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ABSTRACT

Objectives: Immune checkpoint inhibitors (ICIs) have dramatically improved outcomes in cancer patients. How-

ever, ICIs are associated with significant immune-related adverse events (irAEs) and the underlying biological

mechanisms are not well-understood. To ensure safe cancer treatment, research efforts are needed to compre-

hensively detect and understand irAEs.

Materials and methods: We manually extracted and standardized irAEs from The U.S Food and Drug Adminis-

tration (FDA) drug labels for six FDA-approved ICIs. We compared irAE profile similarities among ICIs and 1507

FDA-approved non-ICI drugs. We investigated how irAEs have differential effects on human organs by classify-

ing irAEs based on their targeted organ systems. Finally, we identified broad-spectrum (nontarget-specific) and

narrow-spectrum (target-specific) irAEs.

Results: A total of 893 irAEs were extracted. 31.4% irAEs were shared among ICIs as compared to the 8.0% be-

tween ICIs and non-ICI drugs. irAEs were resulted from both on- and off-target effects: irAE profiles were more

similar for ICIs with same target than different targets, demonstrating the on-target effects; irAE profile similar-

ity for ICIs with the same target is less than 50%, demonstrating unknown off-target effects. ICIs significantly tar-

get many organ systems, including endocrine system (3.4-fold enrichment), metabolism (3.7-fold enrichment),

immune system (3.6-fold enrichment), and autoimmune system (4.8-fold enrichment). We identified 21 broad-

spectrum irAEs shared among all ICIs, 20 irAEs specific for PD-L1/PD-1 inhibition, and 28 irAEs specific for

CTLA-4 inhibition.

Discussion and conclusion: Our study presents the first effort toward building a standardized database of irAEs.

The extracted irAEs can serve as the gold standard for automatic irAE extractions from other data resources

and set a foundation to understand biological mechanisms of irAEs.
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INTRODUCTION

Paradigm-shifting checkpoint inhibition immunotherapies have

transformed outcomes for patients with melanoma and other

metastatic cancers.1 Immune checkpoint inhibitors (ICIs) kill tumor

cells by targeting immunosuppressive molecules expressed on

immune cells, including cytotoxic T-lymphocyte-associated antigen

4 (CTLA-4), programmed cell death protein (PD-1), and its ligand

PD-L1.2 Currently there are six FDA-approved ICIs that target

CTLA-4 (ipilimumab), PD-L1 (atezolizumab, avelumab, and durva-

lumab), and PD-1 (nivolumab and pembrolizumab).3 Many others

are being actively tested in thousands of clinical trials.4 ICIs are

promising new generation of cancer treatments; however, they are
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expensive and often associated with immunetherapy-related adverse

events (irAEs) across organ systems, ranging from mild to severe

and life threatening5 (Table 1).

The population of cancer patient taking ICIs is large and fast

growing8; however, the biological mechanisms by which ICIs exert

their adverse effects on different organs are not well-understood. To

ensure safe personalized cancer treatment, research efforts are

needed to comprehensively curate, characterize, and understand the

biological basis of irAEs. The knowledge of irAEs are buried in dif-

ferent resources in different format, including The U.S Food and

Drug Administration (FDA) drug labels, published biomedical litera-

ture, electronic patient health records (EHRs), FDA postmarket

drug safety surveillance system (FAERS), among others. Currently,

there exist no structured data resources of irAEs. Side Effect Re-

source (SIDER) is a structured database of drug-side effect associa-

tions extracted from FDA drug labels using text mining techniques.9

However, the most updated version of SIDER (SIDER4.1) contains

none of the FDA-approved ICIs. Our extensive prior works in devel-

oping natural language processing and text mining techniques to ex-

tract drug-side effect (SE) relationships from free-text documents

demonstrated that automatic drug-SE relationship extractions are

challenging and often have limited precision and recall.10–17

In this study, we manually extracted irAEs for six FDA-approved

ICIs from their FDA drug labels, standardized and mapped the

extracted terms to the Medical Dictionary for Regulatory Activities

(MedDRA), a widely used terminology for encoding drug side

effects,18 and performed comparative analysis of extracted irAE pro-

files. Our goals are 3-fold. First, the manually irAEs can serve as the

gold standard for automatic irAE extractions from other data

resources such as biomedical literature, EHRs, and FAERS. Second,

the large number of irAEs extracted from FDA drug labels can ad-

vance our knowledge concerning the scope of irAEs in cancer

patients. Third, the extracted irAEs, when combined with vast

amounts of genetic and genomics data of drugs and diseases, can set

the foundation to develop computational approaches to understand bi-

ological mechanisms that contribute to irAEs. To the best our knowl-

edge, our study presents the first effort to build a highly accurate,

standardized database of irAEs associated with ICIs and to perform

comparative analysis to characterize and understand extracted irAEs.

