
Boosting Probabilistic Graphical Model Inference by
Incorporating Prior Knowledge from Multiple Sources
Paurush Praveen*, Holger Fröhlich
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Abstract

Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain
insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size
reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information
can address this low signal to noise problem by biasing the network inference towards biologically plausible network
structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task
challenging. We propose two computational methods to incorporate various information sources into a probabilistic
consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM),
assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common
source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among
information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as
on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly
enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the
situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms
and protein domain data, etc. and is flexible enough to integrate new sources, if available.
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Introduction

Probabilistic graphical models, like (Dynamic) Bayesian Net-

works and Gaussian Graphical Models, have turned out to be

useful for extracting meaningful biological insights from experi-

mental data in life science research. These models can infer

features of cellular networks in a data driven manner [1–4].

However, network inference from experimental data is challenging

because of the typical low signal to noise ratio [5]. High

throughput data like microarray is very high dimensional coupled

with a typical low number of replicates and noisy measurements.

Reverse engineering of regulatory network on the basis of such

data is hence challenging and often fails to reach the desired level

of accuracy. To deal with this problem one can either work at

experimental level by increasing the sample size, which is

practically difficult, or at the inference level by embedding

biological background knowledge.

Integrating known information from databases and biological

literature as prior knowledge thus appears to be beneficial.

However, biological knowledge covers many different aspects and

is widely distributed across multiple knowledge resources, such as

pathway databases [6–8], Gene Ontology [9] and others. Hence,

integrating this heterogenous information into the learning process

is not straight forward.

In the past most authors have concentrated on integrating one

particular information resource into the learning process [10–15]:

E.g. gene regulatory networks were inferred from a combination of

gene expression data with transcription factor binding motifs in

promoter sequences [11], protein-protein interactions [12],

evolutionary information [13], KEGG pathways [14] and GO

anotation [15].

On the technical side several approaches for integrating prior

knowledge into the inference of probabilistic graphical models

have been published: In [16] and [17] the authors only generate

candidate structures with significance above a certain threshold

according to prior knowledge. Another idea is to introduce a

probabilistic Bayesian prior over network structures. E.g. Fröhlich

et al. [18] introduced a prior for individual edges based on an a-

priori assumed degree of belief. Mukherjee et al. [19] describes a

more general set of priors, which can also capture global network

properties, such as scale-free behavior. Wehrli and Husmeier [20]

use a similar form of prior as Fröhlich et al., but additionally

combine multiple information sources via a linear weighting

scheme. The weights are sampled together with the rest of the

parameters and the network structure in a specifically designed

Markov Chain Monte Carlo algorithm for Bayesian Network

inference. In contrast, Gao and Wang [21] treat different

information sources as statistically independent, and consequently

the overall prior is just the product over the priors for the

individual information sources. The advantage of the approach is

that it is independent from a particular class of probabilistic

network models (e.g. Bayesian Networks). The limitation is its

strong assumption of non-conditional statistical independence of
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information sources, which in reality is unlikely, since biological

knowledge in different databases is not orthogonal to each other.

The focus of this paper is on construction of consensus priors

from multiple, heterogenous knowledge sources. These consensus

priors can then be incorporated for learning probabilistic

graphical models (e.g. Bayesian Networks) from experimental

data. We are at this point aware of the fact that there is a broad

literature on (probabilistic) data integration [22,23], which goes

beyond our specific question and covers a large variety of

different aspects [24–27].

In this paper we propose two alternative ways to integrate

heterogenous information from multiple knowledge sources into a

consensus prior. Our first model, which we call Latent Factor

Model (LFM), relies on the idea of a generative process for the

individual information sources and uses Bayesian inference to

estimate a consensus prior. The second model integrates different

information sources via a Noisy-OR gate. Both models are very

general and do neither rely on a specific probabilistic model nor

on a specific inference procedure. We exemplify the benefit of our

consensus priors for the inference of Bayesian Networks.

