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Quantum computation has achieved a tremendous success during the last decades. In this paper, we
investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in
image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent
nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption
algorithm. Simulations and performance comparisons show that the proposal is secure enough for image
encryption and outperforms prior works. It also opens the door towards introducing quantum computation
into image encryption and promotes the convergence between quantum computation and image processing.

W
ith the advancements of Internet and multimedia communication, the exchange of multimedia data
over the Internet plays an important role in modern society in which images are widely used as a good
information carrier. Image content security receives more and more attention. Generally encryption

can effectively ensure the secure transmission of images through public channels. Many image encryption
algorithms have been proposed in recent years1–27.

There are mainly two branches of image encryption: image encryption on a quantum computer and image
encryption on a classical computer. As for the former, some works have been proposed4,27. Although there are
some advanced proposals for quantum networks28, the practical and useful quantum network, even quantum
computer cannot be realized in the near future. So in this paper, we focus on image encryption on a classical
computer.

Due to the attractive features such as high sensitivity to initial conditions, unpredictability, pseudo-random-
ness and ergodicity, chaotic maps are employed for image encryption. In 1989, Matthews first proposed a chaos-
based encryption algorithm5. Since then, a variety of chaos-based image encryption algorithms have been
proposed2,6–13. Unfortunately, most chaotic systems are unstable due to the periodicity of the chaotic mapping29.
Image encryption systems based on such maps are prone to attacks6,7.

Another important system, optical systems have been developed extensively for image encryption due to the
distinct properties of processing 2D complex data with parallelism and high speed. Optics-based image encryp-
tion started from the double random-phase encoding (DRPE) algorithm14. Unfortunately, the DRPE method was
broken by various attack strategies15,16,17. Nowadays, most optical image encryption systems are far satisfactory
due to some defects like the huge size, poor flexibility and stability for optical elements used in the free space, and
the difficulty of implementation. So, it should be used cautiously in practice.

As we know, the security of an image encryption algorithm depends on the design of the details of the
algorithm, in particular the design of the key generation rule. A good key generator is of vital importance to a
desirable image encryption algorithm. Obviously, the security of chaos-based image encryption algorithms lies
heavily in the chaotic systems’ features. However, existing chaotic systems are not perfect, i.e., the instability and
periodicity cause most chaos-based image encryption algorithms to be prone to various attacks6,7.

It is natural to ask whether there exist other chaotic systems with more excellent cryptographic performances.
Inspired by the above reasons, we are motivated to seek novel chaotic functions and further construct image
encryption algorithms based on such chaotic functions.

Quantum computation is a rapidly growing field and lots of breakthroughs have been achieved during the past
decades. As a universal quantum computation model, quantum walks (QW) has been developed as a useful tool
for solving various problems, including element distinctness30, triangle finding31, and data clustering32 and so on.
Furthermore, the importance of classical random walks in many fields like physics, biology, computer science,
finance, etc., implies the possibility that its quantum analog, namely, QW, could be a useful tool for many future
applications.
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In this paper, we investigate the potential application of QW in
image encryption and find that QW can serve as an excellent key
generator thanks to its inherent unpredictably ’chaotic’ nonlinear
dynamic behavior. Further, we construct a novel QW-based image
encryption algorithm. Compared with the previous chaos-based
image encryption works, our QW-based proposal has not only the
same merits as chaos’ systems like high sensitivity to initial values
and system parameters, unpredictability, pseudo-randomness, but
also the advantages like stability and non-periodicity. The infinite
possibilities of the coin states make QW own an ability of producing a
theoretically infinite key space to resist brute-force attacks.
Numerical simulations show that the proposal is secure enough for
image encryption. It also opens the door towards introducing
quantum computation into image encryption and promotes the con-
vergence between quantum computation and image processing.

