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Activated phosphoinositide 3-kinase delta syndrome (APDS), also known as p110 
delta-activating mutation causing senescent T  cells, lymphadenopathy and immuno-
deficiency (PASLI), is an autosomal dominant primary human immunodeficiency (PID) 
caused by heterozygous gain-of-function mutations in PIK3CD, which encodes the 
p110δ catalytic subunit of PI3K. This recently described PID is characterized by diverse 
and heterogeneous clinical manifestations that include recurrent respiratory infections, 
lymphoproliferation, progressive lymphopenia, and defective antibody responses. A major 
clinical manifestation observed in the NIH cohort of patients with PIK3CD mutations is 
chronic Epstein–Barr virus (EBV) and/or cytomegalovirus viremia. Despite uncontrolled 
EBV infection, many APDS/PASLI patients had normal or higher frequencies of EBV-
specific CD8+ T cells. In this review, we discuss data pertaining to CD8+ T cell function 
in APDS/PASLI, including increased cell death, expression of exhaustion markers, and 
altered killing of autologous EBV-infected B cells, and how these and other data on PI3K 
provide insight into potential cellular defects that prevent clearance of chronic infections.

Keywords: epstein–Barr virus, activated phosphoinositide 3-kinase delta syndrome, p110δ activating mutation 
causing senescent t  cells, lymphadenopathy and immunodeficiency, cytotoxic t  lymphocyte, primary human 
immunodeficiency

iNtrODUctiON

Cytotoxic CD8+ T lymphocytes (CTLs) are critical for the elimination of virally infected and tumor 
targets. Following T  cell receptor (TCR) engagement in conjunction with cytokine signals, such 
as IL-2 and IL-12, naïve CD8+ T cells rapidly proliferate and differentiate from a “naïve” antigen-
inexperienced state into an effector state characterized by the expression of cytolytic proteins (1). 
Upon subsequent engagement with targets, CTLs carry out their effector function through the 
directed release of cytoplasmic granules containing granzymes and other cytolytic effectors, as well 
as via cytokine secretion (1). CTLs tightly regulate the initiation and termination of granule secre-
tion, a process critical for efficient and precise serial killing (2, 3).

After the resolution of infection, most CTLs are eliminated, although a fraction persist as long-
lived memory cells to provide protection against subsequent pathogen encounter (4). However, in 
chronic infections where antigens persist over time, T cells can acquire an “exhausted” phenotype 
characterized by expression of inhibitory receptors that limit effector functions (5). While T cell 
exhaustion serves to dampen immune-mediated damage, it can also permit viral persistence and 
hinder anti-tumor responses (5). Recent data suggest that a small population of CD8+ T cells, marked 
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by expression of the transcriptional regulator T  cell factor 1 
(TCF1), is required to maintain T cell responses during exhaus-
tion in chronic infections (6–8).

The dynamic regulation of CD8+ T cell differentiation, prolif-
eration, survival, and function is essential for generating effective 
immune responses. Mutations in genes affecting the function 
of CTLs and natural killer (NK) cells, an innate cell population 
that is also important for killing tumorigenic and virally infected 
cells, have been identified in numerous primary human immu-
nodeficiencies (PIDs) associated with impaired viral clearance 
and tumor development (9). Such immunodeficiencies are also 
often associated with hemophagocytic syndrome, exemplified by 
secondary activation of the immune system in response to IFN-γ  
and other cytokines (9, 10). Thus, proper regulation of CTL 
function plays vital roles in both host protective immunity and 
immune cell homeostasis.

One condition where abnormal CD8+ T cell function can lead 
to substantial pathology is Epstein–Barr virus (EBV) infection. 
EBV is a common human gamma-herpesvirus that infects the 
oropharyngeal epithelium and B cells and is primarily controlled 
by CTLs and NK  cell responses (11). Although infection in 
children is usually associated with mild symptoms, teenagers and 
adults can develop infectious mononucleosis with fever, enlarged 
secondary lymphoid organs, and flu-like symptoms, accompa-
nied by a pronounced lymphocytosis, with increased CD8+ T cell 
numbers. In the normal host, Following initial infection, EBV 
persists latently in B  cells. However, in immunocompromised 
patients, EBV can cause multiple severe complications that 
include lymphoproliferative disorders and lymphoid malignan-
cies (12, 13).

