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Abstract: A large number of stroke survivors suffer from a significant decrease in upper extremity
(UE) function, requiring rehabilitation therapy to boost recovery of UE motion. Assessing the efficacy
of treatment strategies is a challenging problem in this context, and is typically accomplished by
observing the performance of patients during their execution of daily activities. A more detailed
assessment of UE impairment can be undertaken with a clinical bedside test, the UE Fugl–Meyer
Assessment, but it fails to examine compensatory movements of functioning body segments that are
used to bypass impairment. In this work, we use a graph learning method to build a visualization
tool tailored to support the analysis of stroke patients. Called NE-Motion, or Network Environment
for Motion Capture Data Analysis, the proposed analytic tool handles a set of time series captured by
motion sensors worn by patients so as to enable visual analytic resources to identify abnormalities in
movement patterns. Developed in close collaboration with domain experts, NE-Motion is capable
of uncovering important phenomena, such as compensation while revealing differences between
stroke patients and healthy individuals. The effectiveness of NE-Motion is shown in two case studies
designed to analyze particular patients and to compare groups of subjects.

Keywords: visualization; visual analytics; graph learning; stroke; set theory

1. Introduction

A stroke is a medical condition that results from a prolonged disruption of blood flow to
the brain, leading to a loss of function or death [1]. According to Bonita et al. [2], the number
of people afflicted by stroke is expected to continue to increase due to demographic changes
and inadequate control of risk factors. Therefore, the development of methodologies to
assist professionals in the treatment of stroke sequelae is of paramount importance.

The Fugl–Meyer Assessment (FMA) [3] is a clinical bedside instrument to assess
abnormal motion in stroke patients. It is considered the gold standard for measuring
motor impairment, and is used to guide rehabilitation treatment. The FMA testing protocol
evaluates patients as they perform particular movements on both upper extremities (UE),
which is the focus of this work, and lower extremities (LE). A trained assessor scores
the movements according to a grading scale. The FMA is challenged by the need for a
trained assessor and by the subjectivity and coarseness of its grading scale, which both limit
the frequent administration of the FMA and the nuanced capture of impairment. In the
last decade, FMA scoring has been complemented using data from sensors affixed to the
patient’s UE [4–6], making it less subjective. These motion sensors generate a large amount
of data that can be used to perform tasks other than FMA score computation. For example,
the sensor data could be used to generate finer details about movement abnormality and
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identification of compensatory movements (alternative movement strategies to circumvent
impairment). In these cases, the sensor motion data are collected and analyzed from Wear-
able Sensors Networks (WSNs) [7], which are defined by a set of interconnected sensors
dedicated to collecting physiological parameters in the patient’s body. This technology
can be used, for example, to diagnose patients through telemedicine applications [6] to
analytically detect the compensatory actions of patients in rehabilitation [8], and others [9].
However, computational tools devoted to the visual analysis of a large amount of motion
sensor data is quite scarce, especially in the context of assessing the motor function of
stroke patients.

In this work, we propose a visual analytic tool to automate the assessment of motor
impairment and motor compensation in stroke. Called NE-Motion (Network Environment
for Motion Capture Data Analysis), the proposed tool provides resources to visually
explore the sensor data and provide greater details on the motion of stroke patients. For
example, the proposed tool enables an understanding of the UE segments used by a patient
when performing a group of movements and the segments that are more commonly used
by stroke patients when performing a particular movement. NE-Motion also enables the
comparison of stroke patient and healthy individuals, making it possible to visually identify
patients that perform more similarly to healthy individuals. NE-Motion makes use of a
graph learning mechanism to transform sensor data into a set of graphs associated to each
patient or healthy individual. The graph based representation enables the construction of
an elegant and solid mathematical framework to filter out the set of graphs and extract gist
information to support the analytical tasks.

In summary, the main contribution of this work are the following:

• A methodology to represent motion sensor data as a set of graphs;
• A mathematical framework to filter the set of graphs so as to extract gist information

to support the analytical tasks;
• NE-Motion, a visual analytic tool to assist stroke rehabilitation specialists in identify-

ing impairment patterns and to compare individuals;
• Case studies showing the effectiveness of NE-Motion in answering important ques-

tions related to stroke patients.

2. Related Work

The literature about visualization methods for sensor data analysis is quite comprehen-
sive. In this section, we focus on visual analytic methods tailored to handle physiological
motion data and techniques devoted to the visual analysis and comparison of temporal data.
A more comprehensive discussion about fundamental concepts and analytical techniques
to deal with WSNs can be found in Khan and Pathan [9] and Mosenia et al. [10] surveys.

2.1. Visual Analysis of Motion Capture Data

Motion capture data record body movement over time, typically represented as high-
dimensional time-varying information [11]. Application fields where motion capture data
play a major role are medicine, sports, games, and animation. In all those fields, the large
amount of data involved in the analysis are mostly handled with the aid of visualization
systems [12].

Good examples of visualization tools devoted to handling motion capture data include
the work by Krekel et al. [13], where a visual widget displays a representation of the upper
section of a three-dimensional human skeleton jointly with the angles between limb joints,
and Motion Browser [14], which synchronize a patient’s video performing the movement
with the visualization of patient’s muscle bundles that have the greatest activation during
the movement. Dedicated to visualizing lower extremity motions, the visualization system
proposed by Nguyen et al. [15] helps medical professionals to examine patients with
patellofemoral instability in the knee, using a radial presentation. Wagner et al. [16]
propose KAVAGait, a tool to represent modules of physical forces that act on the human
foot during a walk. Motion data are not restricted to human beings. FuryExplorer [17], for
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example, is a visual analytic tool focused on the analysis of horse motion data, relying on
glyph-based silhouettes of horses to describe the position of animals.

Gestures comprise another category of motion data. MotionExplorer [18] groups
similar gestures and represents them as evolutions of a stick silhouette enclosed in a
circle. GestureAnalyser [19] performs hierarchical and semi-supervised clustering of
motions, animating the execution of the movement of each individual. The methodology
in Motionflow [20] incorporates a oriented graph to indicate the evolution of a movement.
Aiming to detect key positions in the course of movements, Bernard et al. [12] developed a
visualization system based on clusters of similar positions derived from classifications.

