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A variational approach to probing extreme events in
turbulent dynamical systems
Mohammad Farazmand* and Themistoklis P. Sapsis*

Extreme events are ubiquitous in a wide range of dynamical systems, including turbulent fluid flows, nonlinear
waves, large-scale networks, and biological systems. We propose a variational framework for probing
conditions that trigger intermittent extreme events in high-dimensional nonlinear dynamical systems. We seek
the triggers as the probabilistically feasible solutions of an appropriately constrained optimization problem,
where the function to be maximized is a system observable exhibiting intermittent extreme bursts. The con-
straints are imposed to ensure the physical admissibility of the optimal solutions, that is, significant probability
for their occurrence under the natural flow of the dynamical system. We apply the method to a body-forced in-
compressible Navier-Stokes equation, known as the Kolmogorov flow. We find that the intermittent bursts of the
energy dissipation are independent of the external forcing and are instead caused by the spontaneous transfer of
energy from large scales to the mean flow via nonlinear triad interactions. The global maximizer of the cor-
responding variational problem identifies the responsible triad, hence providing a precursor for the occurrence
of extreme dissipation events. Specifically, monitoring the energy transfers within this triad allows us to develop
a data-driven short-term predictor for the intermittent bursts of energy dissipation. We assess the performance of
this predictor through direct numerical simulations.
INTRODUCTION
A plethora of dynamical systems exhibit intermittent behavior mani-
fested through sporadic bursts in the time series of their observables.
These extreme events produce values of the observable that are several
SDs away from its mean, resulting in heavy tails of the corresponding
probability distribution. Important examples include climatephenomena
(1, 2), rogue waves in oceanic and optical systems (3–5), and large devia-
tions in turbulent flows (6–8). Because these extreme phenomena typi-
cally have marked consequences, their quantification and prediction are
of great interest.

Significant progress has been made in the computation of extreme
statistics, both through direct numerical simulations and through in-
direct methods such as the theory of large deviations [see the work of
Touchette (9) for a review]. Although thesemethods estimate the prob-
ability distribution of the extreme events, they do not inform us about
the underlying mechanisms that lead to the extremes, nor are they ca-
pable of predicting individual extreme events.

For systems operating near an equilibriumor systems that are nearly
integrable, perturbativemethods have been successful in identifying the
resonant interactions that cause the extreme events (10, 11). For systems
that are not perturbations from these trivial limits, a general framework
for probing the transition mechanism to extreme states is missing.
These systems, such as turbulent fluid flows and water waves, are also
typically high-dimensional andnonlinearwhere the nonlinearities create
a complex network of interdependent interactions amongmany degrees
of freedom (12–17).

Here, we propose a variational framework to probe the underlying
conditions that lead to extreme events in these high-dimensional
complex systems. More specifically, we derive precursors of extreme
events as the solutions of a finite-time constrained optimization prob-
lem. The functional to bemaximized is the observable whose time series
exhibit the extreme events. The constraints are designed to ensure that
the triggers belong to the system attractor and therefore reflect physi-
cally relevant phenomena. If the lifetime of the extreme events are short
compared to the typical dynamical time scales of the system, then the
finite-time optimization problem can be replaced with its instanta-
neous counterpart. For the instantaneous problem, we derive the Euler-
Lagrange equations that can be solved numerically using Newton-type
iterations.

We apply the variational framework to the Kolmogorov flow, a two-
dimensional Navier-Stokes equation driven by a monochromatic body
forcing. At sufficiently high Reynolds numbers, this flow is known to
exhibit intermittent bursts of energy dissipation rate (18, 19). We first
show that these extremebursts are due to the internal transfers of energy
through nonlinearities, as opposed to phase locking with the external
forcing. Because of the high number of involved degrees of freedom
and their complex interactions, deciphering the modes responsible
for the extreme energy dissipation rate is not straightforward. However,
the optimal solution to our variational method isolates the triad inter-
action responsible for this transfer of energy. Monitoring this triad
along trajectories of the Kolmogorov flow, we find that, on the onset
of the extreme bursts, the energy is transferred spontaneously from a
large-scale Fourier mode to the mean flow, leading to growth of the
energy input rate and consequently the energy dissipation rate.