Results
The chaotic behavior of Quantum walks. There are two types of
QWs, continuous33 and discrete ones, and several studies have
highlighted how the properties and dynamics of QWs differ from
their classical counterparts34–36. The basic discrete QW includes two
quantum systems: walker and coin. The state of the walker-coin
system is denoted by a vector in the Hilbert space Ht 5 HpflHc,
where the subscripts p and c stand for walker and coin, respectively.
The motion of the walk is conditioned by the coin state via a
conditional shift operator

Ŝ~
X

x

(jxz1,0ihx,0jzjx{1,1ihx,1j), ð1Þ

where the summation symbol denotes the sum over all possible
positions. The evolution of the total quantum system can be
implemented by repeating the sequence of the coin flipping
operator and the conditional shift operator in equation (1) step by
step (so-called discrete time), expressed by

Û~Ŝ Î6Ĉ
� �

, ð2Þ

where Î is the identity operator of the walker and Ĉ is the flipping
operator applied to the coin state. Hence the final state jyær after r
steps is expressed by

jyir~(Û)rjyiinitial~
X

x

X
v

lx,vjx,vi, ð3Þ

and the probability of locating the walker at position x after r steps is

P(x,r)~
X

v[f0,1g
jhx,vj(Û)rjyiinitialj

2, ð4Þ

where jyæinitial is the initial state of the total quantum system.
For multi-walker, multi-coin discrete QW, the final state

jyir~ U
^
jyi0 after r steps is expressed by

jyir~( U
^

)r jyi0~
X

x1

X
v1

X
x2

X
v2

� � �
X

xn

X
vn

lx1 x2 ���xn ,v1 v2 ���vn jx1x2 � � � xn,v1v2 � � � vni, ð5Þ

and the probability of locating the n walkers at position x1,x2,…,xn

after r steps is

P(x1x2 � � � xn,r)~
X

v1 ,v2 ,���,vn[f0,1g
jhx1x2 � � � xn,v1v2 � � � vnj( U

^
)rjyi0j

2
, ð6Þ

where jyæ0 is the initial state of the total n-walker, n-coin quantum
system.

It can be seen that the resulting probability distribution in equa-
tion (6) is the sum of squares of the norms of amplitudes so that there
exists a non-linearity map between the initial state and the resulting
probability distribution. The resulting probability distribution is not
only of high sensitivity to initial states, unpredictability, pseudo-

randomness, but also of stability and non-periodicity. And different
coin states will produce different probability distributions. The infi-
nite possibilities of the coin states make QW own an ability of pro-
ducing a theoretically infinite key space to resist brute-force attacks,
which underlies the image encryption.

Image encryption algorithm based on quantum walks. To demon-
strate QW’s utility as an excellent key generator, we further construct
a novel image encryption algorithm based on the one-dimensional
two-particle discrete-time QW on a circle. The algorithm includes
three phases: (i) the generation of the key sequences using the one-
dimensional two-particle discrete-time QW on a circle, (ii) the image
encryption phase, and (iii) the image decryption phase.

Generation of the key sequences using the one-dimensional two-par-
ticle discrete-time QW on a circle.

(i) Choose the parameters (n, (a, b, x, d)), r, h), and run the one-
dimensional two-particle discrete QW on a circle of n nodes to
generate the corresponding probability matrix with size n 3 n.
Here a, b, x, d are the amplitudes of the initial coin state ju,tæ 5
(aj00æ 1 bj01æ 1 xj10æ 1 dj11æ). r is the step number and h is a
parameter of the quantum coin operator

Ĉ~
cos h sin h

sin h { cos h

� �
6

cos h sin h

sin h { cos h

� �
:h[f0,2pg ð7Þ

(ii) Resize the resulting probability matrix in terms of the size of the
original image and multiply all values in the resulting probabil-
ity matrix by 108 modulo 256 to form a random key sequence K
5 {k1,k2,…,kM 3 N}, where M 3 N is the size of the original
image I.

Image encryption procedure.

(i) Convert the original image I into a vector P 5 {p1,p2,…,
pM 3 N}, and then calculate the sum of the original image
pixels according to equation (8):

sum pixels~
XM|N

i~1

Pi: ð8Þ

(ii) Calculate ci (i 5 1,2,…,M 3 N) by equation (9):

ci~pi+ mod ci{1zki,256ð Þ+mod

floor
sum pixels{sum pixels(i)

2564
|ki|108

� �
,256

� �
,
ð9Þ

where c0 5 127. And the cipher image is denoted as C 5

{c1,c2,…,cM3 N}.
(iii) Select M and N values from the beginning and the end of the

key sequence K, respectively, and get two sequences X 5
{X1,X2,…,XM} and Y 5 {Y1,Y2,…,YN}, respectively.