Table 1 summarizes the main properties of each technique discussed above. Notice
that NE-Motion is the only one to handle UE motion data of stroke patients, being also the
only one to rely on graph learning to model the problem. In addition, our tool uses visual
metaphors dedicated to the visualization of relationships (arc visualization), individual
properties (projections), and time series (curve-chart). In contrast to the works described
above, we propose a new methodology to represent the “synchronization” between data
from the sensors during the execution of specific movements.

Table 1. Summary of the main characteristics of existing visualization assisted motion capture data analysis. From left to
right, the first column contains a reference to the technique, the second column describes the type of motion data handled
by each method, the third column highlights the mathematical and computational model each technique relies on, and the
right most column shows the visual metaphors employed in the visualization. Notice that NE-Motion differs from other
approaches in all aspects: type of data, modeling and visual metaphor.

Work Motion Data type Modeling Approach Visual Metaphor

Bernard et al. [12] tool Common human body movements Supervised and unsupervised
learning

Stick-man glyph and labeled
horizontal bars

Krekel et al. [13] tool
Movements performed by patients
with fractured proximal humerus Spline and dimensionality reduction 3-D Human pose view, parallel

coordinates, and scatter plot

MotionBrowser [14]
Movements performed by

obstetrical brachial plexus patients
Entropy, Kullback–Leibler

divergence, and K-means clustering
Curve-charts, histogram and

video-replay

Nguyen et al. [15] tool
Patellofemoral joint motion on the

knee of operated patients
GPU-based feature identification

and tracking technique using SIFT
Radial plot and static 3D sweep plot

with magic mirror strategy

KAVAGait [16]
Walk performed by gait
abnormalities patients

Fisher’s statistical indicators and
filtering strategies

Curve-charts, twin box plots and
range sliders

FuryExplorer [17] Trotting motion of lame horses Dimensionality reduction and K–D
tree clustering

Horse glyphs, projections and
multi-curve charts

MotionExplorer [18] Common human body movements Divisive hierarchical clustering
algorithm

Stick-man glyphs, and tree and
directed graphs

GestureAnalyser [19] Gestures performed with the UE
Interactive agglomerative

hierarchical clustering and dynamic
time warping

Colored tree graphs and animated
UE glyphs

Motionflow [20] Gestures performed with the UE Interactive partition-based
clustering

Colored tree graphs, treemap and
animated UE glyphs

NE-Motion (proposed)
Movements performed by stroke

patients using UE
Graph learning, dimensionality

reduction and filtering strategies
Arc Visualization, projections, and

curve-charts

2.2. Visualization and Comparison of Temporal Data

Motion capture data are a special type of time-varying data [21]. A multitude of
visualization tools have been developed to explore time-varying data, ranging from pure
time series analysis to multifaceted and graph-based pattern analysis.

In the context of pure time series analysis, there are visualization tools to analyze the
growth and decrease of time series [22], methods to explore features in different scales [23],
techniques devoted to identify periodicity and anomalies [24], interactive schemes to
visually identify patterns [25], among many others. Regarding multifaceted time-varying
data, works range from focus + context [26] weather analysis [27–29] to multiplayer game
analysis [30]. In the context of time-varying data defined on graphs, visualization tools to
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analyze mobility [31], dynamic graphs [32], and crime data [33] have been proposed. The
methods above are only examples of visualization methods for time-varying data and a
more comprehensive overview can be found in a number of surveys [21,34,35]

Our approach differs from the methods discussed above in two main aspects: NE-
Motion focuses on the synchronization of time series while enabling the visual identification
of time series that “synchronize” more often.

3. Requirements and Tasks

For almost two years, we interacted with two experts, with an MD and PhD degree,
in stroke motion assessment and rehabilitation (AP, HS). From that interaction, we came
up with a set of requirements that should be addressed by the analytical tool, which we
summarize as follows:

R1—relation between joint angles: An important issue when analyzing motion sensor
data is to figure out which pairs of joint angles have significant relationships in a given
patient and which ones can be disregarded. Such analysis must order the data according to
their location in the body.

R2—prevalent joint angle relationships: Because of impairment, stroke patients may not
move segments of their body that typically move together in healthy individuals. Stroke
patients may also use other body segments to circumvent limited motion in impaired body
segments. For instance, if a patient cannot flex his shoulder and extend his elbow, he may
flex his trunk in order to move his hand forward in space. This means that certain segments
are not moving together that normally would in a healthy individual (impairment), while
other segments are moving together that normally would not (compensation). Thus, the
pairs of sensors that most strongly correlate in stroke patients versus healthy individuals
are important to identify.

R3—focused analysis: In order to perform certain examinations, experts have to focus on
a particular movement, particular individual, and on one side of the body. It is important
to be able to easily switch the movement, individual, or body side during the analysis
of motions.

R4—specific patterns: Identifying patterns that occur only in stroke patients or in healthy
individuals is also of great relevance. The identification of individuals with unique be-
havior (outliers) is also a requirement. Those patterns areuite difficult to get from simple
correlation analysis, demanding mechanisms tailored to this end.

R5—contrast individuals: A difficulty faced by the experts is the comparison of individu-
als when an ordinal scale, such as the FMA, is used. Comparing stroke patients according
to their impairment level or comparing them against healthy individuals is important to
assess the evolution of a rehabilitation process.

We used these requirements to design a set of visualization and analytical tasks for
NE-Motion. The mapping among tasks and requirements is indicated in parenthesis:

Task 1. Overview: The system must calculate and display the relationships between joint
angle data from the sensors, discarding relations that are not of interest. Moreover, the
joint angles must be presented in a predefined order according to their location on the
body (R1).

Task 2. Filtering and selection: The tool should be able to focus the analysis on particular
movements, particular individuals, and side of the body (R3). These selection and filtering
should be promptly available to the users.

Task 3. Revealing group-level patterns: The tool should be able to detect patterns occur-
ring in particular groups of individuals, for example, highlighting relationships between
joint angles that are only observed in stroke patients or healthy individuals (R4).

Task 4. Sorting: Sorting routines should be implemented to enable the visualization of the
most frequent relationships in groups of individuals (R2). This feature will characterize
impairment and compensation during motor performance in stroke patients.
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Task 5. Detailing sensor relationships: Users must be able to visualize detailed joint angle
information from the sensors in order to identify trends and extreme values (outliers) (R3
and R4).