Consistent with a critical role for CTLs in EBV control, as 
evidenced by the successful use of EBV-specific CTLs to treat 
EBV-induced disease after bone marrow transplantation (14), a 
growing number of PIDs have been associated with poor EBV 
clearance (10). Among these is the recently described autosomal-
dominant immunodeficiency, activated phosphoinositide 3-kinase 
delta syndrome (APDS)/PASLI, associated with activating muta-
tions affecting the p110δ catalytic subunit of phosphoinositide 
3-kinase (PI3K) (15–19). PI3Ks are lipid kinases that are critical 
for the regulation of metabolism, differentiation, cell survival, 
and motility (20). Class Ia PI3Ks consist of two subunits, a regu-
latory subunit and a p110 catalytic subunit that phosphorylates 
phophosphoinositide PI(4,5)P2 to generate PI(3,4,5)P3, which 
recruits molecules to the plasma membrane, facilitating their 
activation. The p110δ catalytic isoform (encoded by PIK3CD) is 
expressed primarily in hematopoietic cells and is an important 
component of signaling pathways involved in T and B cell activa-
tion and differentiation in response to antigen, costimulatory, 
cytokine, and chemokine receptors (20).

Activated phosphoinositide 3-kinase delta syndrome/PASLI is 
associated with frequent respiratory infections, progressive blood 
lymphopenia, mucosal lymphoid nodules, defective antibody 
responses, and lymphoma (15, 17–19, 21, 22). Patients have few 
naïve T cells, with evidence of increased T cell activation, whereas 
B cell development appears partially blocked, with few memory 
B cells (19, 23). Although recurrent respiratory infections are the 

most common feature of this PID (24), an inability to control 
viremia with EBV and cytomegalovirus (CMV) occurs in nearly 
half of all reported cases (16). Despite uncontrolled EBV viremia, 
many APDS/PASLI patients have normal or higher frequencies of 
EBV-specific CD8+ T cells, as detected by HLA tetramers loaded 
with lytic or latent EBV peptides (19). These data suggest that 
gain-of-function (GOF) mutations in p110δ do not result in a 
global impairment in the generation of antigen-specific T  cell 
responses, raising the question of how activated p110δ affects 
CD8+ T  cell differentiation, homeostasis, and function. Here, 
we discuss several features of CD8+ T cells in APDS/PASLI that 
may prevent clearance of EBV, including increased TCR-induced 
cell death, T cell exhaustion and immune senescence, and how 
activated PI3K might contribute to these phenotypes (Figure 1).

cD8+ t ceLL DeAtH AND iMMUNe 
HOMeOstAsis

Although APDS/PASLI patients can have increased percentages 
of EBV-specific CD8+ T cells (19), in vitro TCR stimulation results 
in pronounced cell death of both CD4+ and CD8+ T cells (15, 25).  
Thus, although abundant EBV-specific T cells are detected in 
the peripheral blood of APDS/PASLI patients, these cells may be 
more prone to death following re-stimulation. Instead of killing 
EBV-infected targets, CD8+ T cells may themselves die following 
TCR engagement and, therefore, not be able to clear the virus, 
particularly one that chronically remains in the body and con-
tinually “tickles” activated T cells.

How might PI3K/p110δ signaling affect TCR-mediated pro- 
apoptotic pathways? One of the main targets of PI3K activa-
tion is protein kinase B (AKT), which directly phosphorylates 
members of the Forkhead box O (FOXO) family of transcription 
factors resulting in their nuclear export and degradation (20, 26). 
Multiple FOXO transcriptional targets influence cell survival, 
both positively and negatively, depending on the cell type and 
experimental setting (26, 27). Although FOXO transcription 
factors drive the expression of genes encoding numerous cylin-
dependent kinase inhibitors and the pro-apoptotic proteins BIM, 
PUMA, and FasL (26, 27), they can also suppress FasL expression 
in certain cell types (28). Deletion of Foxo1 in murine T  cells 
also decreases expression of Il7ra, which is important for T cell 
survival (29).