Materials and Methods

1.1 Edge-wise Priors for Data Driven Network Inference
Let D denote our experimental data and W the network graph

(represented by an m|m adjacency matrix), which we would like

to infer from this data. According to Bayes’ rule the probability of

network W given data D is given as

P(WDD)~
P(DDW)P(W)

P(D)
ð1Þ

where P(W) is the prior. We assume that P(W) can be decomposed

into

P(W)~P
m

i,j
P(Wij) ð2Þ

e.g.

P(Wij)~
1

n
exp {

1

n
DWij{ŴWij D

� �
ð3Þ

where ŴW is a matrix of prior edge confidences [18]. A value of ŴWij

close to 1 indicates a high prior degree of belief in the existence of

the edge i?j. Our purpose is to compile ŴW in a consistent manner

from n available information sources. We suppose that each of

these sources allows for obtaining an edge confidence matrix by

itself, i.e. altogether with n information sources we have n edge

confidence matrices X (1),X (2), . . . ,X (n).

1.2 Latent Factor Model (LFM)
The Latent Factor Model is based on the idea that the prior

information encoded in matrices X (1), X (2), . . . ,X (n) all originate

from the true but unknown network W (Figure 1a). This specifically

implies that direct correlations between edge confidences across

matrices can be explained by this hidden dependency. In other

words W is a latent factor explaining correlations between the X (k)

(k~1,:::,n). We use this notion to conduct joint Bayesian inference

on W as well as additional parameters h~(a,b) given

X (1),X (2), . . . ,X (n):

P(W,hjX (1),X (2),:::,X (n))~
Pn

k~1P(X (k)jW,h)P(W)P(h)

P(X (1),X (2), . . . ,X (n))
ð4Þ

The idea behind this equation is that we can identify ŴW with the

posterior P(W,hDX (1),X (2), . . . ,X (n)). In other words the prior edge

confidences ŴW are identical to the posterior edge probabilities

learned from our n information sources X (1), . . . ,X (n).

The entries of each matrix X (k) can be assumed to follow beta

distributions. More specifically we have:

P(X
(k)
ij Dh,Wij~1)*Be(X

(k)
ij ,ak,1) ð5Þ

P(X
(k)
ij Dh,Wij~0)*Be(X

(k)
ij ,1,bk) ð6Þ

and P(X (k)Dh,W)~Pm

i,j P(X
(k)
ij Dh,Wij)

Please note that a and b are vectors and ak and bk are the

specific values for source k. If the values in matrix X (k) all either

very high (close to 1) or low (close to 0) parameters ak and bk will

have a large magnitude. Consequently, P(X
(k)
ij Dh,Wij) will be large,

i.e. source k has a large impact. On the other hand, if values in

X (k) are rather uniformly distributed, parameters ak and bk will be

close to 1, which implies P(X
(k)
ij Dh,Wij) to be close to 0. Thus such

an information source has only small impact. By introducing

source specific beta distribution parameters we are hence able to

weight these source individually.

We employ an adaptive Markov Chain Monte Carlo (MCMC)

strategy [28] to learn the latent variable W together with

parameters h~(a,b). For this purpose we define MCMC moves

in network space as well as in parameter space. More specifically,

in network space MCMC moves are edge insertion, deletion and

reversal. In parameter space a and b are adapted on log-scale

using a multivariate Gaussian transition kernel. This is done every

10th iteration. The covariance matrix of the Gaussian transition

kernel is initialized to the identity matrix and every 100th iteration

updated to the empirical covariance matrix. The number of burn-

in steps used is 100000 and number of sampling iterations is

500000 for our MCMC algorithm here (see example convergence

plot in Figure S2 in File S1).

1.3 Noisy-OR Model (NOM)
The Noisy-OR represents a non-deterministic disjunctive

relation between an effect and its possible causes and has been

extensively used in artificial intelligence [29]. The Noisy-OR

model assumes that the relation among the causes and the effect is

not-deterministic, allowing the presence of the effect in absence of

any of the modeled causes. The Noisy-OR principle is governed

by two hallmarks: First, each cause has a probability to produce

the effect and second, the probability of each cause being sufficient

to produce the effect is independent of the presence of other causes

(Figure 1b).