Task 6. Comparing individuals: The analytical tool should provide mechanisms to com-
pare individuals based on their motion data. This comparison will enable users to identify
the individuals that differ most from others. It will identify the data patterns of stroke
patients that differ the most from or closely matches healthy individuals and other stroke
patients (R5).

Task 7. Time series presentation: The tool should allow users to visualize and compare
the motion data of a particular participant against an average times series obtained by
combining the data from all participants. This feature will enable users to identify typical
and spurious behaviors in an individual’s data (R4 and R5).

Task 8. Global and local analysis: The system must enable global (group of individuals)
as well as local (at the individual level) analysis. Global analysis involves comparing the
’average’ behavior of groups of individuals. In contrast, local analysis enables exploring
the performance of a particular individual in a given movement and comparing it against
a group of individuals (R3, R4 and R5).

Before providing a match between the tasks above and the design decisions for
NE-Motion, we describe the data set provided by our expert partners and the mathemati-
cal/computational framework that supports NE-Motion.

4. Data Set and Notation

To record the upper extremity (UE) motion, we attached nine inertial measurement
unit (IMUs; Noraxon Inc., Scottsdale, AZ) to the upper body (both hands, forearms, arms,
spine, and pelvis). Each IMU samples linear acceleration, angular velocity, and magnetic
heading at 100 Hz, and the software additionally generates quaternions for each IMU and
upper body joint angle values. For the visualization analysis, we used NA = 20 relevant
joint angles at upper body joints (wrist, elbow, shoulder, thoracic spine, and lumbar spine).
We used the time series corresponding to the 20 joint angles, described in details in Table 2,
for each FMA movement.

Table 2. List of anatomical angles. The system uses a rigid-body skeletal model to convert the IMU
measurements into joint and segment angles. Shoulder total flexion is a combination of shoulder
flexion/extension and shoulder ad-/abduction. Thoracic angles are computed between the cervical
vertebra and the thoracic vertebra. Lumbar angles are computed between the thoracic vertebra
and pelvis.

Joint/Segment Anatomical Angle

Shoulder

Shoulder flexion/extension
Shoulder internal/external rotation

Shoulder ad-/abduction
Shoulder total flexion

Elbow Elbow flexion/extension

Wrist
Wrist flexion/extension

Forearm pronation/supination
Wrist radial/ulnar deviation

Thorax
Thoracic flexion/extension

Thoracic axial rotation
Thoracic lateral flexion/extension

Lumbar
Lumbar flexion/extension

Lumbar axial rotation
Lumbar lateral flexion/extension
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UE motion was also recorded synchronously with two cameras (60 FPS, 1088× 704;
Ninox, Noraxon) positioned orthogonally less than 2 m from the subject. Trained coders
used the video data to label the FMA items, which simultaneously labeled the IMU data.

To directly examine the relationship between FMA scores and the output of NE-
Motion, each individual performed the FMA while we recorded their motion. We examined
NM = 13 movements of the FMA that entailed arm and wrist motions; the hand items
were not examined, given that the IMUs (placed on the back of the hand) did not read out
information about the fingers. For data collection, patients are instructed to perform one
movement at a time. Specifically, the movements are very simple tasks, such as simulating
answering a telephone. There are no repetitions, that is, each individual performs the
movement only once. In this case, stroke patients performed the movements on their
paretic (affected) side, while healthy individuals performed the movements on both sides
of the body. A trained assessor appraised each movement and assigned a score of 0 (for no
or incorrect movement), 1 (for partial movement), or 2 (for “normal” movement). Table 3
summarizes the demographic information of the patients in the database. It is noteworthy
that this study was carried out in accordance with the recommendations of the Declaration
of Helsinki [36,37]. The protocol was approved by the NYU Institutional Review Board.

Table 3. Demographic characteristics of patients in the data set. The range (between parenthesis) and
average values are shown for the age, years since stroke, and FMA score.

Demographic Property Stroke Control

Number of patients 51 18
Age (years) 57.76 (21.26–84.26) 61.55 (41.99–82.96)

Male 23 10
Female 28 8

Ischemic Stroke 42 -
Hemorrhagic Stroke 9 -

Years since stroke 5.34 (0.26–38.44) -
Paretic side 28 left and 23 right -

FMA score (points) 43.11 (8–65) 65.475 (62–66)

The data set comprises NstrokeL
P = 28 of left-paretic stroke patients (impaired on the left

side of the body), NstrokeR
P = 23 of right-paretic stroke patients, and NCRTLR

P = NCRTLL
P = 18

of healthy individuals, totaling NP = Nstroke
P + NCRTL

P = NstrokeR
P + NstrokeL

P + NCRTLR
P +

NCRTLL
P = 87 individuals. We use NA = 20 joint angles. Therefore, the data set contains

NT time series, where NT is given by the following:

NT = NP · NM · NA = 87 · 13 · 20 = 22620. (1)

To settle the notation, consider the following sets:

• Joint Angles: A :=
{

a1, a2, ..., aNA

}
;

• Movements: M :=
{

M1, M2, ..., MNM

}
;

• Participants: P := {p1, p2, ..., pNstroke
P︸ ︷︷ ︸

Pstroke

, pNstroke
P

+1, ..., pNP︸ ︷︷ ︸
PCTRL

},

where Pstroke is the set of stroke patients and PCTRL is the set of healthy controls. We divide
the sets according to the side of the body that has been recorded, that is, the following:

◦ Pstroke := PstrokeL ∪ PstrokeR ,
◦ PCTRL := PCTRLL ∪ PCTRLR ;

The set of time series T is denoted by:

• Time series: T =
⋃

pi∈P,Mj∈M
Ti,j,
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where Ti,j :=
{

ti,j,1, ti,j,2, ..., ti,j,NA

}
accounts for the set of time series of the individual pi

performing the movement Mj.
A main issue to understanding how each individual or groups of individuals behave

is to figure out which pairs of joint angles “correlate” (synchronize) during the movements
accomplished by the individuals, as such correlations point out which parts of the body are
concurrently moving during the movement. In the next section, we present the mathemati-
cal foundation of the methodology we developed to tackle the analysis of the movements
and individuals.