Additionally, the increased frequency of EBV positive cells 
in the peripheral blood may not accurately reflect tissue-specific 
frequency. PI3K regulates a number of molecules that affect 
lymphocyte recruitment and migration. Notably, FOXO1 
transcriptional targets, such as Ccr7 and Kruppel-like factor 2 
(Klf2) have profound effects on lymphocyte activation and traf-
ficking in mice (29–31). CCR7 and its ligands play key roles in 
lymphocyte homing to the lymph nodes and intestinal Peyer’s 
patch (32). KLF2 is required for the effective transcription 
of Sell (encoding L-selection, CD62L) and S1pr1 (encoding 
sphingosine-1-phosphate receptor-1, S1P1R), two key regulators 
of lymphocyte entry and egress from lymph nodes, respectively 
(33, 34). Notably, both CCR7 and CD62L are expressed at lower 
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levels on T cells in peripheral blood from APDS/PASLI patients, 
which exhibit reduced CCR7+ naïve and central memory T cells, 
and a greater abundance of CD45RA−CCR7− effector memory 
and CD45RA+CCR7− terminal effector memory CD8+ T  cells 
relative to controls (19).

A second major PI3K effector that influences lymphocyte 
migration and homeostasis is the mammalian target of Rapamycin, 
mTOR. MTOR is a conserved serine/threonine kinase that 
participates in two complexes, mTORC1 and 2. MTORC1 regu-
lates cell growth, proliferation, survival, protein synthesis, and 
transcription (35, 36). Although some data convincingly argue 
that mTORC1 is not solely a PI3K effector in CTLs (37), T cells 
from APDS/PASLI patients show increased Rapamycin-sensitive 
phosphorylation of S6, a downstream target of the mTORC1 
pathway (19). These data suggest that PI3K activation may be 
sufficient to activate mTORC1, even if it is not strictly required. 
Interestingly, mTORC1 and the downstream transcription fac-
tor hypoxia inducible factor 1-α (HIF1α) also affect expression 
of a large number of genes encoding chemokine and homing 
receptors. HIF1α-deficient murine T cells have higher expression 
of genes encoding CXCR4, CCR7, S1P1, and CD62L (37). The 
converse would be expected to occur in the presence of activated 
PI3Kδ. It is therefore of interest that APDS/PASLI patients are 
lymphopenic, yet have lymphadenopathy and splenomegaly as 
well as mucosal lymphoid nodules in their gastrointestinal and 

upper respiratory tracts, suggestive of altered lymphocyte homing  
(15, 19). Together, these data argue that continual PI3K signal-
ing alters expression of key trafficking and survival proteins that 
influence the localization of T lymphocytes to tissues required for 
effective elimination of infection. Whether this affects respon-
ses to chronic infections, such as EBV, remains an interesting  
question.

ALtereD cD8+ t ceLL DiFFereNtiAtiON

Despite the dramatic increase in TCR-induced cell death in 
APDS/PASLI patient CD8+ T cells, a fraction of blasts survived 
TCR stimulation in  vitro and expand. Strikingly, these CD8+ 
T  cell blasts displayed characteristics of enhanced effector 
function (19). Indeed, both AKT and mTOR are important 
for inducing and maintaining expression of cytolytic effector 
molecules in CTLs, including perforin and various granzymes 
(37, 38). These observations raise the question of whether con-
tinual PI3Kδ signaling promotes CD8+ T cell terminal effector 
differentiation.

Indeed, many transcription factors inhibited by PI3K activa-
tion, including FOXO1, TCF1, and BTB and CNC homology 2 
(BACH2), influence CD8+ T  cell differentiation. Mutations 
affecting these proteins promote effector T  cell differentiation 
at the expense of memory formation (31, 39–43). Unequal PI3K 
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signaling during cell division has been associated with bifurca-
tion of sibling fates, with robust PI3K signaling promoting 
effector differentiation, associated with decreased expression of 
TCF1 (44). TCF1 is required for a CD8+ memory stem cell-like 
population that is necessary for continual responses to chronic 
infection (6–8), suggesting that reduced TCF1 due to sustained 
PI3K-signaling may prevent effective control of chronic viral 
infections.