(iv) Order X and Y in an ascending order, respectively, and get
two new sequences IX~fIX1 ,IX2 , � � � ,IXMg and IY~fIY1 ,IY2 ,
� � � ,IYNg.

(v) Permute the cipher image C in terms of IX and IY, respectively,
and get the final encrypted image C

0
, i.e.,

Ti~CIX , i~1,2, . . . ,M,

Ci
0
~TIY , i~1,2, . . . ,N: ð10Þ

Image decryption procedure. The decryption process is the reverse of
the encryption one.
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(i) Use the same way above to generate IX and IY, and decrypt the
cipher image C9 into the cipher image C by using IX and IY.

(ii) Generate the random key sequence K 5 {k1,k2,…,kM3 N} with
the same parameters (n, (a, b, x, d), r, h).

(iii) Recover the image pixels P 5 {p1,p2,…pM 3 N}from C 5

{c1,c2,…,cM3 N} by equations (11) and (12):

sum pixels~sum pixelszpi, ð11Þ

pi~ci+ mod ci{1zki,256ð Þ+mod

floor
sum pixels

2564
|ki|108

� �
,256

� �
,

ð12Þ

where i is from M 3 N to 1 and the initial value of sum_pixels
is 0.

(iv) Reshape P 5 {p1,p2,…,pM3 N} into an image with size M 3 N,
and get the recovered image.

Experimental simulations and performance analyses. Simulations.
Experiments are performed on a laptop with Intel(R) Core(TM) i3-
2370M CPU 2.40 GHz 4 GB RAM running on Windows 7
professional equipped with the MATLAB R2012a environment.
Here, we selected ten 256 3 256 gray-scale images taken by Q.-X.
Pan as the original images (see Supplementary Figs. S1–S10 online).
And we chose the initial key parameters (n 5 5, (a 5 1/2, b 5 1/2,
x 5 1/2, d 5 1/2), r 5 30, h 5 p/3). Using QW as the key generator
and the proposed image encryption algorithm, we obtained the
cipher images of the ten test images.

From Supplementary Figs. S1–S10 online, we showed that the
encrypted image is smoother and more uniform than the original
image. Hence, it does not provide any hint for attackers by applying
statistical attacks on the proposed image encryption scheme.

Security analyses of the QW-based image encryption algorithm. To
analyze the security of the proposed image encryption algorithm, we
did from two aspects. On the one hand, we analyzed the statistical
properties of the QW-based key generator as a pseudorandom num-
ber generator (PRNG). On the other hand, we analyzed the statistical
properties of cipher images. To analyze the QW-based PRNG, two
main quantifiers are adopted, i.e., (i) quantifiers based on informa-
tion theory37–39, (ii) quantifiers based on recurrence plots40,41.

Statistical complexity measure. Complexity is a measure of off-equi-
librium ‘order’. Statistical complexity measures (SCM) were pro-
posed as quantifiers of the degree of physical structure in a
signal37,42,43. They are null for total random processes. The intensive
SCM (CJ[P]) quantifies not only randomness but also the presence of
correlational structures43,44 of the dynamical system and can be used
to study the intricate structures hidden in the dynamics. The SCM
CJ[P] is defined as44:

CJ ½P�~QJ ½P,Pe�:HS½P�, ð13Þ

where the normalized entropic measure HS[P] 5 S[P]/Smax is assoc-
iated with the probability distribution P,with Smax 5 S[Pe] (0 # HS #

1) for the equilibrium distribution Pe and S[?] is the Shannon
entropy. The disequilibrium QJ is defined in terms of the Jensen-
Shannon divergence38,44 by

QJ ½P,Pe�~Q0fS½(PzPe)=2�{S½P�=2{S½Pe�=2g, ð14Þ

with Q0 being the normalization constant (0 # QJ # 1). Thus, the
disequilibrium QJ is an intensive quantity. Following the methodo-
logy proposed by Bandt and Pompe45, the normalized entropy HS

and the intensive SCM CJ as functions of the number of 8 bits and 16
bits-words are shown in Figs. 1(a) and 1(b) respectively. From Fig. 1,
when the number of words of the analyzed sequence increases, the

statistical complexity and the normalized Shannon entropy tend to 0
and 1 respectively. It can be concluded that, the randomness of the
proposed QW-based PRNG is successfully verified.