In our case X
(1)
ij , X

(2)
ij , …, X

(n)
ij are interpreted as causes and ŴWij

as effect. The link between both is given by

ŴWij~1{P
k

(1{X
(k)
ij ) ð7Þ

Prior Knowledge for Probabilistic Graphical Model
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In consequence ŴWij becomes close to 1, if the edge i?j has a

high confidence in at least one information source, because then

the product gets close to 0. Hence, in the Noisy-OR model high

edge confidences in one information source can overrule low

confidences in other information sources. This is in contrast to the

LFM model, where a high level of agreement between information

sources is required in order to achieve high values in ŴW.

In addition to the above described Noisy-OR model, which

integrates edge confidences directly into the consensus prior, we

also experimented with a variant based on relative ranks, which is

in the spirit of Marbach et al. [26]: Within each matrix X (k) we

Figure 1. Graphical models representing approaches. (a) A general Latent Factor Model (LFM). The random variables x1 , x2 and x3 are highly
related variables (left) and an assumption that these related random variables originate from a common, true but unknown variable w results a
bayesian network (right) in case of networks w is the true but unknown network. (b) A generalized view of a Noisy-OR model showing the relation
between causes x1:n and effect w through a Noisy-OR function.
doi:10.1371/journal.pone.0067410.g001

Figure 2. Plot showing the balanced accuracies of networks with varying number of nodes (20, 40 and 60) created just from
different kinds of prior knowledge. The networks were extracted from KEGG via random walks. The plot shows the effect of size of network of
different priors and also compares them to the knowledge from STRING database.
doi:10.1371/journal.pone.0067410.g002

Prior Knowledge for Probabilistic Graphical Model
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first assigned each edge confidence X
(k)
ij to its rank R

(k)
ij in

descending order. Then we converted these absolute ranks into

relative ranks by dividing each rank value by the maximum rank:

R
(k)
ij /

R
(k)
ij

max
ij

R
(k)
ij

ð8Þ

Matrices R
(1)
ij , R

(2)
ij , …, R

(n)
ij consisting of relative ranks were

then considered in Eq. (7) rather than the original matrices X
(1)
ij ,

X
(2)
ij , …, X

(n)
ij . We call this method NOM.RNK in the following.

1.4 Information Sources
In this work we employed GO annotation, two pathways

databases (KEGG, PathwayCommons), protein domain annota-

tion (InterPro – [30]) and protein domain interactions (DOMINE

– [31]) as sources of prior information. According to each of these

information sources we calculated for a pair of proteins (a,b) a [0,

1] normalized similarity, which we interpreted as edge confidence.

Briefly, for GO annotation we used the default similarity measure

for gene products implemented in the R-package GOSim [32],

which resembles the functional similarity proposed by Schlicket

et al. [33] on the basis of the information theoretic GO term

proximity measure by Lin [34]. Protein domain annotation was

compared on the basis of a binary vector representation via the

cosine similarity. The relative frequency of interacting protein

domain pairs was taken as another confidence measure for an edge

a{b. Finally, network information was integrated by computing

shortest path distances between pairs of proteins. Details about our

similarity measures and their calculation can be found in the

supplemental material (Supplement text and Figure S1 in File S1).

Results

2.1 Correlation of Prior Edge Confidences with True
Biological Network

Network Sampling: In a first series of validation experiments

we looked, in how far the true network could be recovered purely

from the inferred prior edge confidence matrix ŴW after a applying

a certain threshold. For this purpose we generated 10 networks

with 10, 20, 40 and 60 nodes each. These networks later on served

as our ground truth. To obtain our ground truth networks we

parsed XML files of all KEGG signaling pathways and converted

them into graphs via the R-package KEGGgraph [35]. Then we

randomly picked one of these graphs and performed a random

walk starting from a randomly selected core node. The random

walk was stopped once a predefined number of distinct nodes had

been visited, and the corresponding sub-network was returned as a

ground truth network (Figure S9 in File S1).