Other data have implicated HIF1α downstream of mTOR 
as critical for the expression of cytolytic effectors, including 
granzymes and perforin (37). Consistent with PI3K promoting 
mTORC1 activation, CD8+ T  cell blasts from patients showed 
increased effector function, as determined by elevated IFN-γ 
production, and increased granzyme B expression and TCR-
induced degranulation (19). Moreover, patient CTLs effectively 
killed the Fc receptor-expressing P815 murine target cell line 
coated with anti-CD3 in a re-directed lytic assay [Figure 2B and 
Ref. (19)]. Thus, APDS/PASLI patients have functional CTLs that 
even show evidence of enhanced effector cell function relative to 
controls.

How else might PI3K affect differentiation of CD8+ T cells? 
It is now appreciated that differentiation into effector cells is 
accompanied by major changes in cellular metabolism, associated 
with increased aerobic glycolysis (45). In contrast, memory cell 
formation is accompanied by increased use of fatty acid oxida-
tion pathways, amino acid degradation, and a return to a more 
catabolic state (45). A number of metabolic and nutrient sensing 
pathways are mediated by PI3K and its downstream effectors: 
AKT and mTOR. AKT can induce the trafficking and surface 
expression of the glucose transporter, Glut1 (46, 47). Although 
the mechanism by which AKT alters Glut1 surface expression is 
still not clear, in other cell types this may occur via regulation 
of thioredoxin-interacting protein and inhibition of Glut1 inter-
nalization (48). Indeed, T cell blasts from APDS/PASLI patients 
demonstrate elevated glucose uptake compared to controls (19). 
Other data have implicated mTOR and HIF1α in the induction of 
genes encoding key glycolytic enzymes including hexokinase 2, 
phosphofructokinase, and pyruvate kinase, as well as Glut1 and 
Glut3 in CTLs (37). Whether differences in the metabolic profile 
of patient T cells contribute to, or are secondary to differences 
in their effector differentiation state and activation remains an 
open question. Nonetheless, these data point to a multi-faceted 
polarization to effector cells at the expense of long-term memory 
and efficient responses to chronic infection in the presence of 
activated PI3K.

t ceLL eXHAUstiON AND/Or 
seNesceNce

t cell exhaustion
During chronic infections and/or persistent antigen exposure, 
T cell exhaustion can occur. Exhaustion manifests with several 
distinct features that include progressive loss of effector func-
tion, expression of multiple inhibitory receptors including PD-1, 
2B4, Tim3, and LAG3, and an altered transcriptional program 

(5). In response to TCR stimulation, an elevated percentage of 
APDS/PASLI patient CD8+ T cells express PD-1 and 2B4 [Ref. 
(19, 25, 49) and Figure 2A], which may prevent effective CTL 
function.

2B4 is cytolytic receptor that is a member of the family of 
signaling lymphocyte activation molecule (SLAM) receptors, 
which associate with the small intracellular adaptor molecule 
SLAM-associated protein (SAP). Mutations affecting SH2D1A, 
which encodes SAP, cause X-linked lymphoproliferative disease 
type 1 (XLP1), which is perhaps the classic example of a PID 
associated with an inability to clear EBV (50–52). In the absence 
of SAP, or under conditions where SAP:2B4 ratios are low (53), 
2B4 switches to function an inhibitory receptor, recruiting SH2-
domain-containing tyrosine phosphatases 1 and 2 (SHP-1 and 2) 
and other negative signaling molecules, whose activities impair 
TCR signaling and subsequent T cell function (54–59). Because 
EBV-infected B cells express very high levels of CD48, the ligand 
for 2B4, killing of EBV-infected targets is specifically impaired in 
SAP-deficient (XLP1) NK and CTLs (50–52).

