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Abstract

Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally

been based on parametric representations that were specifically developed for speech sig-

nals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination

capabilities of these features for ABSC could be enhanced by accounting for the vocal pro-

duction mechanisms of birds, and, in particular, the spectro-temporal structure of bird

sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific

information through the non-negative decomposition of bird sound spectrograms. It consists

of the following two different stages: short-time feature extraction and temporal feature inte-

gration. In the first stage, which aims at providing a better spectral representation of bird

sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-

like features (NMF_CC) are extracted by using a filter bank that is automatically learned by

means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectro-

grams. In the second method, the features are directly derived from the activation coeffi-

cients of the spectrogram decomposition as performed through NMF (H_CC). The second

stage summarizes the most relevant information contained in the short-time features by

computing several statistical measures over long segments. The experiments show that the

use of NMF_CC and H_CC in conjunction with temporal integration significantly improves

the performance of a Support Vector Machine (SVM)-based ABSC system with respect to

conventional MFCC.

Introduction

In recent years, the problem of automatically detecting and classifying different species of

birds using audio signals (bio-acoustics) has attracted the attention of numerous researchers,

especially as a new tool for the remote and non-invasive monitoring of birds populations,
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allowing researchers to describe the interactions of the species under study, gain new insights

into the social dynamics of birds and track factors such as climate change, habitat, and biodi-

versity [1, 2]. This study addresses the design of an acoustic bird species classification system

that is intended to be used to monitor bird populations in Peru as a useful tool for ornitholo-

gists who could automatically identify the presence of local bird species, especially in unreach-

able areas.

In general, the Acoustic Bird Species Classification (ABSC) task can be formulated as a

machine learning problem consisting in the following two primary stages: feature extraction

(or front-end) and classification (or back-end). The first stage obtains a parametric and com-

pact representation of the audio signals (in this case, birds sounds) that are more appropriate

for classification. The purpose of the second one is to determine which bird species corre-

sponds to the analyzed audio signal using a certain decision process. Several front-ends and

classifiers have been proposed and compared in the literature for ABSC tasks. Regarding the

classification stage, Hidden Markov Models (HMM) [3–5], Gaussian Mixture Models (GMM)

[3, 4, 6] and more recently, Support Vector Machines (SVM) [7–9] are worth mentioning.

With respect to the front-end stage, the design of an appropriate parameterization scheme

is essential for capturing the specific features of each species because, otherwise, it could cause

serious mistakes during acoustic bird species modeling [10]. This paper focuses on the front-

end stage, and its primary objective is the design of a suitable feature extraction method for

ABSC.

Many state-of-the-art front-ends for audio signals are composed of two primary modules,

namely short-time feature extraction and temporal feature integration. In the first one, acous-

tic coefficients are computed on a frame-by-frame basis (typically, the frame period used for

bird audio analysis lasts approximately 5–10 ms) from analysis windows of 20–40 ms. The

most frequently used short-time characteristics are the Mel Frequency Cepstral Coefficients

(MFCC) [4–8, 10–12]. In the temporal feature integration module, features at larger time

scales are extracted by combining the short-time parameters information over a longer time-

frame composed of several consecutive frames. The resulting characteristics are often called

segmental features and they have been used successfully in several audio-related tasks, such as

general audio [13], music genre [14] and acoustic event classification [15–18].

Nevertheless, conventional acoustic features are not necessarily the most appropriate for

acoustic bird species classification because most of them have been designed according to the

spectral characteristics of speech, which is quite different from the spectral structure of bird

sounds [19].

For this reason, it is essential to find a set of features that adequately represent this type

of acoustic signals while accounting for the bird sound production system. In recent years,

the Non-Negative Matrix Factorization (NMF) algorithm has been used to find a suitable

representation of data with satisfactory results in different areas in relation to signal and

data processing, such as the following fields: audio and speech [20–22], images [23], electro-

encephalograms [24, 25], and text mining [26]. NMF is an unsupervised algorithm that

engages with a linear representation of data through the decomposition of the non-negative

matrix containing these data into a product of two non-negative matrices, with one contain-

ing the basis vectors or components of the data and the other one containing the corre-

sponding activation coefficients or gains.

NMF has been previously used to optimize the front-end of audio classification systems. In

particular, in our previous work about acoustic event classification [18], NMF was used in the

second stage of the front-end (temporal feature integration) for improving the modeling of the

dynamic behavior of short-time features. In this case, only the basis vectors provided by NMF

were used, and the information contained in the activation coefficients was discarded. By
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contrast, in this paper, NMF is used to perform a non-negative decomposition of bird sound

spectrograms with the aim of optimizing the first stage of the front-end (short-time feature

extraction) in a bird sound classification system. In particular, two different alternatives for

using NMF in this framework are proposed. In the first, short-time features are deployed from

an auditory filter bank, which is trained by means of the NMF algorithm on bird audio spec-

trograms in an attempt to obtain a better fit between this filter bank and the spectro-temporal

characteristics of bird sounds. In the second one, the short-time characteristics are calculated

from the activation coefficients matrix resulting from the bird spectrogram decomposition as

performed through NMF. Note that in this latter case, the information contained in the NMF

activation coefficients is directly incorporated in the short-time features. In both alternatives,

the final set of segmental features is obtained by applying a conventional temporal feature inte-

gration technique consisting of the computation of several statistics of these improved short-

time acoustic parameters over long temporal windows.