We then use the derived large-scale mode as a predictor for the ex-
treme events. Specifically, by tracking the energy of thismode,we develop
a data-driven short-term predictor of intermittency in the Kolmogorov
flow. We assess the effectiveness of the prediction scheme on extensive
direct numerical simulations by explicitly quantifying its success rate,
as well as the false-positive and false-negative rates.
RESULTS
Variational formulation of extreme events
Consider the general evolution equations

∂tu ¼ NðuÞ ð1AÞ
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KðuÞ ¼ 0 ð1BÞ

uð⋅; t0Þ ¼ u0ð⋅Þ ð1CÞ

where u :W × ℝ+→ℝd belongs to an appropriate function space X and
completely determines the state of the system. The initial condition
X ∋ u0 : W → ℝd is specified at the time t0, and W ⊂ℝd is an open
bounded domain. The differential operators N and K can be poten-
tially nonlinear. A wide range of physical models can be written as a set
of partial differential equations (PDEs), as in Eqs. 1A to 1C. For in-
stance, for incompressible fluid flows, Eq. 1A is the momentum equation
and Eq. 1B is the incompressibility condition where K(u) = ∇ · u. For
simplicity, we will denote a trajectory of Eqs. 1A to 1C by u(t).

Let I : X→ℝ denote an observable whose time series I(u(t)) along a
typical trajectory u(t) exhibits intermittent bursts (see Fig. 1A). Drawing
upon the near-integrable case, we view the system as consisting of a
background chaotic attractor, which has small regions of instability
(see Fig. 1B). Once a trajectory reaches an instability region, it is mo-
mentarily repelled away from the background attractor, resulting in a
burst in the time series of the observable. Our goal here is to probe the
instability region(s) by using a combination of observed data from
the system and the governing equations of the system. We also re-
quire the instability regions to have a nonzero probability of occurrence
under the natural flow of the dynamical system. This constraint is of
particular importance because it excludes “exotic” states with extreme
growth of I but with a negligible probability of being observed in prac-
tice [see the constraint C(u0) = c0 in Eq. 2B].

We formulate this task as a constrained optimization problem. As-
sume that there is a typical time scale t ∈ℝ+ over which the bursts in the
observable I develop (see Fig. 1A). We seek initial conditions u0 whose
associated observable I(u(t)) attains a maximal growth within time t.
More precisely, we seek the solutions to the constrained optimization
problem

sup
u0∈X

ðIðuðt0 þ tÞÞ � Iðuðt0ÞÞÞ ð2AÞ

where
uðtÞ satisfies ðEqs: 1A to 1CÞ

Cðu0Þ ¼ c0

�
ð2BÞ

where the optimization variable is the initial condition u(t0) = u0 of
systems 1A to 1C. The set of critical states is required to satisfy the
constraints in Eq. 2B to enforce two important properties. The first
property ensures thatu(t) obeys the governingEqs. 1A to 1C as opposed
to being an arbitrary one-parameter family of functions. The second
property C(u0) = c0, where C : X→ℝk, is a codimension k constraint.
This constraint is enforced to ensure the nonzero probability of occur-
rence, that is, states that are sufficiently close to the chaotic background
attractor. The set of probabilistically feasible states can be generally de-
scribed by exploiting basic physical properties of the chaotic attractor
such as average energy along different components of the state space
or the second-order statistics. The precise form of the constraint
C(u0) = c0 is problem-dependent and will shortly be discussed in more
detail.Wepoint out thatmore general inequality constraints of the form
cmin≤ C(u0)≤ cmax may also be used. However, the treatment of these
inequality constraints is not discussed in this paper.

We expect the set of solutions to problems 2A and 2B to unravel the
mechanisms underpinning the intermittent bursts of the observable. Al-
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though it is unlikely that a generic trajectory of the systempasses exactly
through one of the maximizers, by continuity, any trajectory passing
through a sufficiently small open neighborhood of the maximizer
(that is, the instability regions of Fig. 1B) will result in a similar ob-
servable burst.

