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Abstract
Background and aims. Cardiovascular diseases and depressive disorders are 
some of the most frequent diseases. The probability of concomitant prescription of 
antihypertensive and antidepressive medication is increasing. The aim of this study 
was to investigate the enzyme inhibition by bupropion, sertraline and fluvoxamine 
on the metabolism of carvedilol using rat pooled liver microsomes and to assess the 
importance of these interactions from the pharmacokinetic mechanism point of view.
Methods. Two substrate concentrations (0.5 and 1 μM) and four inhibitor 
concentrations (0, 0.1, 0.75 and 1.5 μM) were used for each tested inhibitor. 
Results. The results of the in vitro experiments showed a significant decrease of the 
metabolic rate of carvedilol to 4’-hydroxyphenyl carvedilol, for all tested inhibitors, 
when the inhibitor was added to the incubation mixture containing the substrate. 
Moreover, an increase of the area under the concentration-time curve for carvedilol 
was observed after incubation with each  tested inhibitor compared with the control 
state (no inhibitor). The most potent inhibitor was sertraline, followed by fluvoxamine 
and bupropion.
Conclusion. The co-administration of tested antidepressants led to a significant 
alteration of carvedilol’s metabolism in vitro. CYP2D6 inhibition is the main 
pharmacokinetic mechanism that can explain these drug-drug interactions, with 
possible clinical implications.
Keywords: pharmacokinetics, CYP2D6, rat liver microsomes, carvedilol, 
antidepressants 
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Background and aims
Cardiovascular diseases are the first 

cause of death globally: more people die 
annually from cardiovascular diseases than 
from any other cause. An estimated 17.7 
million people died from cardiovascular 
diseases in 2015, representing 31% of all 
global deaths [1]. Carvedilol is a third 
generation vasodilating beta-blocker with 
antioxidant activities currently marketed for 
the treatment of hypertension and congestive 
heart failure [2]. Having a nonselective 
beta-adrenoceptor blocking activity, 
carvedilol blocks both beta-1 and alpha-1 
adrenergic receptors; it has a higher affinity 
to beta-1 receptors than alpha-1 receptors 
[3]. Carvedilol is administered as a 
racemic mixture, both S and R enantiomers 
have equal alpha blocking effects but S 
enantiomer shows stronger beta blockade 
[4].

A highly lipophilic drug, carvedilol 
is rapidly absorbed and is metabolized 
mainly by the liver via cytochrome P450 
(CYP) enzymes [5]. The most important 
isoenzyme involved in carvedilol’s 
metabolism is CYP2D6, which leads 
to the formation of 5’-hydroxyphenyl 
carvedilol and 4’-hydroxyphenyl 
carvedilol. To a lesser extent, isoenzyme 
CYP2C9 is involved in converting 
carvedilol to O-desmethyl carvedilol and 
isoenzyme CYP1A2 leads to formation of 
8-hydroxy carbazolyl carvedilol [6]. From 
these metabolites, only the metabolite 
4’-hydroxyphenyl carvedilol may 
contribute to the beta-blocking activity of 
carvedilol, due to the fact that it possesses 
approximately 13 times more potency 
than carvedilol itself  [7].

Depression is a widespread disorder 
nowadays, when more than 300 million 
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people are affected all over the world [8]. Antidepressive 
drugs, especially those from the group of selective serotonin 
reuptake inhibitors (SSRIs) and serotonin-noradrenaline 
reuptake inhibitors (SNRIs), are frequently prescribed 
to the patients affected by depressive disorders. The 
probability that cardiac patients also suffer from depression 
is increasing, as well as the probability of concomitant 
prescription for antihypertensives and antidepressants. 
Considering this clinical context, we considered useful to 
evaluate the interactions that can occur between carvedilol 
and frequently prescribed antidepressants: bupropion, 
sertraline and fluvoxamine.

Bupropion is a dual norepinephrine and dopamine 
reuptake inhibitor used as antidepressant medication to treat 
major depressive disorder or seasonal affective disorder [9]. 
It can also be used to help people stop smoking by reducing 
cravings and other withdrawal effects, or as treatment of 
bipolar disorder and attention-deficit hyperactivity disorder 
[10,11]. Bupropion inhibits CYP2D6 activity as shown in 
vitro [12] and in vivo studies [13].