Methods

Non-Negative Matrix Factorization (NMF)

In this section, we provide a brief description about the mathematical foundations of Non-

Negative Matrix Factorization because it provides the background of the two short-time fea-

ture extraction schemes proposed in this paper. Given a matrix V 2 RF�T
þ

, where each column

is a data vector, NMF approximates it as a product of two non-negative low-rank matrices W

and H, such that

V �WH; ð1Þ

where W 2 RF�K
þ

and H 2 RK�T
þ

and normally K�min (F, T). In this way, each column of

V can be written as a linear combination of the K basis vectors (columns of W), which are

weighted with the coefficients of activation or gains located in the corresponding column of H.

NMF can be seen as a dimensionality reduction in data vectors from an F—dimensional space

to a K—dimensional space. This finding is possible if the columns of W uncover the latent

structure in the data [27]. The value of K must be selected in advance by accounting for the

specific application of NMF.

Factorization is achieved by an iterative minimization of a given cost function such as, for

example, the Euclidean distance or the generalized Kullback-Leibler (KL) divergence which is

defined as follows:

DKL V kWHð Þ ¼
X

ij

Vijlog
Vij

WHð Þij
� V � WHð Þij

 !

ð2Þ

The Kullback-Leibler divergence results in a non-negative quantity and is unbounded. In

this work, the KL divergence is considered because it has recently been used, with good results,

in audio processing tasks such as speech enhancement and denoising for automatic speech

recognition [21, 28], feature extraction [22] or acoustic event classification [22, 29]. To find a

local optimum value for the KL divergence between V and (WH), an iterative scheme with
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multiplicative update rules can be used as proposed in [27] and stated in Eqs (3) and (4),

W W


V
WH

HT

1HT ;
ð3Þ

H H

WT V

WH
WT1

;
ð4Þ

where 1 is a matrix of size V, whose elements are all ones, and the multiplications ⊗ and divi-

sions are component-wise operations. NMF produces a sparse representation of the data,

reducing redundancy.

As explained in the coming sections, matrix V is composed of bird sound spectrograms in

our case, so NMF is used to obtain their non-negative decomposition to attempt to discover

the primary frequency components of bird sounds.

Feature extraction for ABSC

The overall feature extraction process for the ABSC task consists of the following three primary

stages: syllable segmentation and pre-processing, short-time feature extraction and temporal

feature integration.

Syllable segmentation and pre-processing. Bird sounds are usually divided into two cate-

gories, long-term vocalizations (songs) and short-term vocalizations (calls). Songs are usually

related to breeding and territorial defense, while calls have functions as alarms, flight or feed-

ing. In this paper, the separation between these categories is not considered. Bird sounds are

structured into hierarchical levels such as phrases, syllables, and elements so that a phrase

is formed by a series of syllables, which, in turn, are constructed by elements. In this study,

syllables are considered as the fundamental acoustic units, so bird acoustic signals are first seg-

mented into syllables. The method proposed in [30] is adopted for this purpose. This algorithm

is based on the assumption that syllables can be adequately modeled as sinusoidal pulses with

distinctive amplitude and frequency variations, and they correspond to temporal regions in

which the magnitude spectrum is above a predefined threshold. After preliminary experimen-

tation, in our case, this threshold was set to 20 dB because this value minimized the number

of audio files in which no syllables were detected. The performance of the segmentation stage

itself was not explicitly measured because manual boundaries were not available due to the

difficulty of this task, which must be performed by expert ornithologists. Nevertheless, the

automatic segmentation stage was fixed in all the experiments that were conducted in the

Experiments and results section, so its influence on the classification rate of the whole system

is the same for all the evaluated front-ends.

To improve the acoustic classification of bird sounds, it is essential to perform a proper pre-

processing step, which consists of filtering the audio signal using a Butterworth pass band filter

with a pass band between 1 kHz and 10.5 kHz. This frequency band was chosen by accounting

for the spectral region in which the different bird species sounds are concentrated. The filter-

ing process is necessary because many of the audio recordings are contaminated with noise,

such as ambient low-frequency noise or sounds with frequencies corresponding to other

species.

Short-time feature extraction. For the baseline system, the considered short-time acous-

tic characteristics are the well-known Mel Frequency Cepstral Coefficients. They are extracted

on a frame-by-frame basis using a Hamming analysis window that is 20 ms long with a frame

shift of 10 ms. After Hamming windowing, an auditory filter bank composed of 40 triangular

Non-negative spectrogram decomposition for the bird sound classification
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mel-scaled filters is applied over the spectrogram that is computed by using the Short-Time

Fourier Transform (STFT). This filtering process simulates the behavior of the human audi-

tory system, which is known to be more discriminating of low frequencies. Once the log-ener-

gies of the outputs of each filter are calculated, a Discrete Cosine Transform (DCT) is applied

to decorrelate them. In addition, the log-energy of each frame and the first derivatives (also

called Δ features) are computed and added to the cepstral coefficients, yielding to a 13 (or 26

when the first derivatives are used)-dimension short-time feature vector.