We emphasize that an optimization problem similar to Eqs. 2A and
2B has been pursued before in special contexts. The largest finite-time
Lyapunov exponent can be formulated as Eqs. 2A and 2B, where the
observable is the amplitude of infinitesimal perturbations after finite
time. The maximizer is the corresponding finite-time Lyapunov vector
(20, 21). In a similar context, Pringle and Kerswell (22) seek optimal
finite-amplitude perturbations that trigger transition to turbulence in
the pipe flow. They formulate the unknown optimal perturbation as
the solution of a constrained optimization problem similar to Eqs. 2A
and 2B, with the observable being the L2 norm of the fluid velocity field.
Ayala and Protas (23–25) consider the finite-time singularity formation
for Navier-Stokes equations. They also use a variational method to seek
the initial conditions that could lead to finite-time singularities. In these
studies, the emphasis is given to the analysis of the most “unstable”
states, but the physical properties of the attractor are not taken into
account.

The standard approach for solving the PDE-constrained optimiza-
tion problem (Eqs. 2A and 2B) is an adjoint-based gradient iterative
method (26–28). This method is computationally very expensive be-
cause, at each iteration, the gradient direction needs to be evaluated
as the solution of an adjoint PDE. If the growth time scale t is small
compared to the typical time scales of the observable, then it is reason-
able to replace the finite-time growth problem (Eqs. 2A and 2B) with its
instantaneous counterpart

sup
u0∈X

d
dt
jt¼t0

IðuðtÞÞ ð3AÞ

where
uðtÞ satisfies ðEqs: 1A to 1CÞ

Cðu0Þ ¼ c0

�
ð3BÞ

Problems 3A and 3B seek initial states u0 for which the instanta-
neous growth of the observable I along the corresponding solution
u(t) is maximal.

We point out that the large instantaneous derivatives of I do not
necessarily imply a subsequent burst in the observable because the
growth may not always be sustained at later times along the trajectory
u(t). As a result, the set of solutions to this instantaneous problem may
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Fig. 1. State space geometry of extreme events. (A) A depiction of intermittent
bursts of an observable. The highlighted regions mark an approximation of the
growth phase of the extreme events. (B) In the state space, extreme events are
viewed as fast excursions away from the background attractor (blue ball) owing
to small regions of stability.
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differ significantly from the finite-time problem (Eqs. 2A and 2B).
Nonetheless, the solutions to the instantaneous problem can still be
insightful. In addition, as we show below, these solutions can be ob-
tained at a relatively low computational cost.

Optimal solutions
First, we derive an equivalent form of Problems 3A and 3B. Taking
the time derivative of the time series I(u(t)) yields (d/dt)I(u(t)) =
dI(u; ∂tu), where dI(u; v) := lime→0 [I(u + ev) − I(u)]/e denotes the
Gâteaux differential of I at u evaluated along v. Using Eq. 1A to sub-
stitute for ∂tu, we obtain the following optimization problem, which is
equivalent to problems 3A and 3B

sup
u∈X

JðuÞ ð4AÞ

subject to
KðuÞ ¼ 0
CðuÞ ¼ c0

�
ð4BÞ

where

JðuÞ :¼ dIðu;NðuÞÞ ð5Þ

Note that the first constraint in Eq. 3B is simplified because we
have already used Eq. 1A, and it only remains to enforce Eq. 1B.
For notational simplicity, we omit the subscript from u0.

If J : X→ℝ is a continuous map and the subset S = {u ∈ X :K(u) =
0, C(u) = c0} is compact in X, problems 4A and 4B have at least one
solution. This follows from the fact that the image of a compact set
under a continuous transformation is compact. Therefore, J(S)⊂ℝ is
compact, which implies that J(S) is bounded and closed (29). There-
fore, J is bounded and attains its maximum (and minimum) on S.
The uniqueness of the maximizer is not generally guaranteed. How-
ever, the set of maximizers (and minimizers) of J is a compact subset
of S (30).