To evaluate the performance of a prior relative to the ground

truth network we looked at sensitivity and specificity at different

cutoffs for edge confidences. In addition we also computed the

balanced accuracy ( = average of sensitivity and specificity) at each

cutoff. We then defined the optimal balanced accuracy (oBAC) to be

the maximum balanced accuracy over all these cutoffs.

Simulated Information Sources: In order to better

understand the principal behavior of our LFM, NOM and

NOM.RNK methods we first simulated matrices X (1),

X (2), . . . ,X (n) by sampling from Be(1,b) and Be(a,1) distributions

according Eq. 6. The whole simulation was repeated 10 times for

different parameter combinations and network sizes m. We

compared our LFM, NOM and NOM.RNK approaches against

a set of other proposed priors namely.

1. an independent prior (IP), which just takes the product of all

matrices X (k) (mimicking the method by Gao et al. [21])

2. a variant of IP working on relative ranks (IP.RNK) in the same

way as described for the NOM method

3. an unweighted average prior (MP), which takes the arithmetic

mean of all matrices X (k)

4. a variant of MP, which works on relative ranks (MP.RNK) and

is thus identical with the approach proposed by Marbach et al.

[26]

To understand the dependency on a and b we first varied both

parameters in the range 2,3,4 and fixed n~6 for networks with

m~20 nodes. Our results (Figures S3, S4) indicate a dependency

of the priors, on the beta distribution shape parameters. Under

most parameter settings the methods using relative ranks

performed better than their counterparts using raw edge

confidences. This was not true for NOM versus NOM.RNK,

however, were the opposite behavior was observed: NOM.RNK

compared to NOM lacks specificity. Almost all the models

performed better for highly correlated sources (i.e. higher a and

b values – see Figure S5 in File S1). However, the LFM model

performed well even with an overall low correlation among

sources, which can be interpreted by the ability of the approach to

down-weight uninformative/weakly correlated sources. The same

held true for MP.RNK. IP was comparable to the other methods

for only two parameter combinations (a~4,b~2) and

(a~4,b~4). In both cases numerically the beta distribution yields

relatively high values in the X (k) matrices, hence the product does

not as quickly tend to 0 as with lower values. NOM could beat

LFM only for a~2,b~4. In this case confidence values for non-

existing edges are relatively concentrated around 0, and LFM

lacks sensitivity. On the other hand LFM performed significantly

better than NOM for a~2,b~2 and a~3,b~2 and a~3,b~2.

In these cases confidence values for existing edges are relatively

high, and NOM lacks specificity. In general it was observable that

LFM, MP, MP.RNK, IP and IP.RNK are extremely specific

methods, whereas NOM is highly sensitive. Consequently LFM

gives the best results in terms of balanced accuracy at low edge

probability cut-offs whereas, the NOM does the same at higher

cut-offs. The correlation of entries in matrices X (k) were

dependent on the beta distribution parameters (Figure S5 in File

S1). For example a~4, b~4 yielded high correlations (median

Table 1. Pairwise Wilcoxon test for model performance
comparison (false discovery rates) for m~60.

Methods IP IP.RNK LFM MP MP.RNK NOM NOM.RNK

IP.RNK 0.0091 – – – – – –

LFM 0.0036 0.0036 – – – – –

MP 0.2503 0.0249 0.0036 – – – –

MP.RNK 0.0036 0.6953 0.0036 0.0036 – – –

NOM 0.0036 0.0433 0.0137 0.0036 0.0091 – –

NOM.RNK 0.0036 0.0333 0.0182 0.0036 0.0137 0.3889 –

STRING 0.0036 0.0068 0.0036 0.1466 0.0036 0.0036 0.0036

For m~ 10, 20 and 40 see tables S1, S2, and S3 in file S1.).
doi:10.1371/journal.pone.0067410.t001
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~00:7),whereas a~2,b~2 lead to much weaker ones (median 0.2).