Recurrence plots. Recurrence is a fundamental property of dynamical
systems, which can be exploited to characterize the system’s behavior
in phase space. In 1987, Eckmann et al. introduced a powerful tool for
visualization and analysis of recurrences called recurrence plot
(RP)40. To visualize the recurrences of states of a dynamical system,

the RP of a trajectory x
?

i
[<d can be formally expressed by the matrix

Ri,j(e)~H e{ x
?

i{x
?

j

��� ���	 

, i,j~1, � � � ,N, ð15Þ

where N is the number of measured points x
?

i, e is a threshold dis-
tance, H (?) is the Heaviside function (i.e. H (x) 5 0, if x , 0, and H
(x) 5 1 otherwise) and :k k is a norm.

RPs with different r exhibit visually the recurrences of the QW-
based PRNG with an embedding dimension m 5 4 and the delay t5

1 (see Supplementary Fig. S11 online). It is shown that the QW-based
PRNG causes a rather homogeneous RP with numerous single points
and some short, diagonal or vertical lines.

Because the visual impact produced by the RP is insufficient to
demonstrate the quality of the QW-based PRNG because of the
’small-scale’ structures41, several measures of complexity which
quantify the small scale structures in RPs, have been proposed46–48

and are known as recurrence quantification analysis (RQA). In this
paper, these measures based on the recurrence point density and the
diagonal and vertical line structures are considered.

Measures based on the recurrence density. The simplest measure of
the RQA is the recurrence rate (RR)

RR(e)~
1

N2

XN

i,j~1

Ri,j(e), ð16Þ

which is a measure of the density of recurrence points in the RP. In
the limit N R ‘, RR is the probability that a state recurs to its e-
neighbourhood in phase space. For PRNGs, the ideal value would be
RR 5 0. It is indicated that the values of the RR range from 0.004 to
0.007 for different r, which exhibits the good randomness of the QW-
based PRNG (see Supplementary Fig. S12 online).

Measures based on diagonal lines. The measures are related to the
histogram P(e,l) of the diagonal line lengths l, given by

P(e,l)~
XN

i,j~1

(1{Ri{1,j{1(e))(1{Rizl,jzl(e)) P
l{1

k~0
Rizk,jzk(e): ð17Þ

Supplementary Fig. S13 online demonstrates the histogram of the
diagonal line lengths of the RP in Supplementary Fig. S11 online with
r 5 50. It is shown that the diagonal line lengths are mainly very short
exhibiting the good randomness.

Processes with uncorrelated or weakly correlated and stochastic or
chaotic behaviors cause none or very short diagonals, whereas deter-
ministic processes cause longer diagonals and less single, isolated
recurrence points. Therefore, the ratio of recurrence points that form
diagonal structures (of at least length lmin) to all recurrence points

DET~

PN
l~lmin

lP(e,l)

PN
l~1

lP(e,l)

, ð18Þ

is introduced as a measure for determinism (or predictability) of the
system. The threshold lmin excludes the diagonal lines which are
formed by the tangential motion of the phase space trajectory.
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A diagonal line of length l means that a segment of the trajectory is
rather close during l time steps to another segment of the trajectory at
a different time; thus these lines are related to the divergence of the
trajectory segments. The average diagonal line length

L~

PN
l~lmin

lP(e,l)

PN
l~lmin

P(e,l)

, ð19Þ

is the average time that two segments of the trajectory are close to
each other, and can be interpreted as the mean prediction time.

Another RQA measure considers the length Lmax of the longest
diagonal line found in the RP,

Lmax~ max fligNl
i~1

� �
, ð20Þ

where Nl~
X

l~lmin

P(e,l) is the total number of diagonal lines. These

measures are related to the exponential divergence of the phase space
trajectory. The faster the trajectory segments diverge, the shorter are
the diagonal lines.

The measure entropy refers to the Shannon entropy of the prob-
ability p(l) 5 P(e,l)/Nl to find a diagonal line of exactly length l in the
RP, where Nl~

X
l§lmin

P(e,l) is the total number of diagonal lines.

ENTR~{
XN

l~lmin

p(l) ln p(l): ð21Þ

ENTR reflects the complexity of the RP in respect of the diagonal
lines, e.g. for uncorrelated noise the value of ENTR is rather small,
indicating its low complexity, as shown in Supplementary Fig. S14
online.