As we show in section S1, if X is a Hilbert space with the inner
product 〈⋅,⋅〉X and the operator K is linear, then every solution of
the optimization problem (Eqs. 4A and 4B) satisfies the set of Euler-
Lagrange equations

J 0ðuÞ þ K†ðaÞ þ ∑
k

i¼1
bi C′iðuÞ ¼ 0 ð6AÞ

KðuÞ ¼ 0 ð6BÞ

CðuÞ ¼ c0 ð6CÞ

Here, K† is the adjoint of K, and J′(u) and Ci′(u) are the unique
identifiers of the Gâteaux differentials dJ(u;⋅) and dCi(u;⋅), such that
dJ(u;v) = 〈J′(u), v〉X and dCi(u;v) = 〈Ci′(u),v〉X for all v. The exis-
tence and uniqueness of J′(u) and Ci′(u) are guaranteed by the Riesz
representation theorem (31). Here, Ci are the components of the map
C = (C1, C2,⋯, Ck). The function a :W→ℝ and the vector b = (b1,⋯,
bk) ∈ ℝk are unknown Lagrange multipliers to be determined together
with the optimal state u : W → ℝd.
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Application to Navier-Stokes equations
We consider the Navier-Stokes equations

∂tu ¼ �u ⋅ ∇u� ∇pþ nDuþ f ;∇⋅ u ¼ 0 ð7Þ

where u : W × ℝ+ → ℝd is the fluid velocity field, p : W × ℝ+ → ℝ is
the pressure field, and n = Re−1 is the nondimensional viscosity,
which coincides with the reciprocal of the Reynolds number Re.
Here, we consider two-dimensional flows (d = 2) over the domain
W = [0, 2p] × [0, 2p] with periodic boundary conditions. The flow is
driven by the monochromatic Kolmogorov forcing f(x) = sin(kfy)e1,
where kf = (0, kf) is the forcing wave number and the vectors ei denote
the standard basis in ℝd. In the following, we assume that the velocity
fields are square integrable for all times, that is, X = L2 (W).

The kinetic energy E (per unit volume), the energy dissipation
rate D, and the energy input rate I are defined, respectively, by

EðuÞ ¼ 1
jWj ∫W

juj2
2 dx; DðuÞ ¼ n

jWj ∫Wj∇uj
2
dx;

1

IðuÞ ¼ jWj ∫Wu⋅f dx ð8Þ

where |W| denotes the area of the domain, that is, |W| = (2p)2. Along
any trajectory u(t), these three quantities satisfy _E ¼ I � D. We use
the energy dissipation rate D to define the eddy turnover time, te ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=E½D�p
, where E denotes the expected value.

The Kolmogorov flow admits the laminar solution u ¼
ðRe=k2f Þ sinðkf yÞe1. For the forcing wave number kf = 1, the laminar
solution is the global attractor of the system at any Reynolds number
(32). If the forcing is applied at a higher wave number and the Rey-
nolds number is sufficiently large, then the laminar solution becomes
unstable. In particular, numerical evidence suggests that, for kf = 4 and
sufficiently large Reynolds numbers, the Kolmogorov flow is chaotic
and exhibits intermittent bursts of energy dissipation (18, 33, 34). This
is manifested in Fig. 2A, showing the time series of the energy dissi-
pation D at Reynolds number Re = 40 with kf = 4.

A closer inspection reveals that each burst of the energy dissipation
D is shortly preceded by a burst in the energy input I (see Fig. 2B).
Therefore, we expect the mechanism behind the bursts in the energy
input to be also responsible for the bursts in the energy dissipation.
As we show in section S2.1, the energy input is given by I(u) =
−|a(kf)| sin(f(kf)), where a(k) are the Fouriermodes of the velocity field
u andf(k) are their correspondingphases such that a(k) = |a(k)| exp(if(k)).
We refer to the Fouriermode a(kf) as themean flow. The energy input I
can grow through twomechanisms: (i) alignment between the phase of
the mean flow and the external forcing, that is, f(kf) → −p/2, and (ii)
growth of the mean flow energy |a(kf)|.

Examining the alignment between the forcing and the velocity field
rules out mechanism (i) (cf. fig. S1). The remaining mechanism (ii) is
possible through the nonlinear term in theNavier-Stokes equation. This
nonlinearity redistributes the system energy among various Fourier
modes a(k) through triad interactions of the modes whose wave
numbers (k, p, q) satisfy k = p + q (see section S2.2 for further details).
Because of the high number of active modes involved in the intricate
network of triad interactions, it is unclear which triad (or triads) is
(are) responsible for the nonlinear transfer of energy to the mean flow
during the extreme events. As we show below, our variational approach
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identifies themodes involved in this transfer.However, before obtaining
the optimal solution, we need to specify the explicit form of the con-
straint C(u) = c0.