Sertraline and fluvoxamine are selective serotonin 
reuptake inhibitors used as antidepressant or antianxiety 
agents in disorders like major depression, panic disorder, 
obsessive-compulsive disorder, or social phobia [14,15]. 
These second-generation antidepressants are among the 
most prescribed drugs in depression [16], having a high 
probability to be involved in drug interactions due to their 
inhibitory potential upon CYP isoenzymes. Sertraline is 
a moderate inhibitor of CYP2D6 and a weak inhibitor of 
CYP1A2 and CYP2C9, whereas fluvoxamine is a weak 
inhibitor of CYP2D6, a moderate inhibitor of CYP2C9 
and a strong inhibitor of CYP1A2 [17]. All of them inhibit 
in a different manner the main isoenzyme involved in 
carvedilol’s metabolism (CYP2D6).

Due to carvedilol’s extensive oxidative metabolism 
in the liver, drugs that induce or inhibit carvedilol 
oxidation can affect its pharmacokinetics (PKs). Therefore, 
concomitant administration of drugs that act as inhibitors 
like bupropion, sertraline and fluvoxamine may influence 
its elimination, leading to changes in plasma concentrations 
and subsequent clinical effects. However, the effects of 
bupropion, sertraline and fluvoxamine on the PKs of 
carvedilol in vitro have not been reported.

Thus, the aim of this study was to investigate in 
vitro PK interactions that occur between carvedilol and 
bupropion / sertraline / fluvoxamine and to assess their 
inhibitory magnitude. The results are important to predict 
the interaction potential between these drugs, to describe 
the mechanism of these PK interactions, to characterize the 
safety profile and the pharmacotherapy of carvedilol.

Methods
Chemicals and reagents
Carvedilol, bupropion, sertraline and fluvoxamine 

were purchased from Moehs (Rubí, Spain). The metabolite 

4’-hydroxyphenyl carvedilol was bought from Toronto 
Research Chemicals (Toronto, Ontario, Canada). HPLC-
grade acetonitrile, 98% formic acid and methanol of 
analytical-reagent grade were purchased from Merck 
KGaA (Darmstadt, Germany). Heparine sodique 25000 
UI/5 mL (5000 UI/mL) was acquired from Panpharma 
Laboratoires (France). Tris, glycerol, potassium chloride, 
EDTA, magnesium chloride, β-nicotinamide adenine 
dinucleotide phosphate (NADP), glucose 6-phosphate 
(G6P), glucose 6-phosphate dehydrogenase (G6PDH), 
bovine serum albumin (BSA) were purchased from Sigma-
Aldrich (St. Louis, Missouri, USA).

The equipment used in this study were: an Agilent 
1100 series – HPLC system (consisting of binary pump, 
autosampler, thermostat) (Agilent Technologies, USA), 
coupled with a Fluorescence detector, an Agilent 1100 series 
- HPLC system (consisting of binary pump, autosampler, 
thermostat) (Agilent Technologies, USA), coupled with a 
Bruker Ion Trap VL (Bruker Daltonics GmbH, Germany) 
and a Sorvall WX 100 ultracentrifuge (Thermo Fisher 
Scientific, USA).

Preparation of rat liver microsomes
White male Charles River Wistar rats Crl:WI 

(n=4) weighing 270 to 390g were purchased from the 
Experimental Medicine Centre and Practical Skills (Cluj-
Napoca, Romania). The working protocols were reviewed 
and approved by the Ethics Committee of the Iuliu 
Hatieganu University of Medicine and Pharmacy, Cluj-
Napoca, Romania (no. 531/23.12.2015). The study was 
conducted in accordance with the specific regulations and 
amendments: the ‘Guiding Principles in the Use of Animals 
in Toxicology’ adopted by the Society of Toxicology 
(USA) and the U.K. Animals (Scientific Procedures) Act, 
1986 and associated guidelines, EU Directive 2010/63/EU 
for animal experiments.