Although CD8+ EBV-specific T  cells from APDS/PASLI 
patients killed P815 targets efficiently [Figure 2B and Ref. (19)], 
the P815 mouse mastocytoma cell line does not express ligands 
that stimulate human PD-1 and 2B4, preventing potential inhibi-
tory effects of these receptors. In contrast, we and others found 
that patient CD8+ EBV-specific T  cell blasts displayed variable 
defects in killing of autologous EBV-transformed lymphoblastoid 
B cell (LCL) targets [Figure 2B and Ref. (25)]. It is therefore of 
interest that in addition to high 2B4 levels, we have also observed 
reduced SAP levels in CTLs grown from APDS/PASLI patients 
(Figure 2A). We, therefore, propose that APDS/PASLI may share 
features with XLP1, with 2B4 acting as an inhibitory receptor 
that decreases killing EBV-infected B  cells and possibly other 
hematopoietic cells infected by CMV. Notably, higher CD48 
levels have been observed on APDS/PASLI patient B  cells and 
LCLs compared to controls (25), which could also enhance 2B4 
inhibitory signals. Interestingly, we have observed that control 
EBV-specific CTLs kill HLA-matched patient LCLs better 
than HLA-matched control LCLs, as might be expected if the 
increased CD48 on patient LCLs engage more 2B4, which acts 
as an activating receptor to enhance killing in control CTLs that 
express normal levels of SAP and 2B4. However, APDS/PASLI 
patients do not appear to develop the most severe phenotypes 
of XLP1, including hemophagocytic syndrome. This may be the 
result of less severe defects in cytolysis of EBV-infected B cells, 
other intrinsic T cell defects such as elevated cell death (15, 16) 
or alterations in macrophage activation (16) that may prevent 
secondary immune hyperactivation.

Intriguingly, 2B4 can also recruit SH2-containing inositol 5′ 
phosphastase (SHIP) (55), which hydrolyzes PI(3,4,5)P3 to PI(3,4)
P2 (20). PD-1 can also dampen PI3K signals via the recruitment 
of phosphatases that preferentially downregulate signaling from 
CD28, a potent activator of PI3K (60). In addition, PD-1 liga-
tion augments expression of PTEN (61), a lipid phosphastase 
that converts PIP3 to PI(4,5)P2, counteracting PI3K signaling 
(20). Thus, strong upregulation of PD-1 and 2B4 could serve as 
compensatory mechanisms to temper sustained PI3K activity, 
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FiGUre 2 | Patient CD8+ T cells display elevated expression of inhibitory receptors and impaired killing of autologous targets. (A) Elevated expression of inhibitory 
receptors PD-1 and 2B4, and senescence marker CD57 on allo-reactive CD8+ T cells. Expression of the signaling lymphocyte activation molecule family receptor, 
NTB-A, remained unchanged, while SAP expression can be reduced. Representative example shown [3 healthy donor (HD) controls, 3–5 patients] [PT], small 
horizon line represents mean, *p < 0.05 (Mann–Whitney test). (B) Defects in Epstein–Barr virus (EBV)-specific CD8+ T cells. Cytolysis of P815 targets by anti-CD3-
mediated redirected lysis (left panel) and cytolysis of peptide-pulsed autologous LCLs (middle panel), (cytolysis from 2 HD controls and 4 patients cytotoxic 
T lymphocytes done in duplicate are shown, representative of 4 independent experiments). Right panel: an example of cytolysis of healthy donor (HD) and patient 
(PT) peptide-pulsed autologous LCLs, with titration of effector:target ratios. (c) HD EBV-specific CD8+ T cells cytolysis of HD or PT LCLs. Two examples are shown, 
which are representative of three independent experiments.
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which may paradoxically result in greater defects in CD8+ T cell 
function.