Two different alternatives based on NMF for short-time feature extraction are proposed in

this work. Both of them have been motivated by the ability of the NMF algorithm to achieve a

good representation of sounds, extracting the most relevant and less redundant components

and therefore allowing us to distinguish between different bird species sounds. These two fea-

ture extraction schemes are detailed in the Parameterization based on NMF auditory filter

bank (NMF_CC) and Parameterization based on NMF activation coefficients (H_CC) sec-

tions, respectively.

Temporal feature integration. To obtain a set of acoustic parameters on a longer time

scale, temporal integration is applied to the short-time feature vectors. For this purpose, the

sequence of short-time coefficients and their first derivatives (when indicated) contained in

each previously extracted syllable is processed by the considered temporal integration tech-

nique. In this paper, it consists of the computation of the statistics (the mean, standard

deviation and skewness) of the short-time parameters contained in each syllable [17]. These

segment-based parameters are the input to the bird sound classifier, which is based on Support

Vector Machines.

Parameterization based on NMF auditory filter bank (NMF_CC)

NMF_CCs are cepstral-like coefficients that are computed using the same procedure as in the

case of the conventional MFCC, except that the triangular mel-scaled filters are replaced by an

auditory filter bank which is learned in an unsupervised way by applying NMF over the spec-

trograms of a set of training instances belonging to different bird species. The extraction pro-

cess is shown in Fig 1.

Design of the auditory filter bank using NMF. The primary goal is to develop an unsu-

pervised approach to finding the optimal auditory filter bank in such a way that the resulting

cepstral parameters (NMF_CC) adequately represent the different bird species sounds carry-

ing the most significant information about their underlying spectro-temporal structure. This

problem can be formulated as the non-negative decomposition of the bird sound spectrograms

V into their primary components (i.e., into their more relevant frequency bands). In this con-

text, previous works [31] have shown that when Non-Negative Matrix Factorization is applied

to spectrograms of speech signals, the resulting decomposition generates a filter bank with

remarkable similarities to perceptually motivated auditory filter banks. In this study, we use

the same idea for the analysis of bird sounds instead of speech. Along with the rest of the

paper, the filter bank obtained by NMF is denoted as W to distinguish it from the triangular

mel-scaled filter bank U used to calculate the conventional MFCC.

In our case, the matrix that will be decomposed is formed by the magnitude spectrograms

of the different bird sounds. Because a unique auditory filter bank is learned for all the acoustic

classes (bird species) under consideration, matrix V consists of the column-wise concatenation

of the magnitude spectra that is extracted from the bird sounds contained in the training set of

the database. Therefore, the dimension of V is (F x ns), where F is the number of frequency

bins and ns is the total number of frames in the training set.

Non-negative spectrogram decomposition for the bird sound classification
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Once matrix V is formed, its corresponding factored matrices (WH) are obtained using the

learning rules in Eqs (3) and (4). The dimensions of W and H are, F x K and K x ns, respec-

tively, where K is the number of Spectral Basis Vectors (SBV) considered (i.e., the number of

filters in the auditory filter bank to be learned). The resulting matrix W contains the SBVs,

which represent the primary components of the magnitude spectra for the bird acoustic signals

because it is verified that V�WH, and, therefore, they could be interpreted as the filters of the

required auditory filter bank.

Note that the NMF-based filter bank W is learned during the training stage of the system.

In the parameterization process itself, NMF_CCs are computed using this filter bank instead

of the conventional mel-scaled filter bank U. Finally, the information contained in these short-

time features is summarized by means of temporal integration.

Parameterization based on NMF activation coefficients (H_CC)

In this section, the procedure for feature extraction based on NMF activation coefficients

(H_CC) is presented. The primary idea is that during a training stage, it is possible to use

NMF for building an acoustic model for each one of the classes under consideration (in this

case, the bird species) consisting of the set of spectral basis vectors determined by NMF for

this class. After concatenating all these SBVs into a single matrix Wbs, the H_CC features of a

given bird sound are computed from the activation coefficients Hbs as produced by the appli-

cation of NMF on its magnitude spectrogram. The hypothesis behind this method is that these

Hbs-derived coefficients should present good discrimination capabilities, because it is expected

that the SBVs of the class to which the bird sound belongs show higher gains than the SBVs of

the remaining classes.

Learning NMF-based acoustic models. The procedure for obtaining the acoustic patterns

is shown in Fig 2, and it is similar to the NMF-based supervised method presented in [28] in

which the same idea is utilized to build models of clean speech and noise.

In this work, the acoustic classes are the sounds of the different bird species. Thus, the SBVs

of each class are found by applying the NMF algorithm to the training audio data of this class.

Fig 1. Block diagram of the NMF_CC parameterization. NMF_CC coefficients are computed after applying the Discrete Cosine

Transform (DCT) on the audio magnitude spectrum filtered with the NMF-based filter bank. The final set of acoustic features, which is the

input of the Support Vector Machine (SVM)-based classifier module, is obtained by performing a temporal feature integration on these short-

time parameters.

https://doi.org/10.1371/journal.pone.0179403.g001
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Specifically, first, the magnitude spectrum of each of the training instances of each bird species

is calculated such that the matrices V1, V2, . . ., VC corresponding to class 1, class 2, . . ., class C
are obtained, with C being the number of acoustic classes under consideration. Note that each

matrix Vi is composed of the concatenation of the magnitude spectrograms of the training

instances for the i-th class. The KL divergence is then minimized between the magnitude spec-

tra matrix Vi and its factored matrices {WiHi, i = 1, . . ., C} using the learning rules given in

Eqs (3) and (4).