As each individual may take a different amount of time to perform the same move-
ment, the number of time steps of each time series in T may be different. Thus, it is
necessary to transfer all time series of T to a space of the same dimension. In this case, we
perform a coordinate up-sampling procedure using spline polynomials [38], so that we
transfer all time series of T to the space of dimension mmax, with mmax being of length
1500 since 98.8% of the data has a size equal or lower than this.

Therefore, we will consider all time series as having the same number of time steps.

5. Mathematical Foundation

The proposed methodology relies on Graph Learning (GL) theory [39] to identify and
represent the relation between pairs of joint angles. An undirected network, or a graph,
G(V, E) is given by a set of vertices V = {v1, v2, ..., vn} and a set of edges E ⊂ V × V,
where (vi, vj) ∈ E if the vertices vi and vj are linked in G. The graph G can be represented
by an adjacency matrix W ∈ Rn×n, where an entry Wi,j in W is non-zero if and only if
(vi, vj) ∈ E. Since G is undirected, the matrix W is symmetric.

The GL problem consists of defining the edge set E from a set of vertices V and
multivariate data X associated to each vertex vi ∈ V. In other words, in GL, the set of
edges E, and thus W, are unknown and must be computed from V and X. Specifically, the
multivariate data X can be represented as a matrix X = [x1, x2, ..., xn]

T ∈ Rn×m, where the
row xi ∈ Rm corresponds to a vector associated with the vertex vi ∈ V of G.

To compute the set of edges E, GL techniques assume certain premises, being that
“smoothness” is one of the most used hypotheses. Intuitively, smoothness seeks to ensure
that a pair of vertices vi and vj are connected by an edge (vi, vj) ∈ E if the vectors xi and xj
associated to those vertices are similar to each other, that is,

∥∥xi − xj
∥∥must be close to zero.

In other words, the edge set E should connect the most similar vertices. In mathematical
terms, the resulting edge set must give rise to an adjacency matrix W that minimizes the
Dirichlet energy [40].

DW(X) :=
1
2

n

∑
i=1

n

∑
j=1

Wi,j
∥∥xi − xj

∥∥2. (2)

Equation (2) tells that Wi,j must be zero when
∥∥xi − xj

∥∥ is large. Moreover, large values
of Wi,j correspond to edges connecting quite similar vertices (

∥∥xi − xj
∥∥ close to zero).

To compute an adjacency matrix W (and thus the edge set E) that minimizes
Equation (2) while ensuring that W is symmetric, non-negative, and sparse, we rely on
the optimization procedure proposed by Kalofolias [41], which consists of solving the
following mathematical problem:

W∗ := arg min DW(X) + g(W).
W ∈W

(3)

where W = {W ∈ Rn×n |W = WT , Wi,i = 0, and Wi,j ≥ 0, ∀i, j}. The right most regular-
ization term g(W) aims to ensure sparsity and connectness and it is defined as follows:

g(W) = −α
(

1T · log(W · 1)
)
+ γ · ‖W‖2

F, (4)

where 1 ∈ Rn is a vector with all coordinates equal to 1, α > 0 and γ ≥ 0 are parameters
set as proposed by Kalofolias and Perraudin [42]. The logarithmic term is applied in each
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entry of the vector W · 1 and it enforces each vertex to be connected to other vertices of the
graph since an isolated vertex result in row with zeros in W. The second term ‖W‖2

F avoids
the trivial solution while enforcing sparsity.

Kalofolias [41] demonstrates in his work that the framework derived from
Equations (3) and (4) can be modeled to be solved by the primal–dual scalar optimization
procedure [43] that is scalable while presenting fast convergence, making this methodology
doable even for large scale problems. Specifically, as DW + g is a lower semi-continuous
convex function [44], the optimization problem discussed here is guaranteed to converge
to the minimum in a very efficient way.

In the following section, we show how we use GL to build networks whose edges
represent the relation between pairs of joint angles.

6. Network Construction

We rely on the GL methodology discussed in Section 5 to build a network for each
movement. Therefore, each individual pk ∈ P has a set of associated networks, one for
each movement Ml ∈M. The vertices of each network correspond to the joint angles, so
all networks have the same number of vertices. Each vertex (joint angle) has a time series
associated to it and the time series play the role of the multivariate data xi discussed in
Section 5. Given the vertices and the time series associated with them, we compute the
edges of the network associated with a movement by solving the GL problem (3). Since the
GL results in the edges connecting similar nodes, the edges naturally indicate the pairs of
joint angles that most correlate during a movement. Figure 1 illustrates the process we use
to compute the set of networks associated with each individual.

...

...

...

...

Movement

Set of time series

extracted in the 

execution of the 

movement

Constructing the 

adjacency matrix

Network building

Figure 1. Construction of the networks associated to an individual pk. One network for
each movement.

As pointed out in requirement R1, some correlations between joint angles are of no
interest, so they must not be represented as edges in the network. Specifically, null time
series and time series with nearly constant values are of no interest, as those time series
are not recording a movement. To avoid edges connecting vertices corresponding to joint
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angles whose time series are null and nearly constant, we modify the similarity measured
(see Equation (2)) to become the following:

DW(X) :=
1
2

n

∑
i=1

n

∑
j=1

Wi,jZi,j, (5)

where Zi,j is given by
Zi,j := αz1(i, j) + βz2(i, j) + γz3(i, j). (6)

where z1(i, j) =
∥∥∥tk,l,i − tk,l,j

∥∥∥2 and tk,l,i accounts for the time series associated to joint
angle ai of the individual pk performing the movement Ml . The values α, β, and γ are
non-negative parameters that control the importance of each term in Zi,j. In this work, we
define (α, β, γ) = (1, 1, 1). The term z2(i, j) penalizes the relations between null time series
and it is given by the following:

z2(i, j) :=
{

2, if tk,l,i or tk,l,j are null,
0, otherwise.