Rat pooled liver microsomes were isolated by 
differential centrifugation, using an adapted method 
previously described by Kremers et al. [18,19]. Shortly, 
the anesthesia was induced by an intramuscular injection 
with a 1 ml/kg dose of ketamine/xylazine/diazepam 1:1:1 
(V/V/V) (100 mg/mL, 20 mg/mL, 5 mg/mL) before surgery 
and was followed by a dose of anticoagulant administered 
intravenously (i.v.) (heparin 500U/kg). Then, all anatomic 
layers were cut and the abdomen was opened, thus allowing 
direct access to the liver. An i.v. cannula 20 G (Pink) 1.1 x 
32mm, flow: 62 ml/min (Med Devices Lifesciences Ltd., 
London, UK) inserted in the portal vein was used to perfuse 
the liver with an iced-cold wash buffer containing 50 mM 
Tris (pH 7.4) and 100 mM KCl (Buffer 1), at the same time 
an incision was performed in the subclavian vein. At the end 
of the perfusion, the liver was excised with scissors. The 
liver tissue was broken down in 110 mL ice-cold wash buffer 
(Buffer 1) in a potter homogenizer by gentle tapping with a 
stirring rod, followed by an ultrasound homogenization for 3 
minutes. The hepatocytes homogenate thus obtained was then 
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centrifuged at 13000 xg for 30 minutes, at 4ºC. The resulting 
pellets were resuspended in a fresh solution of wash buffer, 
being again centrifuged at 13000 xg for 30 minutes, at 4ºC. 
Then, all the supernatants were carefully removed and added 
to the first supernatant fraction. All the reunited fractions 
were then centrifuged at 105000 xg for 60 minutes, at 4ºC, 
to obtain the microsomal pellets. Pellets were resuspended in 
another buffer (Buffer 2) containing 100 mM Tris (pH 7.4), 
1 mM EDTA and 20% glycerol (v/v). Microsomal fractions 
were aliquoted and stored at – 80°C until the experiments.

The microsomal protein concentration was 
determined by the Bradford method using bovine serum 
albumin (BSA) as standard.

Incubation procedure
The microsomal incubation procedure used was 

similar to that described previously [20,21].  Incubations 
were performed at 37°C with 0.5 and 1 μM carvedilol and 
0, 0.1, 0.75 or 1.5 μM bupropion, sertraline or fluvoxamine. 
Incubation mixtures contained 0.25 mg microsomal protein/
mL, one antidepressant as enzymatic inhibitor, a NADPH 
regenerating system (1 mM NADP, 5 mM G6P, 1 U/mL 
G6PDH, 5 mM MgCl2), the substrate (carvedilol) and 5 mM 
Tris buffer (pH 7.4). Before starting the reaction by adding 
the NADPH regenerating system, there was a 15-minute 
preincubation period at 37°C in a shaking water bath. The 
reactions were stopped by adding 100 μL of cold acetonitrile 
to 100 μL microsome mixture and cooling on ice, at different 
time points (0.5, 1, 2, 3, 5, 7, 10, 15, 20, 25 and 30 minutes). 
After being vortexed for 10 seconds, the samples were 
centrifuged at 12000 rpm, 13201 xg for 5 minutes. Then, 5 
μL of the supernatants were subjected to high-performance 
liquid chromatography with fluorescence detection (HPLC-
FLD) assay. For sertraline, the detection was performed 
by high-performance liquid chromatography–mass 
spectrometry method (HPLC-MS). Using appropriate 
calibration samples containing known amounts of carvedilol 
and 4’-hydroxyphenyl carvedilol, concentrations in reaction 
mixtures were thereby determined. The incubations were 
completed in triplicate, and the data were expressed as the 
mean ± SD of three experiments.

High-performance liquid chromatography assay
Concentrations of carvedilol and 4’-hydroxyphenyl 

carvedilol, for the inhibitors bupropion and fluvoxamine, 
were determined by HPLC with fluorescence detection 
(Agilent Technologies, USA). A Zorbax SB-C18 (50 
x 2.1 mm, 3.5 µm) chromatographic column (Agilent 
Technologies, USA) was used for separation. The mobile 
phase consisted of a 30:70 (V/V) mixture of acetonitrile and 
0.1% (V/V) phosphoric acid in water; the flow rate was 1 mL/
min; the thermostat temperature was set at 45°C. The peaks 
were detected by using an Agilent 1100 series fluorescence 
detector (excitation wavelength 243 nm and emission 
wavelength 358 nm). The calibration curve was linear 
over the concentration range 0.02–2.01 μM for carvedilol 
and 0.02–2.04 μM for its metabolite, 4’-hydroxyphenyl 

carvedilol. The method showed a good linearity (r>0.992), 
intra- and inter-day precision (CV%<10.8%) and accuracy 
(bias<10.1%) over the range of calibration curve; the overall 
recovery was between 97.5-114.9%.