We also simulated the network reconstruction performance for

different number n of sources for networks with m~20 nodes and

a~2,b~2. In this situation we could observe that increasing the

number of sources helped to improve the accuracy for most

methods (Figure S6 in File S1). The oBAC of our methods were

similar to those of the other approaches for a low number of

sources (1, 2 and 3 sources). However, with an increasing number

of sources (4, 5 and 6) the performance of LFM increased

constantly. For NOM an optimum was reached for n~4 sources,

after which the performance declined again, suggesting an

increasing loss of specificity.

Decreasing the number of network nodes from m~20 to m~10
yielded a drastic performance loss of LFM (Figure S7 in File S1).

This may be explained be the fact that the LFM method learns

from the entries in the matrices X (k). The larger these matrices,

the more independent observations LFM has to learn from. In

contrast, increasing the number of network nodes from m~20 to

40 and m~60 for n~6 sources and a~2,b~2 did not influence

the previously observed good performance of LFM significantly.

Weighting of Information Sources: We tested, in how far

the automatic weighting of sources provided by the LFM method

was able to filter out irrelevant/noisy information. For this

purpose we added an additional artificial source, which contained

values sampled uniform randomly between 0 and 1. Figure 2

depicts the posterior expectations for a and b parameters, which

were retrieved for individual information sources for 10 sampled

networks with m~20 nodes. The picture clearly reveals that the

posterior expectation of parameters for the noise source was

always close to 1, which indicates an influence close to 0 in the

Figure 3. Boxplot of posterior expectation parameters learned for individual information sources in 10 randomly sampled sub-
graphs of KEGG pathways of size m = 20.
doi:10.1371/journal.pone.0067410.g003

Prior Knowledge for Probabilistic Graphical Model
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likelihood function (Eq. 6). Hence, the noise source was filtered out

effectively.

Real Information Sources: In a second round of experi-

ments we constructed prior information for our 10 sampled

networks from existing biological knowledge encoded in GO,

PathwayCommons, KEGG, InterPro and DOMINE (see section

‘‘Information Sources’’ and Supplements). We ran the whole

simulation for networks of different sizes (m~10,20,40,60).

Our studies revealed a significant improvement of our suggested

methods (LFM, NOM, NOM.RNK) compared to the other

models in all cases (Figure 3 together with Figure S8 and Table S4

in File S1). These findings were underlined by a pairwise Wilcox

signed rank test to assess the statistical significance of the observed

differences (Table 1). At the same time no statistically significant

differences between NOM, LFM and NOM.RNK could be

observed in terms of oBAC here. The IP prior revealed a oBAC

which was almost constantly at 0.5. The reason for this behavior is

that multiplicative nature of the IP method often yields

numerically very small values, hence making IP close to a pure

sparsity prior.

We also compared the reconstruction performance of our priors

to a reconstruction with confidence scores from the STRING

database [36]. The comparison showed a clear and significant

advantage of our priors over the STRING in terms of higher

oBAC (Figure 3, Table 1 and Tables S1–S3).

Most methods showed a very low dependency on the network

size, except for the LFM method, which tended to improve the

more nodes the network had. The reason for this behavior could

be that the LFM method essentially learns from the entries of the

edge confidence matrices. Having larger matrices implies more

independent observations to learn from, hence the performance

increases.

2.2 Enhancement of Data Driven Network Reconstruction
Accuracy

Simulated Data: We next investigated, in how far our priors

could enhance the reconstruction performance of Bayesian

Networks learned from data. This serves as an example for the

ability to enhance probabilistic graphical model inference using

our informative priors. For the purpose of this simulation we used

the R-package catnet. The catnet package implements a dynamic

programming approach to exhaustively search through the space

of possible network structures and returns a set of best fitting

models. The maximum number of parents per network node can

be limited to a user specified number (here: 5). From the set of best

Figure 4. Optimally balanced accuracy for reconstructing networks from simulated categorical data with different kinds of prior (#
nodes = 10).
doi:10.1371/journal.pone.0067410.g004

Prior Knowledge for Probabilistic Graphical Model
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fitting network structures the one with minimum BIC value was

selected. catnet allows to specify a Bernoulli distribution prior over

network structures:

P(W)~ P
m

i,j:i=j
ŴW

Wij
ij
:(1{ŴWij)

1{Wij ð9Þ

Please note that the prior is specified in terms of arbitrarily

chosen edge-wise probabilities. In any case, network structures

learned by catnet are directed acyclic graphs.