METHODS

Manual extraction of irAEs from FDA drug labels and

mapping them to MedDRA preferred terms
Extract irAEs from FDA drug labels

Currently there are six FDA-approved ICIs: atezolizumab (PD-L1

inhibitor), avelumab (PD-L1 inhibitor), durvalumab (PD-L1 inhibi-

tor), ipilimumab (CTLA-4 inhibitor), nivolumab (PD-1 inhibitor),

and pembrolizumab (PD-1 inhibitor).3 For each drug, we obtained its

drug label from DailyMed7 (data accessed in October 2017).

DailyMed is the official provider of FDA label information (package

inserts) and provides trustworthy, comprehensive, and up-to-date in-

formation about marketed drugs in the United States. We manually

extracted adverse reactions from the following sections: “BOXED

WARNING” (if applicable), “WARNINGS AND PRECAUTIONS,”

and “ADVERSE REACTIONS.” Adverse reaction information from

both free text and embedded tables were manually extracted.

Mapping and standardization

We then mapped extracted irAE terms to terms in MedDRA, an in-

ternational medical terminology of drug side effects used by FDA

and other regulatory authorities in the pharmaceutical industry dur-

ing the regulatory process.18 The most updated version of MedDRA

includes 70 000 “Lowest Level Terms” (LLTs) and each LLT is

linked to one unique “Preferred Terms” (PTs). During our mapping

process, we found that the majority (95%) of extracted irAE terms

could be mapped to LLT terms. We then unified all mapped LLT

terms to their PTs. For example, the LLTs “fraility,” “energy

decreased,” “weakness,” “debility,” “loss of energy,” and “physical

deconditioning” were mapped to the single PT term “asthenia.”

Calculate pairwise AE profile similarities among six ICIs

and 1507 FDA-approved non-ICI drugs
We calculated the pairwise irAE profile similarities among ICIs us-

ing extracted irAEs. We also calculated the similarities between ICIs

and 1507 FDA-approved drugs using extracted irAEs and drug-AE

associations from SIDER.9 Currently, SIDER contains 167 411

drug-AE pairs (149 159 drug-PT pairs) for 1507 drugs and 6088

AEs (4231 PTs) (data accessed in 10/2017). Note that even the most

updated version SIDER4.1 does not contain any of the six FDA-

approved ICIs. We used the 149 159 drug-PT pairs to construct AE

profiles for 1507 FDA-approved drugs. We used the Jaccard similar-

ity coefficient19 for comparing the similarity of AE profiles of any

two drugs. The Jaccard similarity coefficient of two AE profiles is

defined as the size of the intersection divided by the size of the union

of two AE profiles: JðA;BÞ ¼ jA\Bj
jA[Bj ¼

jA\Bj
jAjþjBj�jA\Bj, where A and B are

sets of AEs associated with drug A and drug B, respectively. For ex-

ample, ipilimumab is associated with 100 AEs, and nivolumab is asso-

ciated with 208 AEs. The number of overlapping terms between these

two drugs is 57, and the Jaccard similarity is 0.229 [57/(10 057)].

Classify extracted irAEs based on targeted organ

systems and perform class enrichment analysis
To understand which organ systems were significantly affected by

ICIs, we classified irAEs based on MedDRA classification scheme

[18]. The MedDRA classification system is organized by the System

Organ Classes (SOC), divided into High-Level Group Terms

Table 1. Six FDA-approved immune checkpoint inhibitors

Name Target First approval indication Year Cost/year irAEs

Atezolizumab PD-L1 Non-small cell lung cancer 2016 $150 000 Pneumonitis, endocrinopathy, myocarditis, hepatitis, colitis

Avelumab Merkel cell carcinoma 2017 $156 000 Pneumonitis, hepatitis, colitis, endocrinopathy, nephritis, arthritis

Durvalumab Urothelial carcinoma 2017 $180 000 Hepatitis, dermatitis, endocrinopathy, colitis, pneumonitis

Ipilimumab CTLA-4 Melanoma 2011 $158 252 Enterocolitis, hepatitis, dermatitis, neuropathy, endocrinopathy