When sertraline was the inhibitor used in 
incubations, carvedilol concentrations were determined 
by a validated liquid chromatography–mass spectrometry 
method previously reported [22]. The HPLC system was an 
Agilent 1100 series (binary pump, autosampler, thermostat) 
(Agilent Technologies, USA) and was coupled with a 
Bruker Ion Trap VL (Bruker Daltonics GmbH, Germany). 
Briefly, a Zorbax SB-C18 chromatographic column (50 x 
2.1 mm, 3.5µm) (Agilent Technologies, USA) was used. 
The mobile phase consisted of a 34:66 (V/V) mixture of 
acetonitrile and 0.2% (V/V) formic acid in water. The 
flow rate was 0.5 mL/min, and the thermostat temperature 
was set at 42°C. The mass spectrometry detection was 
in multiple reaction monitoring (MRM) mode, positive 
ionization, using an electrospray ionization source. The 
ion transitions monitored were m/z 222, 224, 283 from m/z 
407 for carvedilol (MRM mode). The calibration curve of 
carvedilol was linear at a concentration range of 0.09–1.19 
μM, with a correlation coefficient of 0.9995.

Kinetic and statistical analysis
The parameters: metabolization rate (nmol/

min/mg protein),  area  under  the  concentration–time  
curve (AUC0-30, min*nmol/mL), the percentage (%) of 
metabolized carvedilol and the percentage (%) of resulted 
metabolite, 4’-hydroxyphenyl carvedilol, were calculated 
for all in vitro experiments, after 30 minutes of incubation 
in rat pooled liver microsomes systems. All kinetic data 
were expressed as the mean ± standard deviation (SD) of 
3 microsomal experiments. The statistical analyses were 
performed by one-way analysis of variance (ANOVA) for 
intergroup comparison, for each substrate concentration. 
All analyses had a set level of significance at p< 0.05. 

Results 
The effects of three enzymatic inhibitors on 

the metabolism of carvedilol were investigated using 
rat pooled liver microsome incubation systems. Two 
substrate concentrations (0.5 and 1 μM) and four inhibitor 
concentrations (0, 0.1, 0.75 and 1.5 μM) were used for each 
antidepressant tested as inhibitor. All the incubations were 
completed in triplicate.

Carvedilol’s in vitro metabolism was modified in 
the presence of analyzed enzymatic inhibitors: sertraline, 
fluvoxamine and bupropion (Table I). As the concentration 
of inhibitor increased, the percentage of carvedilol 
metabolized decreased.

In vitro, carvedilol metabolization rate, calculated 
after 30 minutes of incubation in rat pooled liver 
microsomes, was decreased by all tested antidepressants 
as shown in Figure 1. All the differences were statistically 
significant (p<0.05) compared with the control group.
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Inhibitor concentration
(μM)

Substrate concentration (μM)
0.5 1

CVD* 4’OH-CVD** CVD* 4’OH-CVD**
Sertraline#

0 99.1±0.6 - 95.2±2.1 -
0.1 39.3±13.3 - 79.4±5.4 -
0.75 32.6±7.6 - 39.9±6.4 -
1.5 55.7±3.5 - 34.6±2.6 -

p● value (ANOVA) 0.00002, S - 0.0001, S -
Fluvoxamine

0 99.1±0.6 23.8±3.7 94.5±4.2 16.8±1.2
0.1 90.4±1.3 17.6±0.4 85.1±2.0 13.7±1.6
0.75 78.5±4.2 14.9±1.8 74.6±2.3 10.4±0.4
1.5 71.7±0.4 12.6±0.6 70.6±0.7 9.7±0.4

p● value (ANOVA) 0.00001, S 0.0024, S 0.00001, S 0.0001, S
Bupropion

0 99.1±0.6 23.8±3.7 94.5±4.2 16.8±1.2
0.1 97.4±0.3 19.5±0.5 92.6±3.9 17.5±1.8
0.75 80.8±6.9 16.2±2.0 96.3±0.6 13.4±0.2
1.5 73.0±0.6 11.8±0.5 80.7±4.7 12.4±1.4

p● value (ANOVA) 0.00003, S 0.0016, S 0.0072, S 0.0034, S

Table I. The effects of three evaluated antidepressants on carvedilol’s metabolism after 30 minutes 
of incubation in rat liver microsomes (data presented as mean ± SD, n=3).