In order to conduct our simulation we sampled 10 graphs

(Figure S10 in File S1) with 10 nodes from KEGG signaling

pathways (see description in section ‘‘Network Sampling’’). While

doing so, we specifically ensured that only directed acyclic graph

structures were generated (others were discarded). For each

generated network multinomially distributed data with 3 catego-

Figure 5. Network reconstruction for the breast cancer data (van’t Veer et.al.). (a) The reconstructed network from data without using any
prior. (b) Reconstructed network using the NOM prior. Black edges in the network could be verified with established literature knowledge, whereas
the grey edges could not be verified. (c) The plot shows the edge recovery of the network from two points of view points: knowledge
view = literature network mapped onto reconstructed network; model view = reconstructed edges mapped onto literature network.
doi:10.1371/journal.pone.0067410.g005

Prior Knowledge for Probabilistic Graphical Model
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ries were sampled using the appropriate functions in R-package

catnet. This was repeated 10 times with different numbers of data

points (5, 10, 20, 50, 100, 500, 1000 and 5000 data points per

variable). We then tested Bayesian Network inference using the

LFM, NOM, IP, MP, IP.RNK, MP.RNK, NOM.RNK priors as

well as without any prior (no prior – NP). Performance evaluation

of learned network structures was done in terms of sensitivity (true

positive rate), specificity (1 - false positive rate) and balanced

accuracy (average of sensitivity and specificity). paragraph The

results showed a clear positive effect of our priors for biologically

relevant sample sizes (Figure 4, rest in S11). Specifically for sample

sizes between 20 and 100 LFM, NOM and NOM.RNK were

superior to all other methods (FDR v 5% for comparison against

IP, IP.RNK, MP, NP for all sample sizes) (See Table S5 and S6).

The MP.RNK method was the best competing method, but was

significantly outperformed by LFM for all sample sizes w 20. The

independence prior (IP) in all cases yielded numerical problems,

because for ŴWij values close to 0 the prior in Eq. 9 on log scale

tends to minus infinity. Therefore, IP in all cases produced the

same constant results. As expected, for larger sample sizes (1000,

5000 data points) the effect of using an informative prior

compared to using no prior at all vanished.

Overall, our proposed methods allowed for a significant

improvement in the network reconstruction process compared to

using no prior and compared to using the IP, IP.RNK, MP and

MP.RNK priors.

Application to Breast Cancer: We applied our tested

approaches to build informative priors for a sub-sample of the well

known breast cancer microarray data set by van’t Veer et al. [37]

contained in catnet. The data consists of 1214 genes for 98 patient

samples: 34 patients developed distant metastases within 5 years,

44 patients remained disease-free after a period of at least 5 years,

18 patients had BRCA1 germline mutations, and 2 were BRCA2

carriers. We selected 173 differentially expressed genes (FDR

cutoff 5%) from this dataset via SAM analysis [38]. From this set of

genes we further selected a cluster consisting of 37 genes for

network inference via complete linkage clustering.

Bayesian Network inference via catnet was run with restricting

the maximal number of parents per network node to 5. This was

done once without using any prior and then with the LFM, NOM,

NOM.RNK, IP, IP.RNK, MP and MP.RNK priors (Figure 5a

and 5b). To compare, we also retrieved a network for these 37

genes purely from literature known interactions via the commer-

cial software MetaCore. The literature network consisted of all

shortest paths between the 37 genes, which can be computed

purely via literature known interactions (Figure S12 in File S1).

That means the literature network mainly consists of indirect

interactions.

We asked (i) in how far inferred edges between two nodes could

be explained by shortest paths in the literature network (so-called

model view) and (ii) in how far shortest paths between the 37 genes in

the literature network corresponded to paths in the inferred

network (so-called knowledge view). These two performance mea-

sures capture the situation that a) the literature network consists of

indirect interactions only and b) there could exist edges in the data,

which are so far unknown in the literature for human.