Nivolumab PD-1 Melanoma 2014 $103 220 Encephalitis, pneumonitis, colitis, hepatitis, endocrinopathy, nephritis

Pembrolizumab melanoma 2014 $150 000 Pneumonitis, colitis, hepatitis, nephritis, encephalitis, endocrinopathy

Information were manually extracted from web-search for authoritative websites including Drugs.com6 and DailyMed7
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(HLGT), High-Level Terms (HLT), Preferred Terms (PT), and

finally into LLT. We classified extracted irAEs into SOC. For in-

stance, the 208 extracted irAEs for nivolumab were classified into

21 SOC classes, including “immune system,” “skin,” “metabolism,”

and “endocrine.” For each SOC class, we assessed its probability of

being associated with a ICI (or the set of irAEs associated with the

ICI) as compared to its probability of being associated with the same

number of randomly selected AEs. The random process was re-

peated 1000 times, and a t-test was used to assess the statistical

significance. For example, among the 21 SOC classes associated

with nivolumab, 9 were significantly enriched, including 4-fold en-

richment for “immune system.” We then performed finer-grained

classification based on the next-level HLT classification. For ex-

ample, the 208 irAEs for nivolumab were classified into 87 HLT

classes, including “autoimmune diseases,” “thyroid gland disor-

ders,” and “heart failures.” Among the 87 HLT classes, 70 were

significantly enriched, including 4.34-fold enrichment for the class

“autoimmune disorders” and 5.3-fold enrichment for the class

“thyroid gland disorders.”

Identify broad-spectrum (nontarget-specific) and

narrow-spectrum (target-specific) irAEs
To understand the relationships between irAEs and genetic targets of

immune checkpoint inhibition, we identified irAEs that were shared

among all six ICIs. We then identified target-specific irAEs for PD-

L1/PD-1 inhibition and for CTLA-4 inhibition. The irAEs unique for

PD-L1/PD-1 are irAES that were associated with all PD-L1/PD-1

inhibitors (atezolizumab, avelumab, durvalumab, nivolumab, pem-

brolizumab), but not with CTLA-4 inhibitor (ipilimumab). Similarly,

we identified irAEs specific for CTLA-4, which were irAEs associated

with CTLA-4 inhibitor but absent from PD-L1/PD-1 inhibitors.

RESULTS

Summary of extracted irAEs for six FDA-approved ICIs
We manually extracted irAEs from FDA drug labels and mapped

extracted irAEs to unique preferred terms (PTs) based on the Med-

DRA terminology. As shown in Table 2, the majority (95%-96%)

of irAE terms extracted from FDA drug labels can mapped to terms

from MedDRA. The number of irAEs for six ICIs ranges from 100

for ipilimumab to 208 for nivolumab.

The numbers of irAEs were not necessary correlated with the

year the drugs were first approved. For example, ipilimumab was

first approved in 2011 and was associated with 100 irAEs. Nivolu-

mab was first approved in 2014 and was associated with 208 irAEs.

Drugs with the same genetic targets tend to have similar numbers of

irAEs as compared to drugs targeting different targets. The number

of irAEs for three PD-L1 inhibitors ranges from 108 to 133, the

number of irAEs for the two PD-1 inhibitors ranges from 191 to

208, and the number of irAEs for the CTLA-4 inhibitor is 100. The

fact that ICIs with the same targets have similar number of irAEs

than ICIs with different targets, indicates that certain irAEs may be

caused by on-target effects of ICIs.

Comparative analysis of irAE profiles
irAEs associated with PD-L1 inhibitors

We compared the pairwise similarities of irAE profiles between PD-

L1 inhibitors (atezolizumab, avelumab and durvalumab) and others

drugs (other ICIs and 1507 FDA-approved drugs). As shown in

Figure 1, PD-L1 inhibitors had more similar irAE profiles to other

PD-L1 or PD-1 inhibitors than CTLA-4 inhibitor (ipilimumab). For

example, the irAE profile similarity of atezolizumab is 0.43 to dur-

valumab (PD-L1 inhibitor), 0.21 to ipilimumab (CTLA-4 inhibitor)

Figure 1. Pairwise irAE profile similarities between PD-L1 inhibitors (atezolizu-

mab, avelumab, and durvalumab) and other drugs including 5 ICIs and 1507

FDA-approved non-ICI drugs (“All FDA-approved”). PD-L1 inhibitors (blue),

PD-1 inhibitors (green), CTLA-4 inhibitor (orange), and other drugs (grey).