After this process, the matrix Wi contains the SBVs of the i-th class. The dimension of

Wi is F x K, where F and K are the number of frequency bins used for the computation of

spectrograms and the number of spectral basis vectors, respectively. Finally, matrices Wi

are concatenated to form a single matrix of SBVs, Wbs with the dimensions F x KC. These

SBVs remain fixed during the feature extraction process itself. Note that contrary to the

parameterization method described in the Parameterization based on NMF auditory filter

bank (NMF_CC) section, NMF in this case is employed in a supervised fashion as matrices Wi

are obtained from previously categorized data.

Short-time features derived from NMF activation coefficients. The upper part of Fig 3

represents the block diagram of the H_CC feature extraction process.

During the parameterization stage, given a test audio signal, its magnitude spectrum Vtest is

first computed and factored by minimizing the KL divergence between the Vtest and (WbsHbs)

and then updating only the activation matrix Hbs with the learning rule given in Eq (4). The

logarithm of the Hbs values is then computed, yielding to the so-called H_Log coefficients.

These parameters are further decorrelated by applying the discrete cosine transform to them,

thus generating a set of cepstral-like features, which are denoted as H_CC. Finally, the maxi-

mum gain coefficient (G_NMF) is appended to the short-time feature vector. For each frame t,

Fig 2. Block diagram of the NMF-based acoustic models building process. The Spectral Basis Vectors (SBVs) of the i-th class, Wi, are

found by applying the NMF algorithm to the training audio data of this class. Finally, the SBVs of all the classes are concatenated to form a

single set of SBVs, Wbs.

https://doi.org/10.1371/journal.pone.0179403.g002
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this term is calculated as follows:

G NMF

� �

t
¼ argmax

k
Hbsk

� �

t
; k 2 1; :::;KCf g; ð5Þ

where K is the number of SBVs per class and C is the total number of classes. The use of

G_NMF is motivated by the fact that previous studies have shown that it allows for a good

characterization of the sound timbre and increases robustness against noise [22, 32].

Once the H_CC short-time parameters are extracted, a temporal integration is applied

to obtain segmental-based features as in both conventional MFCC and NMF_CC

parameterizations.

Performance assessment

The performance of the proposed front-ends is measured in terms of the accuracy or classifica-

tion rate (i.e., the percentage of audio files that are correctly classified). Classification rates

obtained by the different parameterization schemes and the corresponding significant differ-

ences are computed via a linear mixed model [33]. This model allows us to study the depen-

dence of the accuracy on the parameterization in use, considering the random effects caused

by the composition of the database with regards to the 12 bird species included, as described in

the Database section, and the adopted experimental protocol, which consists of a K-fold cross-

validation with K = 6, as described in the Experimental setup and baseline system section. The

implementation of the linear mixed model was performed by using the lme4 package [34] for

R [35] and the formula shown in Eq (6),

Accuracy � Parameterizationþ ð1jSpeciesÞ þ ð1jFoldÞ ð6Þ

which indicates that the parameterization is considered as a fixed effect and the bird species

and fold are taken into account as random effects. The model was fitted by a Restricted Maxi-

mum Likelihood Estimation (REML) using 792 observations (11 parameterizations x 12 bird

species x 6 folds). Statistical significances values were obtained by using the Satterthwaite

Fig 3. Block diagram of the H_CC (upper part), MFCC/NMF_CC (lower part) feature extraction processes and their combination.

The short-time features are obtained by applying the Discrete Cosine Transform (DCT) to the audio magnitude spectrum that is filtered with

the conventional mel-scaled (MFCC) or NMF-based filter bank (NMF_CC). The final set of acoustic features, which is the input of the

Support Vector Machine (SVM)-based classifier module, is obtained by performing temporal feature integration on the combination of the

H_CC and MFCC/NMF_CC short-time parameters.

https://doi.org/10.1371/journal.pone.0179403.g003
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approximation as implemented in the R lmerTest package [36]. The degrees of freedom was

765. The R2 value was computed by following the method proposed by [37], using the R sjstats
package [38].

The summary of the model is presented in the Results section. For the fixed effects, coeffi-

cients (i.e., accuracy estimates), standard errors and t-values, as well as statistical significance,

are shown. For the random effects, the variances and standard deviations are reported. The

intercept corresponds to the baseline parameterization MFCC.