(7)

The term z3(i, j) in Equation (6) penalizes constant time series and is defined as
follows:

z3(i, j) := e−diff(tk,l,i) + e−diff(tk,l,j), (8)

where diff is a function that calculates the sum of the absolute value of the differences
between consecutive time series values, that is, the following:

diff(x) :=
m−1

∑
i=1
|xi − xi+1|, x ∈ Rm. (9)

Algorithm 1 summarizes the steps for creating a graph Gk,l associated with the in-
dividual pk ∈ P and movement Ml . The algorithm takes as input the time series Tk,l
representing the respective joint angles and it outputs the networks Gk,l(S, Ek,l), that is, the
adjacency matrices Wk,l =

[
(Wk,l)i,j

]NA

i,j=1. In terms of computational times, the algorithm
takes around a tenth of a second to calculate one network and, consequently, as we need
to calculate 87 · 13 = 1131 networks, the method takes around 113.1 s to compute all the
networks in a personal computer with 2.4 GHz Intel(R) Core i7 CPU and 16 GB of RAM.

Algorithm 1 Computing a network.

1: Input: Tk,l = {tk,l,1, tk,l,2, ..., tk,l,NA
} : set of NA time series representing the joint angles

of individual pk when performing the movement Ml .

2: Output: Wk,l : adjacency matrix corresponding to the network Gk,l(S, Ek,l).

3: Z := 0 . 0 ∈ RNA×NA is the null matrix

4: for i := 1 to NA do

5: for j := i + 1 to NA do

6: Zi,j := z1(i, j) + z2(i, j) + z3(i, j)

7: Zi,j := Zj,i

8: end for

9: end for

10: Solve the optimization problem in the Equation (3), given the pairwise similarity

measures Z =
(
Zi,j
)NA

i,j=1, to obtain the adjacency matrix Wk,l .



Sensors 2021, 21, 4482 10 of 22

6.1. Filtering Networks

In order to accomplish the tasks described in Section 3, the networks associated to an
individual or group of individuals must be filtered out to get the information of interest.
For instance, if the focus of the analysis is on movement Ml performed by patients with
stroke on the left side of the body, the filtering mechanism should return the set of networks
associated with that movement for that group of individuals.

We rely on set theory [45] as the building block for the design of a family of filters that
support our tasks. Let GU denote a graph-like structure where the nodes correspond to
the joint angles, but the edges are the union of the edges from all networks, that is, the
following:

GU = GU(A, EU) = GU

A,
⋃

pk∈P,Ml∈M
Ek,l

. (10)

where A is the vertex set corresponding to joint angles and EU comprises the set of all
edges from all networks. Mathematically, GU is not a graph in the classical sense since it
may have several edges connecting the same pairs of vertices; however, the structure of GU
will serve our purposes. We denote by Λ a filter that extracts from EU the subset of edges
that must be involved in a given analysis. For instance, suppose that the domain of interest
is stroke patients affected on the left side of the body (PstrokeL ) and movement M2 (l = 2).
Thus, the filter Λ must be the following:

Λ =


“stroke individuals

movement M2
left side ”

. (11)

Mathematically, the filter is implemented as follows:

EΛ =
{

e ∈
⋃

Ek,l ⊂ EU | pk ∈ PstrokeL , l = 2
}

, (12)

giving rise to
GΛ = GΛ(A, EΛ). (13)

Filtering Edge Functions

Certain tasks demand that edges from EU are filtered based on the values of a function
defined on EU . Suppose, for example, that one wants to figure out which is the edge that is
more prevalent in the networks of healthy individuals when performing the movement
M8 with the right side of the body. In this case, the filter Λ can be stated as follows:

Λ =


“most prevalent edge
healthy individuals

movement M8
right side of the body”

. (14)

To accomplish the filtering we define the function fcount : EU → R as follows:

fcount(e) := #

Ek,l ⊂ EU

∣∣∣ e ∈ Ek,l ,
pk ∈ PCTRLR ,
l = 8


, (15)

where #(·) is the number of elements in a set.
The filtered subset of edges EΛ is obtained as follows:

EΛ =

e ∈
⋃

Ek,l

∣∣∣∣ pk ∈ PCTRLR ,
l = 8,
fcount(e) = Γ(e)

, (16)
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where Γ(e) := max
{

fcount(e) | e ∈
⋃

Ek,l
}

.
The filtering scheme presented above provides a unified manner of filtering edges in

order to accomplish local and global analysis involved in the tasks described in Section 3.

7. NE-Motion

NE-Motion is a visual analytic system designed to tackle the tasks outlined in Section 3.
Each of the visual components described in the following were designed based on thorough
discussions with the experts, where the pros and cons of each possible alternative were
analyzed until consensus was reached. Several adjustments were made during the course
of development to tackle issues and to improve the analytical capability of the proposed
visualization tool.

Figure 2 shows the main components of NE-Motion, which are detailed in the following.

Figure 2. NE-Motion visualization tool. Component A is responsible for presenting the pairwise relation (a2) between joint
angles (a3) resulting from a filtering, which is interactively specified by filtering menu (a1). The visualization component B
details the result of the filter and enables the comparison of movements while providing an overview of the time series. In
this case, b1 graphically represents the numerical ratio between healthy control (green bar) and stroke patients (red bar); b2

is a scatter plot of the statistical measure defined in b3 extracted from the time series of each joint angle; in b4, a mirrored
graph is shown between average healthy control motion curves (at the top in green) and stroke patients (at the bottom in
red) for each joint angle that makes up the selected edge. Component C shows the statistical summary extracted from the
filtered time series associated with the joint angles, also allowing a visual comparison of a particular individual against
the summary. While, in c1, we see an overview that takes into account all the joint angles that have some synchronization
between them, in c2, we see in detail the summary of only one joint angle at a time. Component D enables the comparison
of the individuals through projections, defined in menu (d1), and presented in an interactive chart (d2).

Filtering Menu. The filtering menu (component a1 in Figure 2) enables users to interac-
tively define a filter Λ, thus addressing tasks T2 and T4 while supporting the accomplish-
ment of task T3. Users can select the following:
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• A particular category of individuals: stroke, healthy, or both.
• Side of the body: left or right.
• Choose a particular individual.
• Sort by top K most prevalent relations.
• Edges that take place concurrently on both stroke patients and healthy control indi-

viduals or that appear in one category but are not present in the other.

The available filtering options enable many such different analyses as, for example, analyz-
ing the similarities and differences between healthy and stroke affected individuals.