Measures based on vertical lines. The total number of the vertical lines
of the length v in the RP is then given by the histogram

P(v)~
XN

i,j~1

(1{Ri,j(e))(1{Ri,jzv(e)) P
v{1

k~0
Ri,jzk(e): ð22Þ

Supplementary Fig. S15 online shows the histogram of vertical line
lengths of the RP in Supplementary Fig. S11 online with the para-
meter r 5 50. It is shown that the vertical line lengths are mainly very
short exhibiting the good randomness.

Analogous to the definition of the determinism in equation (22),
the ratio between the recurrence points forming the vertical struc-
tures and the entire set of recurrence points can be computed,

LAM~

PN
v~vmin

vP(v)

PN
v~1

vP(v)

: ð23Þ

The computation of LAM is realized for those v that exceed a
minimal length vmin in order to decrease the influence of the tangen-
tial motion. LAM will decrease if the RP consists of more single
recurrence points than vertical structures.

The average length of vertical structures is given by

TT~

PN
v~vmin

vP(v)

PN
v~vmin

P(v)

, ð24Þ

and is called trapping time. TT estimates the mean time that the
system will abide at a specific state or how long the state will be
trapped.

Finally, the maximal length of the vertical lines in the RP

Vmax~ max fvlgNv
l~1

� �
, ð25Þ

can be defined, analogously to the standard measure Lmax (Nv is the
absolute number of vertical lines).

Figure 1 | (a) Normalized Shannon entropy. (b) Intensive statistical complexity measure. The normalized entropy HS and the intensive statistical

complexity measure CJ as functions of the number of 8 bits and 16 bits-words are shown in (a) and (b) respectively. When the number of words of the

analyzed sequence increases, the statistical complexity and the normalized Shannon entropy tend to 0 and 1 respectively. (see text in the section entitled

Results).
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Figs. 2,3 indicate the RQA measures, i.e., DET, Lmax, L, LAM, Vmax,
and TT for different r and demonstrate the good statistical properties
of the QW-based PRNG.

Degree of non-periodicity. In order to detect and study non-peri-
odicity in the QW-based PRNG, the scale index analysis (SIA) is
carried out which is introduced by Benı̀tez et al.49. The SIA method
is often used as a framework to enhance the general performance of
cryptosystems in designing new chaos-based cryptosystems and
PRNGs. For example, recently Akhshani et al. proposed a new
scheme for generating good PRNGs based on quantum logistic
map50. They used the SIA technique to assess the degree of non-
periodicity of the chaotic sequences of the quantum map.

The SIA technique is based on the continuous wavelet transform
(CWT) and the wavelet multi-resolution analysis51. To study non-
periodicity of the QW-based PRNG52, we assumed that the key
sequence f is compactly supported and is defined over a finite time
interval I 5 [a, b]. The CWT of f at time u and scale s is defined as51:

Wf (u,s) : ~hf ,yu,si~
ðz?

{?
f (t)y�u,s(t)dt, ð26Þ

and it provides the frequency components (or details) of f corres-
ponding to scale s and time t.

The scalogram of f is defined as follows:

f(s) : ~ Wf (u,s)k k~
ðz?

{?
Wf (u,s)j j2du

� �2

, ð27Þ

where f(s) is the energy of the CWT of f at scale s. The scalogram is a
useful tool for studying a signal, since it allows the detection of its
most representative scales or frequencies49,52. Also, the inner scalo-
gram of f at a scale s can be defined by:

finner(s) : ~ Wf (u,s)k kJ(s)~

ðd(s)

c(s)
Wf (u,s)j j2du

� �2

, ð28Þ

where J(s)~½c(s),d(s)�(I is the maximal subinterval in I for which
the support of yu,s is included in I for all u[J(s). As the length of J(s)
depends on the scale s, the values of the inner scalogram at different
scales cannot be compared. Therefore, the inner scalogram should be
normalized as follows49:

Figure 2 | Selected RQA measures: DET, Lmax, and L. (a) DET, (b) LAM, (c) L. DET, Lmax, and L change with different step number r are shown in (a), (b)

and (c) respectively. (see text in the section entitled Results).