Experiments and results

Database

The system developed in this work is intended for monitoring bird populations in Peru. To

the best of our knowledge, there is no a specific database for this purpose. For this reason, an

ad hoc database was created from audio files obtained from the Xeno-canto website [39],

which contains real-field recordings of different bird species sounds. Among all the species

contained on this website, some of them were selected according to the following two criteria:

they had to be resident or migratory bird species in Peru, and the number of recordings had to

be large enough to allow for reliable experimentation. Twelve bird species fulfilled these two

requirements, so they were ultimately chosen. The final database used for the experiments is

available in [40] and, in summary, it consists of a total of 1,316 instances of sounds belonging

to the following 10 bird species resident in Peru: Aramides cajanea, Coereba flaveola, Colibri
thalassinus, Crypturellus cinereus, Crypturellus obsoletus, Crypturellus soui, Crypturellus undula-
tus, Lathrotriccus euleri, Rupornis magnirostris and Synallaxis azarae and the 2 migratory bird

species: Piranga olivacea and Piranga rubra, for a total of 12 different bird species.

All these species are distributed in the jungle region of Peru; some of them can also be

found on the north coast of Peru (Coereba flaveola), while Synallaxis azarae and Colibri thalas-
sinus have a more restricted distribution covering the Yunga region (mountain forest). Readers

who are interested in distribution maps of these bird species are referred to [41].

The composition of the whole database is shown in Table 1. All the sounds were converted

to mp3 format and sampling frequency (22.05 kHz).

Table 1. Composition of the database used in the experiments. The number of audio files and syllables

per bird species are indicated.

Class Bird species No. of audio files No. of syllables

1 Aramides cajanea [ac] 64 3098

2 Coereba flaveola [cf] 201 5039

3 Colibri thalassinus [ct] 131 4541

4 Crypturellus cinereus [cc] 94 1200

5 Crypturellus obsoletus [co] 87 1518

6 Crypturellus soui [cs] 100 1012

7 Crypturellus undulatus [cu] 68 659

8 Lathrotriccus euleri [le] 120 1723

9 Piranga olivacea [po] 64 1273

10 Piranga rubra [pr] 72 1790

11 Rupornis magnirostris [rm] 181 2802

12 Synallaxis azarae [sa] 134 3181

Total 1,316 27,836

https://doi.org/10.1371/journal.pone.0179403.t001
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Experimental setup and baseline system

Since this database is too small to achieve reliable classification results, a K-fold cross-valida-

tion was used to extend it artificially and the results were averaged afterward. K was set to 6

to achieve a trade-off between the amount of training data necessary to model the different

acoustic classes adequately and the amount of testing data necessary for obtaining results with

low variance between folds. Specifically, the database was split into six disjointed balanced

groups so that one different group was kept for testing in each fold, while the remaining ones

were used for training.

The acoustic bird species classification system is based on a one-against-one SVM with a

Radial Basis Function (RBF) kernel on normalized features [16, 17]. The SVM-based classifier

module was developed using the LIBSVM software [42]. Concerning SVM training, for each

one of the sub-experiments, a 5-fold cross validation was used to compute the optimal values

of the RBF kernel parameters. In the testing stage, as the SVM classifier was fed with segmental

features computed over windows corresponding to the syllables extracted from each audio

recording in the segmentation stage, the classification decisions were made at the syllable level.

To obtain a decision for the whole instance, the classifier outputs of the corresponding sylla-

bles were integrated using a majority voting scheme in such a way that the most frequent label

was finally assigned to the whole recording [43].

The different parameterization schemes proposed in this work were implemented in the

programming language MATLAB [44]. For the baseline one (MFCC), the speech processing

toolbox for MATLAB Voicebox [45] was used. Extensive preliminary experimentation was

performed to select their configurations. In particular, several settings relating to window

sizes, frame periods and the number of cepstral coefficients were tested, although no important

differences in performance were found between them. Finally, the primary details of the final

configuration used in the experiments are described below:

• To extract all the short-time features, audio signals are analyzed every 10 ms using a Ham-

ming window of 20 ms.

• The baseline parameterization consists of 12 conventional MFCC (C1 to C12) plus the log-

energy of each frame. The suffix “+ Δ” indicates that the corresponding first derivatives are

also computed and added to these coefficients.

• In the case of the NMF_CC parameterization, 12 cepstral-like features (C1 to C12) are com-

puted and the log-energy of each frame is appended to the acoustic vector. In addition, the

corresponding first derivatives are appended when indicated with the suffix “+ Δ”.

• In MFCC, the auditory filter bank consists of 40 filters. In the NMF_CC approach, the num-

ber of filters in the filter bank to be learned (i.e., the number of SBVs considered) is also

K = 40.

• In the H_CC parameterization, the number of H_Log features is 48 because the number of

spectral basis vectors per class is K = 4 and the number of classes corresponding to the differ-

ent bird species is C = 12.

• For the H_CC features, 13 cepstral-like coefficients (C1 to C13) are extracted from the 48

H_Log above. The term “+ G_NMF” indicates that the NMF maximum gain term is calcu-

lated and added to these coefficients.

• In all cases (MFCC, NMF_CC and H_CC), a temporal integration is applied, yielding to a

set of segmental features which consist of statistical measures (the mean, standard deviation

and skewness) of the short-time coefficients under consideration.
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With respect to the application of NMF to the design of the filter bank W in the NMF_CC

parameterization (see Design of the auditory filter bank using NMF section) and for the build-

ing of the acoustic models in the H_CC parameterization (see Learning NMF-based acoustic

models section), in all folds, NMF was initialized by generating 10 random matrices (W and

H) so that the factorization with the smallest Euclidean distance between V and (WH) was

chosen for initialization. These initial matrices were then refined by minimizing the KL diver-

gence using the multiplicative update rules given in Eqs (3) and (4) with a maximum of 200

iterations.