Table 2. Extracted irAEs for six FDA-approved immune checkpoint

inhibitors

Name Target Total irAEs

Mapped

irAEs

Mapping

rate (%)

Atezolizumab PD-L1 124 119 96.0

Avelumab 133 127 95.5

Durvalumab 108 103 95.4

Ipilimumab CTLA-4 100 95 95.0

Nivolumab PD-1 208 198 95.2

Pembrolizumab 191 182 95.3
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and 0.28 to nivolumab (PD-1 inhibitor). In addition, the similarities

between PD-L1 inhibitors and other ICIs are significantly higher

(ranging from 0.23 to 0.43) than those for 1507 FDA-approved

non-ICI drugs (ranging from 0.06 to 0.09). However, the similarity

among three PD-L1 inhibitors is not perfect (ranging from 0.36 to

0.43). Several explanations are possible for the imperfect similarity.

First, the irAE profiles of ICIs may depend on the patient disease

characteristics. These three PD-L1 inhibitors were approved to treat

different cancer patients: atezolizumab for NSCLC, avelumab for

metastatic Merkel cell carcinoma, and durvalumab for locally ad-

vanced or metastatic urothelial carcinoma. Second, cancer patient

population on PD-L1 inhibitors may have different demographics,

disease comorbidities, co-occurrent medications, among others.

Third, not all irAEs have been captured in FDA drug labels and

efforts are needed to extract more complete irAEs from other data

resources such as published literature, patient electronic health

records, and FDA postmarket surveillance system. Fourth, although

these three ICIs have the same genetic on-target PD-L1, they may

have different off-targets and some irAEs may be caused by drug’s

off-target effects.

irAEs associated with CTLA-4 inhibitor

The similarity between ipilimumab, a CTLA-4 inhibitor, and other

ICIs ranges from 0.2 to 0.3 (Figure 2), which is lower than the simi-

larities among the PD-L1/PD-1 inhibitors (ranging from 0.3 to 0.42)

(Figure 1). This result indicates that some irAEs are caused by drug’s

on-target effects (CTLA-4 or PD-L1/PD-1). The average similarity

between ipilimumab and 1507 FDA-approved non-ICI drugs is

0.072, significantly lower than those among ICIs.

irAEs associated with PD-1 inhibitors

Pembrolizumab and nivolumab are PD-1 inhibitors. The irAE pro-

file of PD-1 inhibitors are more similar to other PD-1 or PD-L1

inhibitors (ranging from 0.28 to 0.38) than to ipilimumab (ranging

from 0.19 to 0.22) (Figure 3). The average similarity between PD-1

Figure 2. Pairwise irAE profile similarities between ipilimumab, the CTLA-4 inhibitor, and other drugs, including 5 ICIs and 1507 FDA-approved non-ICI drugs (“All

FDA-approved”). PD-L1 inhibitors (blue), PD-1 inhibitors (green), CTLA-4 inhibitor (orange), and other drugs (grey).

Figure 3. Pairwise irAE profile similarities between PD-1 inhibitors (pembrolizumab, nivolumab) and other drugs including 5 ICIs and 1507 FDA-approved non-ICI

drugs (“All FDA-approved”).
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inhibitors and 1507 FDA-approved non-ICI drugs is 0.08. Intrigu-

ingly, both pembrolizumab and nivolumab were first approved in

the same year of 2014 for the treatment of advanced melanoma;

however, their irAE profile similarity is only 0.36, suggesting that

the majority of irAEs were caused by unknown off-targets of PD-1

inhibitors. The extracted irAEs when combined with existing genetic

and genomic databases will set the foundation to develop data-

driven computational approaches to understand both on- and off-

target effects of ICIs.

ICIs target a wide range of body systems
We investigated which body systems were significantly targeted by

ICIs. For each ICI, we classified its associated irAEs based on organ

systems (SOC groups in MedDRA) and performed enrichment anal-

ysis to examine which categories of irAEs were significantly

enriched. For example, the 100 irAEs associated with ipilimumab

were classified into 23 SOC groups, among which 11 groups were

significantly enriched, including 6-fold enrichment for the class

“immune system disorders” (eg “autoimmune hepatitis,”

“autoimmune thyroiditis,” “Guillain-Barre syndrome,” and

“myasthenia gravis”). Figure 4 shows top body systems enriched for

all six ICIs. Our analysis showed that ICIs significantly targeted a

wide range of body systems, including “endocrine system,”

“immune system,” and “metabolism.”