Constraints
The constraintC(u) = c0 is imposed to ensure that the optimal solutions
are physically admissible, that is, that they are sufficiently close to the
attractor and thus have a nonzero probability of occurrence. For in-
stance, the solutions to a wide range of dissipative PDEs are known
to converge asymptotically to a finite-dimensional subset of the state
space (35). The maximizers of the functionals (Eq. 2A or Eq. 3A) that
are far from this asymptotic attractor are physically irrelevant because
they correspond to a transient phase that cannot be sustained.

Inmost applications, including the Kolmogorov flow, the system at-
tractor is not explicitly known. Therefore, the physical relevance of the
optimal solutions needs to be ensured otherwise.Here, we consider con-
straints of the form

CðuÞ :¼ 1
jWj∫W

jAðuÞj2
2 dx ð9Þ

whereA is a linear operator. Several physically important quantities can
be written as function 9. For instance, if A is the identity operator, then
C coincides with the kinetic energy, C(u) = E(u). If A is the gradient
operator,A =∇, then we have C(u) =D(u) × (Re/2), which can be used
to constrain the energy dissipation rate. A more general class of these
operators can be constructed as follows. Let u = ∑iaivi, where {vi} is a
principal component basis, that is, it diagonalizes the covariance
operator of u. Define A as the diagonal linear operator such that A(vi) =
vi/si, where s2i is the SD of ai. Then, the constraint takes the form
CðuÞ ¼ ð∑ia

2
i =s

2
i Þ=ð2 Wj jÞ. This corresponds to an ellipsoid, describing

points that have equal probability of occurrence when we approximate
the statistics of the background attractor by a Gaussian measure (36).
Note that the constraints of Eq. 9 are codimension one, C : X → ℝ,
and hence a special case of the codimension k constraint in Eq. 2B.
Farazmand and Sapsis, Sci. Adv. 2017;3 : e1701533 22 September 2017
Excluding the intermittent bursts, the energy dissipation of the
Kolmogorov flow exhibits small oscillations around its mean value
E[D] (see Fig. 2A). On the basis of this observation, we seek opti-
mal solutions of Eqs. 4A and 4B, which are constrained to have the
energy dissipation D =E[D]. This results into the constraint (Eq. 9)
with A = ∇ and C(u) = c0 = E[D] × (Re/2). We approximate the
mean valueE[D] from direct numerical simulations. At Re = 40, for
instance, we have E[D] ≃ 0.117.

Probing the extreme energy transfers
The functional J (see Eq. 5) associated with the energy input I reads

JðuÞ ¼ 1
jWj∫W½u ⋅ ðu ⋅∇f Þ þ nu ⋅ ðDf Þ�dx ð10Þ

The associated Euler-Lagrange equations (Eqs. 6A to 6C) read

ð∇f þ ∇f TÞuþ nDf � ∇aþ bA†Au ¼ 0 ð11AÞ

∇⋅ u ¼ 0 ð11BÞ

1
jWj ∫W

jAðuÞj2
2 dx ¼ c0 ð11CÞ

where J′(u) = (∇f + ∇fT) u + nDf,K†(a) = −∇a, and C′(u) = A† Au
(see section S2.3 for the derivations). We set A = ∇ to enforce a con-
stant energy dissipation constraint. This implies that A†Au = −Du.

Using the symmetries of Eqs. 11A to 11C, we find that it ad-
mits the pair of exact solutions u± ¼ ±ð2 ffiffiffiffi

c0
p

=kf Þ sinðkf yÞe1 , a± ¼
±

ffiffiffiffi
c0

p ∫sinð2kf yÞdy, and b± ¼ ±ðnkf =2 ffiffiffiffi
c0

p Þ. More complex solutions,
with unknown closed forms, may exist. We approximate these solu-
tions using the Newton iterations described in section S3.