Figure 3 | Selected RQA measures: LAM, Vmax, and TT. (a) TT, (b)Lmax, (c)Vmax. LAM, Vmax, and TT change with different step number r are shown in

(a), (b) and (c) respectively. (see text in the section entitled Results).
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f
�inner

(s)~
finner(s)

d(s){c(s)ð Þ
1
2

: ð29Þ

It is shown that the normalized inner scalogram can be a valuable
tool for detecting the non-periodicity of the signal, where a signal
with details at every scale is non-periodic (see Supplementary Fig.
S16 online).

The scale index of f in the scale interval [s0,s1] can be defined by:

iscale : ~
f(smin)

f(smax)
, ð30Þ

where smax is the smallest scale such that f(s) # f(smax) for all
s[½s0,s1�, and smin the smallest scale such that f(smin) # f(s) for all
s[½smax,s1�. Note that for compactly supported signals only the nor-
malized inner scalogram will be considered49. From its definition, the
scale index iscale meets 0 # iscale # 1 and it can be interpreted as a
measure of the degree of non-periodicity of the signal: the scale index
will be zero or close to zero for periodic sequences and close to one for
highly non-periodic sequences49. Fig. 4 shows the SIA of the QW-
based key sequence. It can be concluded that the best value of the
scale index is iscale < 0.9 and remains at this value for all h. Thus, the
key sequence in this state is highly non-periodic and it can be used for
any PRNG purposes.

Random tests for the key sequences. We used NIST SP800-22 to test
the randomness of the QW-based key sequences (see Supplementary
Table S1 online). Each test produces a P-value in [0, 1]. If the P-value
is higher than a preset thresholda, it means that the cipher image
passes the test. In our tests, we set a 5 0.01. The results of different
QW-based key sequences are all ’success’ in terms of the average of P-
value shown in the second column. Hence, our key generator passes
the NIST SP800-22 tests.

Information entropy analysis. The information entropy is often used
to measure the randomness of the cipher images. The entropy H(x)
of a message source m is given by

H(X)~{
XL{1

i~0

p(xi)log2p(xi), ð31Þ

where p(xi) represents the probability of the occurrence of symbol xi.
We compared the information entropy using our proposal and the
algorithms using hyper-chaotic system53,54 (see Supplementary Table
S2 online). In terms of the results, the proposed scheme is stable and
secure against entropy attack.

Randomness test for the cipher images. We used ten different cipher
images with size 1024 3 1024 because of the software NIST require-
ments for the magnitude 1000000 (see Supplementary Table S3
online). The results of ten different images are all ’success’, and we
get the average of P-value show in the second column. Hence, we can
judge that our proposed algorithm passes the NIST SP800-22 tests.

Further, we applied the most stringent test by TestU0155. As for
tests by TestU01, there are three different types of crush batteries:
SmallCrush, Crush and BigCrush. To test the randomness of the
cipher images, one should apply SmallCrush, Crush and BigCrush
test batteries. For each test, a P-value is calculated. If the P-value is
within the range [0.0001, 20.9999], it implies a success. Or it is
considered as a failure. According to Supplementary Table S4 online,
the proposed encryption system passes the TestU01 tests.

Speed performance analysis. Speed is an important factor for evalu-
ating the performance of an image encryption algorithm. For the
proposed encryption algorithm, we measured the time cost in the
running environment: Windows 7, Matlab R2012a, Intel(R)
Core(TM) i3-2370M CPU 2.40 GHz 4 GB RAM and the average

time cost for cipher images of size 256 3 256 is 0.1371721s or so.
Compared with prior image encryption works, our algorithm is not
so fast, which should be improved in our future work.

Key space analysis. A desirable image encryption scheme should have
a sufficiently large key space to resist brute-force attacks. The encryp-
tion key of our algorithm can be represented by (n, (a, b, x, d), r, h).
Although there is an infinite key space theoretically, because of finite
precision of digital computers, the key space actually turns out to be
finite. Considering that the calculation precision is 10214, the size of
key space for initial conditions and control parameters would be
roughly 2325, which is large enough for any encryption purposes
and is also large enough to resist all kinds of brute-force attacks.

Comparison with other image encryption techniques. Experimental
results of the proposed image encryption scheme will be compared
with three classes of image encryption techniques, i.e., the quantum
image encryption algorithm4, the DRPE optical image algorithm14,
the chaos-based image encryption algorithm56.