Pairwise Relationship View NE-Motion relies on an arc visualization metaphor [46] to
reveal the relation of joint angles resulting from a filtering (edges in EΛ). The joint angles
(Figure 2 a3) are arranged according to a pre-established order determined by the specialists
and pairs of joint angles containing edges in EΛ are connected by an arc (Figure 2 a2). Users
can interactively select a particular arc (relation) to get details about the group of individuals
where the selected relationship is present. This component addresses task T1 and support
task T5.

Detailed Relation View This component, illustrated in Figure 2 B, is responsible for
highlighting details about the relationship of a pair of joint angles. The detailed relation
view is triggered when the user selects a particular arc in the pairwise relations view and it
shows the proportion of healthy control and stroke patients that present that relationship
in each movement selected by the user (Figure 2 b1). A scatter plot (Figure 2 b2) derived
from measurements computed from the time series associated the each joint angle linked
by the selected arc is also provided. Specifically, each axis in the scatter plot corresponds to
a joint angle; each point represents an individual (green is healthy and red is stroke), and
the coordinates of the points are given by the measurement extracted from the time series
of the individuals. Users can choose (Figure 2 b3) three different measurements: mean
value, entropy, and energy of the time series. In addition, the size of each circle is defined
according to the FMA score of the represented individual in which the larger the circle,
the lower the FMA score and, therefore, the more impaired the motion. The visualization
widget shown in Figure 2 b4 shows the average shape of the time series associated with the
pair of joint angles linked by the selected arc. The green time series correspond to healthy
individuals and the red ones to stroke patients, as requested by the domain experts. In this
case, the average time series of stroke patients is mirrored on the y-axis, enabling the user
to compare the kinematic profiles of the joint angle changes over time. In addition, for b4,
the tool provides the user with two viewing options: “Proportional” and “Same Length”.
The “Proportional” view displays the average time steps of each group’s time series, which
may be shorter in healthy subjects and longer in stroke patients. The “Same Length”
view displays the time series of both groups in same number of time-steps, enabling the
direct comparison of the kinematic profiles. If an individual is selected in the scatter plot
by hovering the mouse on the point, the particular time series of that individual is also
presented (black curve in the plot), making it possible to compare the individual against
the group average. The detailed relation view addresses tasks T3, T5, T6 and T7 while
supporting T8.

Comparison View This analytical component provides resources to compare individuals
in the whole data set. It comprises three main visual widgets. The first widget, illustrated
in Figure 2 c1, presents the average and standard deviation curves for the time series
associated to each joint angle for both healthy (green) and stroke individuals (red). The
time series are ordered in this component according to the joint angle arrangement of
component a3, that is, the box topper in c1 refers to the leftmost joint angle in a3. In this
case, the time series from the whole set of movements can be analyzed or filtered based on a
particular movement (one side of the body must be chosen). When a particular joint angle is
selected, a detailed view of that joint angle shows up, as illustrated in Figure 2 c2, allowing
to visually compare, through a statistical curve based summary, the time series behavior of
stroke patients and healthy control individuals in the chosen joint angle. Figure 3 shows
the elements in the detailed view.
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Figure 3. Statistical curve based summary of the time series behavior of stroke patients and healthy
control individuals in a particular joint angle (thoracic lateral). The green and red curves refer
to healthy control and stroke patients respectively. The average (µCTRL and µstroke) and standard
deviation (σCTRL and σstroke) curves summarize the behavior of each group of individuals.

In order to provide an overview on how individuals compare to each other, the com-
parison view enables a multidimensional projection visual widget (Figure 2 D). Three
different projection schemes are provided (Figure 2 d1): network principal component anal-
ysis (PCA), motion curves PCA, and auto-encoder multidimensional scaling (AE-MDS).

The network PCA maps to a 2D space a multidimensional feature vector derived from
the set of networks of each individual. Specifically, for each network we extract the fol-
lowing measures: node degree ( fdeg) [47], closeness centrality ( fclose) [48]; eigencentrality
( feig) [49], and clustering coefficient ( fclus) [50]. Therefore, for each movement, we have a
feature vector in R4·NA . If all movements are considered simultaneously, the feature vector
is NM(4NA)-dimensional.

Motion curves PCA simply consider each normalized time series as high-dimensional
data and project the curves in a two-dimensional space using PCA.

AE-MDS projection uses MDS to project an embedding of each individual from a
multidimensional space. The embedding is accomplished, using an autoencoder trained
with all time series. To increase the amount of training data, we also included the time
series in reversed order in the training data. The encoder architecture consists of six layers
of 1D convolutions. The first convolutional layer transforms the input to four channels
while maintaining its length. The next five layers halve the length and the amount of
channels, reaching a dimension of 188, which we use as the embedded representation
for each individual. The decoder has a similar architecture to the encoder, except that
in the encoder, we use a Relu activation function, while in the decoder, no activation is
used. PCA was chosen for projecting network structures and motion curves because it
handles high-dimensional data quite well while being computationally efficient. Since the
AE embeds the curves in a relatively low dimensional space, MDS can be used, providing
an alternative visualization.

An individual can be selected in the projection layout (Figure 2 d2) by hovering the
mouse on the corresponding point (the ID of the individual shows up by hovering the
mouse). Once selected, the time series associated with that individual are shown in the
detailed view. The comparison view was designed to address task T6, T7 and T8.

All NE-Motion visual components can be dragged over the screen for repositioning,
facilitating the visualization and comparison of the displayed information.

7.1. Implementation

The network construction is done using PyGSP [51] in Python. Time series are
stored in a database using MySQL and queried through PHP and Ajax. NE-Motion visual
components are coded in JavaScript and D3.js. The autoencoder is built using TensorFlow.

8. Case Studies

In this section, we present two case studies carried out jointly with the experts that
closely collaborated in the development of NE-Motion. The first case study focuses on the
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visual identification of patterns and comparison between individuals. The second case
study shows the utility of NE-Motion to enable a detailed analysis of stroke patients so as
to reveal the similarities in their motion.

8.1. Case Study I: Visual Identification of Patterns and Comparison between Individuals

In this case study, we focus on Comparison View and Pairwise Relations View NE-
Motion components to visually identify patterns and compare individuals. Specifically,
from the Filtering menu we select the movement “flexor synergy” and the left side of
the body (Task T2). Starting with their hand on their knee, the flexor synergy item of the
FMA requires the individual to raise their hand toward the ear, bringing the elbow up
to shoulder height with the thumb pointed toward the ceiling as if they are answering
a telephone.