At each Re, we initiated several Newton iterations from random ini-
tial conditions. In addition to the pair of exact solutions (u±, a±, and b±),
the iterations yielded one nontrivial solution. Figure 3 shows the result-
ing three branches of solutions including the exact solution u+ (solid
black), the exact solution u− (dashed black), and the nontrivial solution
(red circles). For small Reynolds numbers, our Newton searches only
returned the exact solutions. AtRe≃ 3.1, a bifurcation takes placewhere
a new nontrivial solution is born. This solution appears to be a global
maximizer because no other solutions were found. Because the inter-
mittent bursts are only observed for Re > 35, we focus the following
analysis on this range of Reynolds numbers.

The nontrivial optimal solution converges to an asymptotic limit as
the Re increases. This is discernible from the plateau of the red curve in
Fig. 3 and the select solutions shown in its outset. The three most dom-
inant Fourier modes present in this asymptotic solution are the forcing
wave number (0, kf) and the wave numbers (1, 0) and (1, kf) together
with their complex conjugate pairs. Incidentally, these wave numbers
form a triad, (0, kf) + (1, 0) = (1, kf). The dominantmode of the optimal
solution corresponds to thewave number (1, 0) whosemodulus |a(1, 0)|
is one order of magnitude larger than the other nonzero modes.

Next, we turn to the direct numerical simulations of theKolmogorov
flow and monitor the three Fourier modes a(0, kf), a(1, 0), and a(1, kf).
We find that the energy transferswithin this triadunderpin the intermittent
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Fig. 2. Extreme energy dissipation in the Kolmogorov flow. (A) The time se-
ries of energy dissipation rate D at Reynolds number R = 40. (B) A close-up of the
energy input I (solid red curves) and the energy dissipation D (dashed black
curves) at Re = 40. The bursts in the energy dissipation are slightly preceded with
a burst in the energy input. A similar behavior is observed for all bursts and at
higher Reynolds numbers. (C) The vorticity field ∇ × u(x, t) = w(x, t)e3 at time t =
433 over the domain x ∈ [0, 2p] × [0, 2p].
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bursts of the mean flow energy |a(0, kf)| and, hence, the energy input
rate I. Figure 4A shows the time series of I=−Im[a(0, kf)] and the Fourier
mode |a(1, 0)| along a typical trajectory of the Kolmogorov flow at Re =
40. The bursts of the energy input rate I are nearly concurrent with ex-
treme dips in the modulus |a(1, 0)|. A similar concurrent behavior was
observed for other trajectories and at higher Reynolds numbers (see sec-
tion S6).

This observation reveals that, before a burst, the mode a(1, 0)
transfers a significant portion of its energy budget to the mean flow
a(0, kf) through the triad interaction of the modes a(0, kf), a(1, 0),
and a(1, kf). This leads to the increase in the energy of the mean
flow and, therefore, the energy input rate I, which in turn leads to
the growth of the energy dissipation rate D.

One can go one step further and inquire about the reason for the
release of energy from mode a(1, 0) to the mean flow a(0, kf). The
answer to this question, involving the relative phases of the modes
and their interactions with other triads, is beyond the scope of the pres-
ent work and will be addressed elsewhere. It is tempting to study these
interactions by truncating the Kolmogorov flow to the modes a(0, kf),
a(1, 0), and a(1, kf) and their complex conjugates.Unfortunately, these
severe truncations fail to illuminate because the dynamics of the trun-
cated system severely departs from the original Navier-Stokes equa-
tions (37, 38).

Prediction of extreme events
Given the above observation that the optimal solution primarily consists
of mode (1, 0), we choose this mode to formulate our data-driven pre-
diction scheme. The decrease in the energy of the mode (1, 0) precedes
the increase in the energy of themean flow. This enables the data-driven
short-term prediction of extreme bursts of the energy dissipation by
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observing the modulus |a(1, 0, t)|. More specifically, relatively small
values of l(t) := |a(1, 0, t)|, along a solution u(t), signal the high prob-
ability of an upcoming burst in the energy dissipation.