Results

The summary of the linear mixed model that measures the effect of the parameterization used

on the classification rate is presented in Table 2. As can be observed the accuracy achieved by

MFCC features (intercept) is 69.63%. The remaining coefficients of the fixed effects can be

interpreted as the quantity that must be added to the coefficient of the intercept to obtain an

accurate estimate for each parameterization. For example, when using LDA1 features, the clas-

sification rate decreases by 12.64%, i.e., its accuracy is 56.98% (69.62%—12.64%).

As a random effect, “Fold” was not significant, because it has a standard deviation near

zero, so it is possible to deduce that this random effect has no impact on the model. However,

the “Species” random effect has a standard deviation of 15.39, which shows that there is impor-

tant variability in the system accuracy due to the type of bird species that is recognized. In

other words, this result suggests that there are some bird species that are more difficult to

classify correctly than others. In the Discussion section, we analyze this issue in more depth.

Table 2. Fixed and random effects for the linear mixed model that measures the effect of the parame-

terization used on the accuracy. The front-ends under consideration are MFCC (intercept), LDA1, LDA2,

NMF_CC, H_CC + G_NMF and the combinations MFCC + H_CC + G_NMF and NMF_CC + H_CC

+ G_NMF. The inclusion of the first derivatives is indicated with the suffix “+ Δ‘”. For the fixed effect (parame-

terization), the classification rate ([%]) estimates, standard errors and t-values are shown. The statistical sig-

nificance at p < 10−4 is marked with ***, p < 10−3 is marked with ** and p < 0.05 is marked with *. For the

random effects (bird species and fold), variances and standard deviations are reported.

Fixed effects:

Estimate Std. Error t value

Intercept 69.623 4.633 12.800 ***

LDA1 −12.636 1.681 −7.519 ***

LDA2 −3.433 1.681 −2.043 *

NMF_CC 1.897 1.681 1.129

H_CC + G_NMF −3.141 1.681 −1.869

MFCC + Δ 3.070 1.681 1.827

NMF_CC + Δ 5.963 1.681 3.549 ***

MFCC + H_CC + G_NMF 4.070 1.681 2.422 *

NMF_CC + H_CC + G_NMF 4.280 1.681 2.547 *

MFCC + H_CC + G_NMF + Δ 4.393 1.681 2.614 **

NMF_CC + H_CC + G_NMF + Δ 6.119 1.681 3.641 ***

Random effects:

Groups Variance Std. Dev.

Species 236.884 15.391

Fold 1.871 1.368

Residual 101.668 10.083

Number of obs: 792, groups: Species, 12; Fold, 6

https://doi.org/10.1371/journal.pone.0179403.t002
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Finally, “Residual” accounts for the variability that is not due to either folds or species. In this

case, it could be related to several uncontrolled characteristics in the recordings such as, for

example, the presence of environmental noise or sounds produced by other animals. We

observe an R2 value of 0.7167 for the model. From the whole variance explained by the model,

19.71%, 0.15% and 8.46% correspond to the random effects “Species”, “Fold” and “Residual”,

respectively.

Apart from the results achieved by MFCC (baseline) and the proposed front-ends, for com-

parison purposes, Table 2 also contains the accuracies attained by MFCC with first derivatives

(MFCC + Δ) and the two methods proposed in [11] (rows labeled “LDA1” and “LDA2”).

In LDA1, the short-time acoustic vectors are MFCC plus the log-energy (as in our baseline

parameterization); however, instead of considering the corresponding statistics, each syllable

is represented by a set of characteristic vectors that is obtained in the training stage by using a

clustering algorithm (in particular, the so-called progressive constructive clustering). In addi-

tion, Linear Discriminant Analysis (LDA) is further applied to reduce the vector dimensional-

ity. LDA2 is similar to LDA1 with a difference in that the standard deviation and skewness are

added to the feature vectors prior to the application of LDA. In both cases, the optimal number

of parameters was found to be 18. As shown, the classification rate achieved by LDA1 is con-

siderably lower than the ones obtained using the other methods. LDA2 clearly outperforms

LDA1, suggesting that better parametric representations are obtained when the standard

deviation and skewness are included in the feature vectors. In any case, conventional MFCC

improves the performance of the system significantly in comparison to both LDA1 and

LDA2. Regarding the parametrization MFCC + Δ, it increases the accuracy of the system by

approximately 3% absolutely with respect to MFCC, although this difference is not statistically

significant.

Regarding the comparison between MFCC and NMF_CC-based front-ends, NMF_CC and

NMF_CC + Δ achieve a relative error reduction with respect to MFCC of approximately 6.25%

and 19.63%, respectively, and this latter result is statistically significant. These results suggest

that the filters automatically learned by the NMF algorithm are better suited to model the bird

vocal production than the mel-scaled filter bank, which is a better fit for the human production

and auditory system.