senescence
In addition to expression of exhaustion markers, APDS/PASLI 
CD8+ T  cells can also exhibit higher percentages expressing 
CD57, a marker of senescent T  cells [Ref. (19, 25, 49) and 
Figure 2A]. During initial antigen encounter, T cell activation 
is followed by telomerase activation that preserves telomere 
length. However, subsequent TCR engagement can inactivate 
the telomerase promoter and decrease telomerase expression 
(62). Continual “tickling” of activated TCRs during chronic 
infections could result in telomere crisis and activation of 
DNA damage signals, followed by cell cycle arrest leading to 
replicative senescence or cell death (62). Although the elevated 
frequency of CD57+ T cells in APDS/PASLI could result from 
chronic infection, patients who were not overtly viremic also 
displayed an increased percentage of CD8+ T  cells expressing 
CD57 (19). Alternatively, CD57 expression and detrimental 
telomere shortening observed in APDS/PASLI patient CD8+ 
T cells may reflect elevated basal PI3K signaling, evidenced by 
phosphorylated AKT and S6 (15, 19, 63). However, it has also 
been proposed that senescent cells survive for extended periods 
and are often more resistant to apoptotic cell death (62). This 
is not consistent with the observation that APDS/PASLI T cells 
rapidly die following in vitro activation (15). Nonetheless, these 
experiments collectively revealed that APDS/PASLI patients 
display CD8+ T cell dysfunction that includes features of both 
senescence and exhaustion that may contribute to their inability 
to clear chronic infections. Whether heterogeneity of these phe-
notypes is related to age of diagnosis, chronic infection, and/or 
environmental exposure remains an intriguing question as more 
patients are followed.

ALterNAtive HYPOtHeses

Although we have focused on CD8+ T cell function, alterations 
in other cells may also contribute to the inability to clear EBV, 
including recently documented defects in NK cell function (25, 64).  
Another hypothesis is that altered B cell development and popu-
lations may provide reservoirs for continual EBV infection in 
APDS/PASLI (65). It is important to highlight that Herpes viruses 
express proteins that converge on PI3K pathways to expidite viral 
entry, latency, and reactivation (66). Alternatively, although the 
role of humoral immunity in clearing EBV is not well defined, 
humoral defects may affect EBV infection in the context of 
immunodeficiency (67, 68). Altered properties of EBV-infected 
targets may contribute to poor EBV clearance. Sustained PI3K 

signals can rescue B cells from cell death in the absence of B cell 
receptor signaling (69); thus, increased PI3K signals may give 
EBV-infected B  cells a survival advantage. However, we have 
found that LCLs from APDS/PASLI patients are actually killed 
better by control CTLs (Figure  2C). Finally, EBV occasionally 
infects T cells (70), and whether this affects CD8+ T cell function 
in APDS/PASLI remains unknown.

cONcLUDiNG reMArKs

Here, we review some of the defects that may affect the ability of 
patients with APDS/PASLI to clear chronic infections such as EBV 
and CMV, with a focus on CD8+ T cells. A recent report has shown 
promising results using a PI3Kδ-specific inhibitor, Leniosilib, in a 
small group of APDS/PASLI patients (71). Inhibition of PI3Kδ res-
cued both T and B lymphocyte phenotypes, including decreased 
expression of activation, exhaustion and senescence T cell mark-
ers, and decreased lymphadenopathy and splenomegaly. Notably, 
Sirolimus treatment has also ameliorated lymphadenopathy and 
hepatosplenomegaly, and NK cell function in some APDS/PASLI 
patients, implicating mTOR in these phenotypes (19, 64, 72). 
How these treatments affect clearance of chronic infections is of 
great interest. However, recent evidence that treatment of mice 
with PI3Kδ inhibitors results in increased genomic instability in 
normal and neoplastic B cells (73) suggests that long-term PI3Kδ 
inhibitor administration could have detrimental consequences. 
Alternatives that boost T  cell function may, therefore, be of 
continued interest for this disease. Further insight into cellular 
and molecular defects in APDS/PASLI is, therefore, an important 
component of understanding how to treat this complex disorder.

MetHODs

samples and ethics Approval
All human subjects in this study provided signed written informed 
consent in accordance with Helsinki principles for enrollment in 
research protocols that were approved by the Institutional Review 
Board of NIAID (clinical trials registration number NCT00001355, 
US NIH). Procedures were based on standard of care, under 
established clinical guidelines. Patients and control samples were 
described in Ref. (19). Peripheral blood mononuclear cells (PBMCs) 
were isolated using Ficoll–Hypaque gradient centrifugation.

Flow cytometry and cytotoxicity
For phenotyping, cells were stained in FACS buffer (74). Staining 
reagents included: CD8-PECy7 (SK1), CD57-FITC (TB01), 
PD-1-PE (EBIOJ105), NTBA-PE (NT-7), 2B4-PE (C1.7), and 
SAP-PE (XLP1D12) (ebioscience). EBV-tetramers were kindly 
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