We performed finer-grained classification based on the next-

level HLT classes. Figure 5 shows the enrichments of three immune-

related subclasses (“allergic conditions,” “autoimmune disorders,”

and “immune disorders”). For example, the 208 irAEs associated

with nivolumab were classified into 87 HLT classes, including

“autoimmune diseases,” “thyroid gland disorders,” and “heart fail-

ures.” Among the 87 HLT classes, 70 were significantly enriched,

including the class “autoimmune disorders” (4.34-fold enrichment)

and “thyroid gland disorders” (5.3-fold enrichment). Interestingly,

ipilimumab was associated with significantly more “autoimmune

diseases” (8.5-fold enrichment) and “immune disorders” (7.5-fold

enrichment) as compared to other ICIs.

Broad-spectrum (nontarget-specific) and narrow-

spectrum (target-specific) irAEs
To understand the relationships between irAEs and immune check-

point inhibition targets, we investigated irAEs shared among all

ICIs. Table 3 shows 21 common irAEs. These shared irAEs may be

caused by the class effects of immune checkpoint inhibition. We

then identified target-specific irAEs for PD-L1/PD-1 inhibition and

for CTLA-4 inhibition. A total of 20 irAEs are unique for PD-L1/

PD-1 inhibitors and 28 were unique for CTLA-4 inhibitor (Table 4).

For example, Type 1 diabetes was associated with all five PD-L1/

PD-1 inhibitors, but not associated with ipilimumab, indicating that

PD-L1/PD-1 inhibition but not CTLA-4 inhibition may be involved

in the disease mechanisms of Type 1 diabetes. Note that our current

analysis is based on irAEs reported in FDA drug labels. As more

complete irAEs will be reported in FDA drug labels or other data

resources, the lists of common or specific irAEs may change.

DISCUSSION AND CONCLUSION

In this study, we manually extracted irAEs for six FDA-approved

ICIs from FDA drug labels, performed comparative analysis of irAE

profiles among ICIs and 1506 FDA-approved drugs, and investi-

gated which organ systems were significantly targeted by ICIs.

Figure 4. Enriched irAEs classes based on body systems. irAEs were classi-

fied based on MedDRA SOC-level classification.

Figure 5. Immune-related subclasses of irAEs significantly enriched for

six ICIs. Immune-related AEs were classified based on MedDRA HLT-level

classification.

Table 3. 21 irAEs that are shared among all six ICIs

AEs shared among six ICIs

Abdominal pain Abortion Adrenal

insufficiency

Alanine

aminotransferase

Aspartate

aminotransferase

Asthenia

Blood alkaline

phosphatase

Colitis Death

Decreased appetite Diarrhea Fatigue

Hepatitis Hyperthyroidism Hypophysitis

Hypothyroidism Infusion reaction Nausea

Pneumonitis Pyrexia Rash
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The extracted irAEs can serve as the gold standard to evaluate auto-

matic irAE extractions from other data resources and set a founda-

tion to develop computational approaches to understand biological

mechanisms of irAEs. To the best our knowledge, our study presents

the first effort towards building a highly accurate, standardized irAE

data resource and performed comparative analysis to characterize

and understanding extracted irAEs. We have made the data publicly

available at: http://nlp.case.edu/public/data/irAEs_FDA.

Future efforts are needed for comprehensively characterizing and

understanding irAEs in cancer patients. First, it will be necessary to

extract irAEs from other data resources, such as published biomedi-

cal literature, clinical trial reports, FDA postmarket drug safety sur-

veillance systems, patient electronic health records, among others. It

is known that FDA drug labels only capture a small portion of drug

side effects.10,16,20 To extract irAEs from other data resources,

which are in much large scale than FDA drug labels, automatic

approaches such as natural language processing, data mining, and

machine learning techniques will be necessary.

Second, not all patients taking ICIs will develop the same irAEs,

therefore it is necessary to extract patient-level irAEs, which may be

affected by patient genetics, disease characteristics, demographics,

co-occurrent drugs, among others. These patient-level irAEs are im-

portant for tailored personalized ICI treatments and irAE manage-

ment. Unlike FDA drug labels, many other data resources contain

rich information of patient population information, such as patient

electronic health records, FDA-post-market surveillance system and

published biomedical literature.

Third, our study demonstrated that the majority of irAEs were not

caused by drugs’ on-target effects, therefore it is important to identify

and understanding how off-targets of ICIs are involved in irAEs.
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