence. This produces the coordinates of the 
CPs for INS – CTRL fluxes. 

Clustering was performing using the resulting CP coordinates as variables. MATLAB function kmeans was 
used, with 10 replicates performed to search for lower local minima. Distance metric was based on the 
squared Euclidean distance. The number of optimum clusters was determined using elbow and silhouette 
plots.  

Eight clusters captured different temporal dynamics (shape of curve) and were assigned to different colours 
(Figure 5A). #1 showed small steady state change. #2 and #7 showed rapid initial transient followed by 
sustained steady state. #3, #4, #5 and #6 showed a more gradual ramp towards steady state. #2 and #3 
showed sustained steady state, but #5 showed a downturn, and #6 showed a late surge. #8 showed a 
decrease, but this is associated with the reversibility of lactate dehydrogenase. 

Heat map (Figure S5A) was generated with the help of MATLAB function dendrogram to sort row and 
columns based on their dissimilarity matrices. 
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