The parameterization H_CC + G_NMF performs worse than MFCC, although the differ-

ence is not statistically significant. Nevertheless, our hypothesis is that because the extraction

procedure for MFCC/NMF_CC and H_CC characteristics are quite different, they may convey

complementary information in such a way that their combination could provide improve-

ments in the classification rate in comparison to the use of the individual sets of features. To

gain insight into this possibility, we performed several experiments with different combina-

tions of these parameters, following the scheme shown in Fig 3.

According to the results shown in Table 2, the combinations MFCC + H_CC + G_NMF

and MFCC + H_CC + G_NMF + Δ outperform the baseline system (MFCC), showing relative

error reductions of 13.40% and 14.46%, respectively. Similarly, there is an improvement in the

performance of the combined systems when the filter bank learned by NMF is used in the cal-

culation of cepstral coefficients instead of the mel-scaled filter bank. In fact, both NMF_CC +

H_CC + G_NMF and NMF_CC + H_CC + G_NMF + Δ produce noticeable decreases in the

number of misclassifications in comparison to MFCC. In all these cases, the differences in per-

formance with respect to MFCC are statistically significant.

In summary, the best accuracy attained here is 76.04% which is obtained with the combina-

tion NMF_CC + H_CC + G_NMF + Δ and represents a relative error reduction of 20.14%

with respect to MFCC. Fig 4(a) and 4(b) show the confusion matrices produced by MFCC and

NMF_CC + H_CC + G_NMF + Δ, respectively. In both tables, the columns correspond to the
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correct class, while the rows are the hypothesized one, and the values within them are calcu-

lated by averaging the 6 sub-experiments. Different colors indicate that audio recordings

belong to species of the same genus. In particular, light blue and light red indicate Peru native

and migratory bird species of the same genus, respectively. As can be observed, for all the

acoustic classes, the classification rates achieved by the proposed combination are higher than

those obtained by MFCC.

Execution time

This section is devoted to the comparison of the processing time required by the primary

parameterizations proposed in this paper. Although the corresponding implementations have

not been explicitly optimized for speed, the intention of this analysis is to determine if the dif-

ferent front-ends could be used in practical applications with a reasonable execution time.

Table 3 shows the total execution time required for the feature extraction process of 1,106

audio files (23,513 frames) for MFCC, NMF_CC and H_CC + G_NMF individual parameteri-

zations and the combination of MFCC with H_CC + G_NMF and NMF_CC with H_CC +

G_NMF. Note that the quantities shown in Table 3 do not include the time required for the

Fig 4. Confusion matrices [%] for two parameterization schemes: (a) MFCC (baseline); (b) NMF_CC + H_CC + G_NMF + Δ
(proposed combination). The columns and rows correspond to the correct class and the hypothesized one, respectively. Different colors

indicate the audio recordings belonging to species of the same genus.

https://doi.org/10.1371/journal.pone.0179403.g004

Non-negative spectrogram decomposition for the bird sound classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0179403 June 19, 2017 13 / 20

https://doi.org/10.1371/journal.pone.0179403.g004
https://doi.org/10.1371/journal.pone.0179403


computation of the first derivative features because it is negligible. The average execution

times per frame (recall that each frame corresponds to 10ms) and the number of features for

each parameterization are also indicated. The comparison was performed on a PC equipped

with an Intel(R) Core (TM) i7-4790 processor at 3.60 GHz and a Windows 7 Ultimate 64-bit

operating system.

As shown, MFCC has the lowest execution time in comparison to the other front-ends.

Nevertheless, the time required by NMF_CC is very similar. This is because, in this case, NMF

is only performed once during a previous, independent step in which the optimized filter bank

for all the acoustic classes is learned. The computational cost of H_CC + G_NMF is approxi-

mately 1.25 times greater than that of MFCC and NMF_CC. This increase is due to the itera-

tive nature of the NMF algorithm, which, in this case, is applied within the parameterization

process itself.

As expected, the processing times required by the combinations MFCC + H_CC + G_NMF

and NMF_CC + H_CC + G_NMF are 2 and 2.25 times greater, respectively, than that of

the baseline parameterization. In addition, the feature dimensions of the combinations are

approximately double those of the individual parameterizations. Because there is a trade-off

between the classification rate and computational load, in practical applications in which the

latter one is critical, NMF_CC + Δ features should be preferred. Otherwise, the combined

parameterization NMF_CC + H_CC + G_NMF + Δ should be employed. In any case, all these

parameterizations could be used for the off-line processing of audio recordings with an allow-

able delay.

Discussion

In this section, we analyze the primary factors that explain the performance of the MFCC and

NMF-based front-ends for the ABSC task, which are the capability of each parameterization

for achieving an adequate representation of bird sounds, the acoustic similarity between

sounds belonging to different species and the presence of noise.

The primary idea behind this work is that NMF provides a better parametric representation

of bird sounds than the MFCC approach. To illustrate the validity of this hypothesis, we com-

pare the spectral components used in the MFCC computation with the spectral basis obtained

by the two NMF-based front-ends proposed in this paper.