To perform the comparison between individuals, we trigger two NE-Motion visual
components: the pairwise relations view and the comparison view as shown, respectively,
in Figure 4-A and C/D. In this case, for the AE-MDS projection (d2), the color of the
circles refers to the subject group (red for stroke patients and green for healthy individuals)
and the radii of the circles indicate the impairment level (circles with larger radii refer to
higher impairment). The projection shows that there is a segregation between the groups
with stroke patients (red circles) concentrated on the bottom right of the projection, and
healthy individuals (green circles) concentrated on top of the projection layout (Task T6).
We also note that the projection corresponds well with the FMA scores: stroke patients
with high FMA scores (i.e., less impairment) are projected close to the healthy cluster in the
AE-MDS projection.

In contrast, stroke patients with lower FMA scores (larger diameter) are projected
away from the healthy cluster. This indicates that our model, based on an AE neural
network, used to embed the joint angle time series was able to properly group individuals
according to their impairment level. Consequently, we can note that the projection is able
to capture the differences in the movements performed by stroke patients and healthy
control individuals. This analysis attests the effectiveness of NE-Motion mathematical and
analytical design, making possible to represent individuals with similar level of impairment
in an intuitive manner.

Directing our analysis on the individual “stroke_27” (score 8 out of 12 on flexor
synergy item and a total score 47 out of 66 on the FMA), we can see in the Comparison
View component in Figure 4 that “stroke_27” is projected near other stroke individuals
with similar diameters (i.e., similar FMA scores). This trend is observed in both AE-MDS
and PCA projection, which demonstrates that the motion data of each group of individuals
have well-defined features within each category and that the patient in question has similar
time series to other patients with a similar FMA score, as shown in Figure 5.

In addition, when analyzing the motion time series for “stroke_27” in the Comparison
View component in Figure 4-C and, more in-depth, in the zoomed view depicted in
Figure 6, it is evident that this subject’s joint angle motion curves (shown as black lines)
are not smooth and, in some cases, are outside the statistical limits relative to the curves of
the other individuals with similar condition (tasks T6, T7 and T8).

Indeed, if we look at its joint angle network presented in the Pairwise Relations
View component (task T1), nodes in the thoracic and lumbar regions have a high degree
of connectivity with various nodes of the upper body. This connectivity indicates that
the truncal motion is associated with limb motion, as highlighted by the bottom dashed
rectangles in Figure 4-a2 and a3.

Focusing on the trunk (curves highlighted with the dashed rectangle in Figure 4-c1
and broken out in Figure 6), we can see that for “stroke_27”, the motion of the thoracic
spine is more pronounced and different from other individuals. This is an indication that
this individual may be using compensatory motions during completion of the “flexor
synergy” FMA item.
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Figure 4. Using NE-Motion to identify patterns and analyze particular individuals. We use components A, C, and D,
discussed in Figure 2. In a1, we defined the domain of interest: the individual “stroke_27” and the flexor synergy movement
performed with the left side of the body. In the right of the image (component C), we can see the time series (mean and
standard deviation curves) that describe the UE joint angles of healthy (green curves) and stroke (red curves) individuals
who performed exercise “flexor synergy” with the left side of the body, representing a global analysis. In the center, plot
(d2) shows the MDS projection of the deep features extracted with an autoencoder, indicated as AE-MDS on d1, from the
time series of healthy individuals (green circle) and stroke individuals (red circle), representing the local analysis. The tool
allows the user to select an individual through mouse hover event, which triggers, in the second resource, the display of the
time series in c1 (in black) of all the joint angles of the selected individual and also shows in d2 a tag with his/her FMA
score for the movement. The dashed rectangles in the bottom (a3 component) highlight nodes in the Pairwise Relations
View component that have a large number of connections (a2). The dashed rectangle on the right (c1) highlights truncal
motion curves that can be associated with compensatory motion in lumbar and thoracic spine.
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(a) AE-MDS. (b) Motion Curves PCA.

Figure 5. Using two different projection schemes ((a) AE-MDS and (b) PCA) in the Comparison
View component to assess how close stroke patients are to the healthy individuals. All individuals
who performed the “flexor synergy” movement are represented in both projections, with green circles
representing healthy and red circles representing stroke. The larger the diameter of a red circle, the
lower the individual’s FMA score, indicating more impairment. In both projections, we can note
good separation between the group of control individuals and stroke patients who performed the
movement with less difficulty (smaller circles) from the group formed by stroke patients with more
difficulty in movement (larger circles). In addition, the individual “stroke_27” is represented close to
patients with a similar level of impairment to FMA scores.

(a) Thoracic Flexion, deg. (b) Thoracic Lateral-RT, deg. (c) Thoracic Axial-RT, deg.

Figure 6. Visualizing information about the motion curves of three thoracic joint angles ((a) thoracic
flexion, (b) thoracic lateral, and (c) thoracic axial) using the Comparison View zoom resource. In
this case, NE-Motion considers the respective motion curves of all individuals who performed the
flexor synergy movement with the left side. Average motion curves are represented by the red line
(stroke individuals) and the green line (healthy individuals). The area around these average curves
is defined by the distance between them and the standard deviation of the motion curves for each
category of individuals considered. The black curve is the motion curves of the “stroke_27” patient.
We can notice that the motion curves of the analyzed individual do not present smoothness and are
very different from average curves in all cases. Specifically, in (b), we see that the joint angle assumes
values even outside the standard deviation of the affected individual motion curves. This can serve
as an indication for intense compensatory actions of the patient.

8.2. Case Study II: Understanding Patterns of Stroke Patients

This second case study focused on exploring the features belonging only to stroke
individuals. To this end, from the Filtering menu we selected the FMA item “Shoulder
Flexion 90◦ to 180◦” on the left side of the body. In this movement, the subject starts with
their arm held out in front of them (shoulder flexed to 90◦ and elbow extended to 0◦)
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and lifts their arm up (shoulder flexed to 180◦ and elbow extended to 0◦). Subjects were
instructed to keep their elbow straight at all times during the movement.