Correlation analysis. A desirable image encryption algorithm should
produce the cipher image with extremely low correlation between
adjacent pixels. We tested the correlation between 10000 pairs of
adjacent pixels (in horizontal, vertical and diagonal directions
respectively), and drew the correlation distribution of adjacent pixels
in the Arch image and its cipher image (see Supplementary Fig. S17
online). It is shown that the cipher image is quite random.

The correlation coefficients rxy of adjacent pixels can be defined by

rxy~
E((x{E(x))(y{E(y)))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D(x)D(y)
p , ð32Þ

where E(x) and D(x) are the expectation and variance of variable x,
respectively.

The average of the correlation coefficients rxy of adjacent pixels in
horizontal, vertical and diagonal directions respectively can be
defined as

Average(H,V ,D)~
HzVzD

3
, ð33Þ

Figure 4 | The scale index of the QW-based key sequence for different r.
The scale index of the QW-based key sequence change with different step

number r and h, the parameter of the quantum coin operator. Generally,

the more the scale index is close to one, the more non-periodic the key

sequence is. It can be found that the best value of the scale index is iscale <
0.9 and remains at this value for all h. (see text in the section entitled

Results).
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where H, V, and D are the correlation coefficients of adjacent pixels in
horizontal, vertical and diagonal directions respectively.

The comparisons between our algorithm and these three classes of
image encryption algorithms are shown in Supplementary Tables S5,
S6 and S7 online respectively. It is shown that our algorithm outper-
forms these three classes of image encryption algorithms in terms of
the correlation coefficients, the average and the value of Average
(H,V,D) and is secure against statistical attack.

Sensitivity analysis. The difference caused by a little change in the
plain image and the key can reflect the relationship between the
original image and the cipher image to some extent. In general,
two common performance measures are used to test the influence
of a little change in the key on the cipher image, i.e., the number of
pixels change rate (NPCR) and the unified average changing intensity
(UACI). NPCR is expressed by

NPCR~

Pm
i~1

Pn
j~1

D(i,j)

m|n
|100%, ð34Þ

where

D(i,j)~
1

0

�
c1(i,j)=c2(i,j)

otherwise
, ð35Þ

and c1 and c2 are two cipher images with size m 3 n.
UACI is defined by

UACI~
1

m|n

Pm
i~1

Pn
j~1

c1(i,j){c2(i,j)ð Þ

255

2
664

3
775|100%: ð36Þ

In our tests, we considered the influence of slightly different keys and
one pixel change on a 256-gray image with size 256 3 256, respect-
ively. Generally two kinds of sensitivity analyses should be made.
One is key sensitivity analysis and the other is plaintext sensitivity
analysis respectively. Next, we first made a key sensitivity analysis.

We first encrypted Arch image with the key (n 5 5, (a, b, x, d) 5

(1/2, 1/2, 1/2, 1/2), r 5 100, h 5 p/3) to obtain the cipher image in
Fig. 5(a), and then we encrypted Arch image by making a little
change with h 5 p/2.99999999 again and got the cipher image in
Fig. 5(b). We drew the differential image between Fig. 5(a) and
Fig. 5(b), i.e., Fig. 5(c). By calculation, we got the difference between
Figs. 5(a) and 5(b) is 99.6124267578125%, which implies the encryp-
tion process is quite sensitive to the encryption key. Moreover, the
NPCR and UACI between cipher images with slightly different keys
are calculated in the second and third columns of Supplementary
Table S8 online. It can be seen that the average of NPCR and UACI is

0.9965778100586 and 0.3357151989507, respectively, higher than
the one in Ref. 56. It implies that the encryption process is highly
sensitive to the encryption key.

To verify the high sensitivity to the decryption key, we first
decrypted the cipher image of Fig. 5(a) with the correct decryption
key to obtain the correct original image (see Fig. 5(d)), and then we
decrypted the cipher image of Fig. 5(a) again with the decryption key
with a little change of h 5 p/2.99999999 to obtain the image in
Fig. 5(e). We calculated out the difference between Fig. 5(d) and
Fig. 5(e) is 99.5590209960938%. Therefore, the decryption process
is also highly sensitive to the decryption key. To sum up, our algo-
rithm can provide a high key sensitivity.