● ANOVA for intergroup comparison, for each substrate concentration, statistically significant (S) when p < 
0.05, *CVD - carvedilol; **4’OH-CVD - 4’-hydroxyphenyl carvedilol; #for the experiments with sertraline as 
enzymatic inhibitor, the metabolite quantification was not possible, due to a different detection system.

Figure 1. Rate of metabolism (nmol/min/mg protein) of carvedilol in relation to the concentration of antidepressants tested (sertraline, fluvoxamine and 
bupropion) in rat liver microsomes. Incubations were performed for 30 minutes in the control state (no inhibitor), and with varying concentrations of 
inhibitors for 0.5 (̶̶ ̶ ◊ ̶ ̶) and 1 μM carvedilol (- -□- -).
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Substrate
concentration (μM)

Inhibitor
concentration (μM)

Sertraline Fluvoxamine Bupropion

1 μM CVD

0 8.2±0.8 8.1±1.3 8.1±1.3
0.1 14.9±2.2 11.2±0.4 9.8±1.7
0.75 24.0±1.5 14.4±0.6 11.1±0.1
1.5 23.5±0.2 15.7±0.2 12.7±1.3

p* value (ANOVA) <0.05, S 0.00001, S 0.012, S

0.5 μM CVD

0 2.4±0.1 2.2±0.1 2.2±0.1
0.1 10.7±1.6 4.6±0.3 3.3±0.1
0.75 11.6±1.2 6.5±0.2 6.6±0.9
1.5 9.6±0.6 7.9±0.2 7.2±0.05

p* value (ANOVA) 0.0008, S <0.05, S 0.00001, S

Table II. AUC0-30 (min*nmol/mL) of carvedilol in relation to inhibitor’s concentration, for each 
tested antidepressant (sertraline, fluvoxamine and bupropion) in rat liver microsomes. Incubations 
were performed in the control state (no inhibitor), and with varying inhibitors concentrations for 0.5 
and 1 μM carvedilol (data presented as mean ± SD, n=3).

Table II shows the levels of carvedilol (expressed as 
AUC0-30) in rat pooled liver microsomes after 30 minutes of 
incubation at 2 substrate concentrations, in the presence and 
absence of the 3 tested inhibitors (various concentrations). 
The mean values were determined for all the combinations 
substrate-inhibitor. The AUC increased as the concentration 
of inhibitor increased. All the differences were statistically 
significant (p<0.05) compared with the control group.

The inhibitor potency could be associated with the 
extent to which the substrate was altered. The influences on 
carvedilol’s metabolism could be evaluated using any of the 
above parameters. A decrease in the percentage of metabolized 
carvedilol was similar to the decrease of metabolization 
rate and, in the same time, to the AUC0-30 augmentation, 
consecutive to increasing inhibitor concentrations. From the 
three tested inhibitors, despite the substrate concentration, 
sertraline was proved to be the most potent inhibitor. For 
instance, at the highest evaluated inhibitor and substrate 
concentration, the metabolisation rate decreased with 
63.63% for sertraline, with 25.19% for fluvoxamine and 
with 14.5% for bupropion. For the other 2 inhibitors 
(fluvoxamine and bupropion), their potencies were 
relatively close at small substrate concentrations, but at 
higher substrate concentrations it seemed that fluvoxamine 
was a more potent inhibitor than bupropion. 

Discussion
Cardiovascular disease is the leading cause of death, 

disability, and disease burden in the developed world. 
Depression is common in cardiovascular disease patients, 
being linked to higher mortality and morbidity rates [12]. For 
this reason, drugs used to treat cardiovascular diseases and 
depression, are likely to be administered together in therapy.