To quantify this, we consider the conditional probability

PðD1 ≤ DmðtÞ ≤ D2j l1 ≤ lðtÞ ≤ l2Þ ð12Þ

whereDmðtÞ ¼ maxt∈½tþti;tþtf �DðuðtÞÞ is the maximum of the energy
dissipation over the future time interval [t + ti, t + tf]. This conditional
probability measures the likelihood of the future maximum value of
the energy dissipation belonging to the interval [D1, D2], given that the
present value of the indicator l(t) belongs to [l1, l2]. The constant
parameters tf > ti > 0 determine the future time interval [t + ti, t + tf].
In the following, we set ti = 1 ≃ 2.2te and tf = 2 ≃ ti + 2.2te. The length
of the time window tf − ti is long enough to ensure that the extreme
event (if it exists) is contained in the time interval [t + ti, t + tf]. The
choice of the prediction time ti will be discussed shortly. The reported
results are robust to small perturbations to all parameters.

Figure 5A shows the conditional probability density corresponding
to Eq. 12. We observe that relatively small values of l correlate strongly
with the high future values of the energy dissipation D. For instance,
when l < 0.4, the value of Dm is most likely larger than 0.2. Conversely,
when l is larger than 0.4, the future values of the future energy dissi-
pation Dm are smaller than 0.2.

We seek an appropriate value l0 such that l(t) < l0 predicts an ex-
tremeburst of energy dissipationover the future time interval [t+ ti, t+ tf].
Denote the extreme event threshold byDe, such thatD >De constitutes an
extreme burst of energy dissipation. We define the probability of an
upcoming extreme event Pee as

Peeðl0Þ ¼ PðDmðtÞ > DejlðtÞ ¼ l0Þ ð13Þ

which measures the likelihood that Dm(t) > De assuming that l(t) = l0.
Here, we set the threshold of the extreme eventDe as themean value of the

energy dissipation plus 2 SDs,De ¼ E½D� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D2� � E½D�2

q
≃ 0.194.

The extreme event probability Pee can be computed from the probability
density shown in Fig. 5A (see section S5 for details).

Figure 5B shows the probability of extreme eventsPee as a function of
the parameter l0. If, at time t, the values of l(t) are larger than 0.5, the
probability of a future extreme event, that is, Dm(t) > De, is nearly zero.
The probability of a future extreme event increases as l(t) decreases. At
l(t) ≃ 0.4, the probability is 50%. If l(t) < 0.3, then the likelihood of an
upcoming extreme event is nearly 100%. The horizontal dashed line in
Fig. 5A marks the transition line from the low likelihood of an
upcoming extreme eventPee < 0.5 to the higher likelihoodPee> 0.5. This
line, together with the vertical line Dm = De, divides the conditional
probability density into four regions: (I) correct rejections [Pee < 0.5
andDm(t) < De]: correct prediction of no upcoming extremes; (II) false
positives [Pee > 0.5 but De(t) < De]: the indicator predicts an upcoming
extreme event but no extreme event actually takes place; (III) hits [Pee >
0.5 and Dm(t) > De]: correct prediction of an upcoming extreme event;
and (IV) false negatives [Pee < 0.5 but Dm(t) > De]: An extreme event
takes place, but the indicator fails to predict it.

A reliable indicator of upcoming extreme events must maximize the
number of correct rejections (quadrant I) and hits (quadrant III) while,
at the same time, having minimal false positives (quadrant II) and false
negatives (quadrant IV). From nearly 100,000 predictions made, only
0.26% false negatives and0.85% false positiveswere recorded. Thenumber
3 10 40 60 100
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

Fig. 3. The solutions of Eqs. 11A to 11C, with c0 = 1, as a function of the
Reynolds number. The solid (dashed) black line corresponds to the exact solu-
tion u– (u+). The red solid line (circles) corresponds to the global maximizer. The
outset shows the scalar vorticity ∇ × u(x, y) = w(x, y)e3 and the Fourier spectrum
|a(kx, ky)| of the global maximizer at select Reynolds numbers.
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of hits was 5.6%, and the number of correct rejections amounts to 93.3%
of all predictions made. As we show in the Supplementary Materials,
this amounts to a 95.6% success rate for the prediction of the extreme
events (see eq. S24 and table S1). Note that the high percentage of cor-
rect rejections compared to the hits is a mere consequence of the fact
that the extreme events are rare.