To explore the differences between stroke patients and healthy control groups, we
filtered out the edges that simultaneously appeared in networks associated with both
groups. This filtering can be performed by setting the option “Differences” in the Filtering
menu. The filtering operation resulted in a motion graph with only two connections
concerning stroke individuals and none for healthy individuals (task T3), as we can see in
the NE-Motion Pairwise Relations View component presented in Figure 7. Inother words,
NE-Motion shows that only two joint angle synchronizations, unique to stroke patients,
occur during the execution of the movement “Shoulder Flexion 90◦ to 180◦” with the left
side. In this case, we can see that these synchronizations take place between the joint angles
“Shoulder Abduction LT, deg” and “Shoulder Flexion LT, deg” and “Shoulder Abduction
LT, deg” and “Elbow Flexion LT, deg”.

Figure 7. Use of Pairwise Relations View in “Differences” special filtering, which uses different
colors to represent the edges that are only present in stroke patients (red) or healthy individuals
(green). In the case study, comparing the data generated considering “Shoulder Flexion 90◦ to 180◦”
for the left side, only the red edges between elbow flexion and shoulder abduction, and shoulder
flexion and shoulder abduction persisted. These edges are not present in any network of healthy
individuals, indicating that the synchronizations in question may be associated with abnormalities
in movement.

Activating the Detailed Relation View (Figure 8), we can see that elbow flexion and
shoulder abduction synchronization co-occurs on this FMA item in seven stroke individuals
(tasks T4 and T5). This indicates the intrusion of an abnormal flexion synergy when the arm
is flexed on seven stroke patients (b1 and b2). As an example, we can analyze the details
of this relationship (task T8) in the motion curves of individual “stroke_4” (score 0 out
off 2 on “Shoulder Flexion 90◦ to 180◦” and a total score 27 out of 66 on the FMA) in this
component. Specifically, in Figure 8b4, the elbow flexion and shoulder abduction angles
are initially stable when the individual lifts the arm, but then there is an increase in the
two angles, considering their respective scales, as the arm is fully lifted above the head
(task T7). This synchronous increase in elbow flexion and shoulder abduction suggests the
manifestation of intrusive flexion synergies that can be seen in stroke patients lifting the
arm weight against gravity. Moreover, we can see in the scatter plot (b2) the distribution
according to the mean value (selected in b3) of the time series for the selected edge. Notably,
as abduction increases, elbow flexion also increases. This increased elbow flexion (despite
instructions to keep the elbow straight) implies the intrusion of a flexion synergy.
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Figure 8. Detailed Relation View showing a detailed view of the time series associated to joint angles, “Shoulder
Abduction” and “Elbow Flexion”. The black curve in b4 shows the data from one stroke individual (“stroke_4”) performing
the “Shoulder Flexion 90◦ to 180◦”. In the component, there are seven stroke individuals (b1 and b2) for which these joint
angles are significantly synchronized, and the average motion curve of these individuals is shown in b4 for each of these joint
angles as a red area mirrored on the y axis. This shows that “Shoulder Abduction” and “Elbow Flexion” are synchronized,
suggesting the intrusion of flexor synergy. Note the absence of healthy control information (green circles and green curve)
for this edge, indicating that synchronous activity in these joint angles does not normally occur in healthy movement.

8.3. Experts Comments

Reduced impairment, as evidenced by the re-emergence of normal movement patterns
including the absence of intrusive synergies, is the signpost of true motor recovery. Impair-
ment limits activity performance, whereas compensation helps achieve it. Although com-
pensatory motions support functionality in the short-term, they blunt beneficial training
effects and increase aberrant plasticity in lesioned animals [52,53]. In humans, preventing
compensatory motions during training promotes greater reduction in UE impairment [54].
If the presence and degree of impairment and compensation can be identified in a mov-
ing patient, treatment strategies can be adjusted to maximally target impairment and
minimize compensation.

With knowledge about impairment and compensation occurring in functional move-
ment, one can generate rules for changing a treatment strategy in real time. For example,
if compensatory motions start to escalate, a therapist can downgrade task difficulty to
lessen compensation and focus on impairment reduction. The future of health care delivery
is also unclear: access to inpatient rehabilitation services is decreasing nationally, with a
push toward rehabilitation in the home. Given the growing interest in remote monitoring
and training by telerehabilitation, the automated capture and quantitation of movement
abnormalities could assist remote rehabilitation training.

The visualization tool, though preliminary, may help identify both impairment and
compensation in quasi real-time. This visualization could guide the targeting of impair-
ment and compensation in certain limb segments, facilitating the delivery of personalized
rehabilitation interventions.
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9. Discussion and Limitations

NE-Motion was developed to address a particular application; therefore, it bears some
limitations. For instance, NE-Motion might not be appropriated to applications involving a
large number of vertices, and some visualization components are not promptly scalable.
In fact, the adaptation of NE-Motion to applications involving data sets with hundreds of
data streams would demand the redesign of important visualization components, such as
the Pairwise Relations View.

We believe, though, that the graph learning network representation proposed in this
work can serve other scenarios. Applications such as rehabilitation of sports injuries and
athletic performance analysis are two examples, as those applications involve the use of
sensors to assess and compare individuals and groups of individuals.

As future work, we intend to extend NE-Motion to applications involving multivariate
time series databases, as, for example, electroencephalography (EEG).

10. Conclusions

In this work, we introduced a visual analytics tool to assist in the rehabilitation process
of stroke patients. NE-Motion was developed in close collaboration with domain experts,
who helped us to translated their analytical needs into the visualization system. We also
proposed a graph learning methodology to represent the movements by the joint angles as
a set of networks. A solid mathematical framework to filter the set of networks was also
proposed. NE-Motion was validated in two case studies using real data and with feedback
from the domain experts, which attested to its effectiveness in addressing the analytical
tasks.
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AE Autoencoder
CTRL Control
EEG Electroencephalography
FMA Fugl–Meyer Assessment
FPS Frames Per Second
GL Graph Learning
ID Identification Code
IMU Inertial Measurement Unit
LE Lower Extremity
MDS Multidimensional Scaling
NE-Motion Network Environment for Motion Capture Data Analysis
PCA Principal Component Analysis
UE Upper Extremity
WSNs Wearable Sensors Networks
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