Many drug interactions occur due to an altered 
CYP450 metabolism. These drugs that affect one substance 
metabolism can be either inhibitors or inducers. Inhibitors 
block the metabolic activity of one or more CYP450 

* ANOVA for intergroup comparison, for each substrate concentration, statistically significant (S) when p < 0.05

enzymes. The magnitude to which an inhibitor affects a 
drug metabolism can be variable upon factors such as the 
dose or the inhibitor’s ability to bind to the enzyme [23].

In vitro metabolic models using liver microsomes 
can be applied to predict drug interactions caused by 
reversible inhibition of metabolism [24]. Understanding 
and anticipating drug interactions is a necessary part of 
rational therapeutics, especially when the efficacy or 
toxicity of a medication is changed by the administration of 
another compound [25].

Firstly, carvedilol is mainly metabolized by the liver 
via CYP2D6 isoenzyme and to a lower extent, by CYP2C9 
and CYP1A2 [5,6]. Secondly, sertraline, fluvoxamine 
and bupropion are inhibitors of these metabolic pathways 
[17]. Considering the above mentions in addition to 
nowadays situation, when mortality and morbidity rates are 
increasing in patients suffering from depression associated 
with a cardiovascular disease [12], it is important to study 
these metabolic drug-drug interactions. Inhibitors of 
CYP2D6 activity, such as quinidine, paroxetine, fluoxetine 
or propafenone may increase plasmatic concentrations of 
carvedilol. Therefore, patients taking these drugs might 
be at risk of hypotension due to an excessive α- and β- 
adrenoreceptor blockade [26].

The results of these in vitro experiments 
demonstrated drug-drug interactions between carvedilol 
and three antidepressant drugs that are CYP2D6 enzyme 
inhibitors (sertraline, fluvoxamine, bupropion). The 
existence of enzymatic inhibition is proved by statistically 
significant (p<0.05) alteration of parameters like 
metabolization rate and area under the concentration–time 
curve, compared with the control group (substrate without 
inhibitor). In the presence of inhibitor, the metabolism 
of carvedilol was modified. The effects of sertraline, 
fluvoxamine and bupropion on in vitro carvedilol’s 
metabolism are due to enzymatic inhibition of the main 
isoenzyme responsible for carvedilol’s metabolism 
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(CYP2D6). The ranking between the three tested inhibitors 
obtained in this study, with sertraline being the most potent 
inhibitor, is consistent with other studies reported in the 
scientific literature [17].

These data are consistent with other reports 
regarding the CYP2D6 inhibitory effect of sertraline, 
fluvoxamine and bupropion in vitro [27-29] and in vivo 
[13,30,31]. Recently, a study that describes the in vitro 
drug-drug interaction between carvedilol and citalopram 
was published [20]. The three inhibitors used in this study 
can be compared with citalopram, based on the same PK 
parameters evaluated in both studies (metabolization 
rate, AUC0-30). As a result, sertraline and fluvoxamine are 
stronger inhibitors than citalopram, while bupropion has a 
similar potency to citalopram. Furthermore, there are few 
studies that showed pharmacokinetic drug-drug interactions 
between carvedilol and CYP2D6 inhibitors, like fluoxetine 
[32] and paroxetine [33]. Recently, some preclinical studies 
proving drug-drug interactions between carvedilol and 
sertraline [34], citalopram [20] and bupropion [35] were 
published. The in vitro results presented in this study are 
consistent with the ones resulted from in vivo studies, the 
inhibitory effect of these antidepressants being therefore 
proved in both in vitro and in vivo studies.

Conclusion
The pharmacokinetic drug-drug interactions 

between carvedilol and three antidepressants frequently 
used in therapy, i.e. sertraline / fluvoxamine / bupropion 
were demonstrated in in vitro studies. All the tested 
antidepressants altered statistically significantly (p<0.05) 
the in vitro metabolism of carvedilol, modifying the substrate 
rate of metabolization and the AUC0-30. These results 
clearly highlight the presence of drug-drug interactions, 
due to enzymatic inhibition via CYP2D6. Sertraline was 
proved the most potent inhibitor, followed by fluvoxamine 
and bupropion. Nevertheless, additional studies on patients 
should be conducted in order to investigate the clinical 
relevance of these proved interactions.
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