An additional desirable property of an indicator is its ability to
predict the upcoming extremes well in advance of the events taking
place. The chosen prediction time ti = 1 is approximately twice the
eddy turnover time te. In comparison, it takes approximately one
eddy turnover time (on average) for the energy dissipation rate

to grow from E½D� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D2� � E½D�2

q
to its extreme value De ¼

E½D� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D2� � E½D�2

q
.

The prediction time ti can always be increased at the cost of
increasing false positives and/or false negatives. For instance, with the
choice ti = 2 ≃ 4.3te and tf = 3 ≃ ti + 2.2te, prediction of the extreme
events Dm > De returns 1.2% false negatives and 0.6% false positives.
The number of hits decreases slightly to 5.3%, as does the number of
correct rejections (92.9%), which amounts to a success rate of 82% in
the extreme event prediction (see eq. S24). Therefore, the prediction
Farazmand and Sapsis, Sci. Adv. 2017;3 : e1701533 22 September 2017
time ti= 2 still yields satisfactory predictions. Upon increasing ti further,
eventually, the number of hits becomes comparable to the number of
false negatives, at which point the predictions are unreliable.
DISCUSSION
A method for the computation of precursors of extreme events in
complex turbulent systems is introduced here. The new approach com-
bines basic physical properties of the chaotic attractor (such as energy
distribution along different directions of phase space) obtained from
data with stability properties induced by the governing equations.
The method is formulated as a constrained optimization problem,
which can be solved explicitly if the time scale of the extreme events
is short compared to the typical time scales of the system. To demon-
strate the approach, we consider a stringent test case, the Kolmogorov
flow, which has a turbulent attractor with positive Lyapunov exponents
and intermittent extreme bursts of energy dissipation.We can correctly
identify the triad of modes associated with the extreme events. More-
over, the derived precursors allow for the formulation of an accurate
short-term prediction scheme for the intermittent bursts. The results
demonstrate the robustness and applicability of the approach on
systems with high-dimensional chaotic attractors.
0 0.2 0.4 0.6 0.8
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1
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Fig. 5. Prediction of extreme events. (A) The probability density associated with the conditional probability (Eq. 12). The vertical dashed line marks the extreme event
threshold De ¼ E½D� þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D2� � E½D2�p

≃ 0.194. The horizontal dashed line marks l = 0.4. The quadrants correspond to the following: I, correct rejections; II, false
positives; III, hits; and IV, false negatives. (B) The probability of extreme events Pee corresponding to the extreme event threshold De = 0.194.
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Fig. 4. Internal energy transfers lead to extreme events. (A) Time series of the energy input I and the modulus of the Fourier mode a(1, 0) at Re = 40. The eddy
turnover time at this Reynolds number is te = 0.46. (B) The joint probability density of the energy input I and the real and imaginary parts of the mode a(1, 0),
approximated from 100,000 samples. The density decreases from dark green to light blue. The cone-shaped density indicates the strong correlation between the large
values of the energy input rate I and small values of |a(1, 0)|. The axisymmetric nature of the probability density is a consequence of the translation invariance of the
Kolmogorov flow.
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MATERIALS AND METHODS
The Navier-Stokes equations and the corresponding Euler-Lagrange
equations were solved numerically with a standard pseudospectral
code with N × N Fourier modes and 2/3 dealiasing. For Re = 60,
80, and 100, we used N = 256 to fully resolve the velocity fields. How-
ever, at Re = 40, this resolution was unnecessarily high, and hence, we
used N = 128. The temporal integration of the Navier-Stokes equa-
tions was carried out with a fourth-order Runge-Kutta scheme.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/9/e1701533/DC1
section S1. Derivation of the Euler-Lagrange equation
section S2. The Navier-Stokes equation
section S3. Newton iterations
section S4. Sensitivity to parameters
section S5. Computing the probability of extreme events
section S6. Supporting computational results
fig. S1. Evolution of the energy input versus mean flow.
fig. S2. Triad interactions.
fig. S3. Sensitivity of the optimal solutions.
fig. S4. Joint PDFs for higher Reynolds numbers.
fig. S5. Prediction of intermittent bursts at higher Reynolds numbers.
table S1. Simulation parameters.
movie S1. The prediction of an extreme event in the Kolmogorov flow.
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