Plaintext sensitivity means that a little change in the plaintext
image can cause a large change in the cipher image. Firstly, we
encrypted a plaintext image to generate a cipher image. Secondly,
we randomly selected a pixel in the same plaintext image to let its
pixel value plus one. Thirdly, we encrypted the modified plaintext
image by using the same encryption key to generate another
encrypted image. Finally, the NPCR and UACI between the two
resulting cipher images with only one pixel difference in their
respective original images were calculated in Supplementary Table
S8 online respectively. As shown in the fourth and fifth columns, we
can see that the average of NPCR is over 99.65% and that of UACI is
over 33.52%, which are higher than the ones in Ref. 56. This also
implies that our proposed scheme have a good ability to resist dif-
ferential attack.

Discussion
In this paper, we investigated the potential application of QW in
image encryption. It is found that QW can serve as an excellent
key generator thanks to its inherent nonlinear chaotic dynamic beha-
vior. Compared with previous works, our QW-based proposal has
the following features:

& It has not only the same merits as chaos’ systems like high sens-
itivity to initial values and system parameters, unpredictability,
pseudo-randomness, but also the different advantages like
stability and non-periodicity.

& The infinite possibilities of the coin states make the QW own an
ability of producing a theoretically infinite key space to resist
brute-force attacks.

& It also opens the door towards introducing quantum computation
into image encryption and promotes the convergence between
quantum computation and image processing.

Although our QW-based algorithm has some advantages over
other algorithms, our proposal also has some shortcomings in terms
of the encryption speed. That is, the encryption speed of the proposed
algorithm is not fast compared to other competitive algorithms. So

Figure 5 | Key sensitivity tests. (a) Arch image is encrypted with the key (n 5 5, (a, b, x, d) 5 (1/2, 1/2, 1/2, 1/2), r 5 100, h 5 p/3) to obtain the cipher

image in (a); (b) Arch image is encrypted by making a little change with h 5 p/2.99999999 again to get the cipher image in (b); (c) The differential image

between (a) and (b) is drawn in (c); (d) The cipher image of (a) is decrypted with the correct decryption key to obtain the correct original image in (d);

(e) The cipher image of (a) is decrypted again with the decryption key with a little change of h 5 p/2.99999999to obtain the image in (e). (see text

in the section entitled Results). We acknowledge Qing-Xiang Pan who took the Arch image in Supplementary Fig. S1(a) online and all figures in Fig. 5

were obtained by simulations using Matlab software by Qing-Xiang Pan.
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our future work will focus on the improvement of the proposed
algorithm.

Methods
One-dimensional two-particle discrete QW algorithm on a circle of n nodes. There
is a one-dimensional two-particle discrete QW on a circle of n nodes defined as
follows. We choose the quantum coin operators Ĉ1, Ĉ2 and an initial state of the total
quantum system

jyi0~jx,yi6jv1,v2i: ð37Þ

Here

jv1,v2i~ aj00izbj01izxj10izdj11ið Þ, ð38Þ

where jaj2 1 jbj2 1 jxj2 1 jdj2 5 1. We define Û1~ I6Ŝ1
� �

I6Ĉ1
� �

and

Û2~ I6Ŝ2
� �

I6Ĉ2
� �

. The difference between a line and a circle is that the circle has
only n nodes and is cyclical. The difference of walks on the line and on circles is that
the operators Ŝ1 and Ŝ2 of two-particle QW on circles becomes

Ŝ1~

j2,0ih1,0jzjn,1ih1,1j,
j1,0ihn,0jzjn{1,1ihn,1j,
jxz1,0ihx,0jzjx{1,1ihx,1j,

8><
>:

when

when

when

x~1;

x~n;

x=1,n:

ð39Þ

Here Ŝ2 is similar to Ŝ1.
Here we let

Ĉ1~Ĉ2~
cos h sin h

sin h { cos h

� �
: h[f0,2pg: ð40Þ

The initial value of the QW, i.e., (n, (a, b, x, d), r, h) are tunable parameters. By
running the one-dimensional two-particle discrete QW on a circle of n nodes, QW is
capable of producing chaotic behavior as the value of (n, (a, b, x, d), r, h) changes.
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