The results showed that Bayesian Network reconstructions using

LFM and NOM priors were significantly closer to the established

biological knowledge than without using any prior (Figure 5c). On

the other hand usage of the other priors did not yield any

significant overlap with the literature. With the NOM and

NOM.RNK priors more than 60% of the inferred edges could

be explained by the literature and around 30% of the literature

known paths corresponded to pathways in the inferred network.

The fact that the latter percentage is much lower than the fraction

of literature explainable edges in the inferred network has several

reasons: First, a Bayesian Network can only infer a directed acyclic

graph, but literature based networks are typically highly cyclic.

Second, Bayesian Networks try to uncover conditional indepen-

dence relationships in the data. However, not all existing

molecular interactions might manifest in such relationships on

gene expression level. Third, not all literature reported interactions

are guaranteed to exist in the specific cells under investigation.

Application to Yeast Heat-Shock Network: In second

application we used our method to infer a network of nine

transcription factors (TFs) related to yeast heat-shock response. We

used microarray data from GEO (GSE3316), which contains 12

samples. We considered two different sources of established

knowledge to compute a consensus prior, namely Gene Ontology

(GO) and protein-protein interactions for Yeast obtained from

PathwayCommons [7]. Bayesian Network inference was done in a

similar manner as described above. After network reconstruction

we compared the resulting network against the gold standard

network from the YEASTRACT database [39] (Figure 6).

Figure 6. Yeast (Saccharomyces cerevisiae) heat-shock response network obtained via Bayesian network reconstruction. (a) Network
without any prior knowledge, (b) The gold standard network from YEASTRACT database (c) Network reconstructed with prior knowledge (here:
NOM).
doi:10.1371/journal.pone.0067410.g006
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Knowledge integration via the NOM prior lead to an

improvement of 10% in terms of balanced accuracy compared

to using no prior (Figure 7). The other prior methods (including

LFM) did not yield any significant increase in reconstruction

performance. The reason for the bad performance of LFM is

probably the low number of available knowledge sources

combined with a relatively small network size.

Discussion

We proposed two methods to integrate different, heterogenous

sources of biological information in form of a consistent structure

prior for probabilistic network inference. Our approach takes into

consideration diverse information sources, such as e.g. GO,

pathway and protein domain data. Our latent factor model

(LFM) is based on the assumption of relatedness of biological

information across these data sources. In contrast the Noisy-OR

model (NOM) picks up the the strongest support for an interaction

from any of the knowledge sources.

Our computational experiments revealed that both of our

models yielded priors which were significantly closer to the true

biological network than competing methods. Moreover, they could

significantly enhance the reconstruction performance of Bayesian

Networks compared to a situation without any prior, an

independent as well as a mean prior approach. This was true,

even if relative ranks were employed, which generally appeared to

be beneficial for IP and MP, but not necessarily for NOM. Our

methods were also superior to purely using STRING edge

confidence scores as prior information. Furthermore, we found

that LFM particularly worked particular well, if networks were not

too small (Figure 2). Therefore, in case of very small networks

and/or sparse prior knowledge NOM appears to be a more robust

choice. Moreover, NOM is clearly the computationally cheaper

approach and thus should be favored for very large (e.g. genome-

scale) networks. Taken together LFM thus appears to be a

Figure 7. Reconstruction performance of Yeast (Saccharomyces cerevisiae) heat-shock response network with Bayesian Networks and
different priors (NP = No Prior).
doi:10.1371/journal.pone.0067410.g007
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recommendable choice mainly for medium sized networks, if a

sufficient degree of correlation between information sources can be

observed.

The current framework allows to include a number of

heterogenous information sources and is flexible enough to include

new ones. As databases for biological information and annotation

grow, a larger amount of correlated information can be compiled

into prior knowledge, which ultimately can be utilized to more

realistic probabilistic model inference from experimental data.
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