In the first approach, NMF_CC, a common filter bank for all bird species, is learned by

using NMF. Fig 5(b) represents this filter bank (W) obtained on a single fold for K = 40 filters,

whereas the conventional mel-scaled filter bank (U) is depicted in Fig 5(a). It can be observed

that in W, a great amount of narrow filters is concentrated in the range between 1 kHz and 5

kHz, suggesting that this frequency band is more relevant to bird sound production. For fre-

quencies greater than 5 kHz, the filter distribution is similar to that of the triangular filter

bank, whereas the band below 1 kHz has fewer filters with larger bandwidths. It is worth

Table 3. Execution time (s), average execution time per frame (ms) and number of features for the MFCC, NMF_CC and H_CC + G_NMF parameteri-

zations and their combinations.

Parameterization Total execution time (s) Average execution time per frame (ms) Number of features

MFCC 463.72 19.72 13

NMF_CC 470.26 20.00 13

H_CC + G_NMF 590.02 25.09 14

MFCC + H_CC + G_NMF 1053.74 39.72 27

NMF_CC + H_CC + G_NMF 1060.28 45.09 27

https://doi.org/10.1371/journal.pone.0179403.t003
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mentioning that this filter distribution does not differ very much between folds. The resulting

NMF filter bank indicates that the spectral nature of bird sounds is quite different from speech

spectra, in which most of the relevant components are concentrated in low frequencies. There-

fore, it is possible to deduce that NMF_CC is more suitable for the ABSC task than the conven-

tional MFCC.

In the second approach, H_CC, NMF is used to determine the SBVs of each specific bird

species, which are represented in Fig 6. Note that although the results of the H_CC front-end

presented in the Results section correspond to K = 4, we have used K = 10 in this discussion to

allow for a better graphical representation of the SBVs. As shown here, the spectral contents

of bird sounds vary widely between species, presenting generally relevant components in

medium-high frequencies. Because these SBVs provide more detailed information about

the spectral nature of the different species, it can be argued that H_CC constitutes a better

parametric representation for bird sounds than MFCC. However, results show that the perfor-

mance of H_CC is worse than that of MFCC (although the differences are not statistically

significant). This behavior likely arose because of the acoustic similarity between classes,

resulting in similar SBVs among bird species (Fig 6), especially those that are closely related

(e.g. Piranga olivacea and Piranga rubra). Confusions between these species were more likely

to occur.

Nevertheless, the combination NMF_CC + H_CC + G_NMF + Δ achieves the best accu-

racy. In the following, we carry out a detailed comparison between the performance of this

front-end and MFCC, by analyzing their respective confusion matrices (Fig 4) and several

examples of vocalization spectrograms from different bird species (Fig 7).

Although NMF_CC + H_CC + G_NMF + Δ outperforms MFCC for all species (Fig 4),

MFCC achieves good results with certain classes (e.g. Aramides cajanea). This is possibly

due to the “speech-like” characteristics of these sounds, as can be observed in Fig 7(a). This

Fig 5. Frequency responses of the auditory filter bank used in the feature extraction process: (a) Triangular mel-scaled filter bank

(U); (b) Filter bank determined by NMF (W). To improve the readability of the figures, different colors have been used to represent

adjacent filters.

https://doi.org/10.1371/journal.pone.0179403.g005
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example was correctly recognized by both front-ends. For species whose spectral structure is

more different from speech, the proposed combination is better than MFCC, with the differ-

ences being especially noticeable for Crypturellus cinereus, Crypturellus soui, Crypturellus undu-
latus, Lathrotriccus euleri and Rupornis magnirostris. Fig 7(b) contains a sound spectrogram

belonging to this latter species, which was misclassified by MFCC but correctly recognized by

the proposed front-end.

In both parameterizations, the acoustic similarity between classes is an important source of

errors. Fig 7(c) contains a Piranga olivacea spectrogram which was misclassified as Piranga
rubra by both front-ends, and Fig 7(d) is an example of the opposite case. The level of confusa-

bility for NMF_CC + H_CC + G_NMF + Δ is lower than for MFCC (e.g. the percentage

of confusions between Coereba flaveola and Colibri thalassinus decreased from 6.81% with

MFCC to 2.62% with the proposed front-end).

The presence of noise or other nature sounds (e.g. crickets) is also a cause of errors. In these

conditions, the performance of the syllable detection stage might be negatively affected, which

in turn might degrade the accuracy of the classifier (which is also directly affected by noise).

Fig 7(e) and 7(f) contain examples of highly noisy spectrograms, which were incorrectly classi-

fied by both parameterizations. We have observed that, in general, audio recordings belonging

to Crypturellus cinereus, Crypturellus obsoletus and Crypturellus soui are very noisy. This cir-

cumstance, together with their pronounced acoustic similarity, produced that these three spe-

cies were the more difficult ones to classify. In any case, NMF_CC + H_CC + G_NMF + Δ
outperforms MFCC for these species, suggesting its robustness to noisy conditions.

Conclusions

In this paper, a new front-end for acoustic bird species classification whose design incorpo-

rates information about the specific spectro-temporal patterns of bird sounds is proposed. It

Fig 6. Spectral Basis Vectors (SBVs) for the twelve bird species sounds. To improve the readability of the figures, different colors have

been used to represent the adjacent spectral basis vectors.

https://doi.org/10.1371/journal.pone.0179403.g006
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presents a modular structure consisting of the following three different stages: pre-processing,

short-time feature extraction and temporal feature integration.

The primary focus of this paper is on the short-time feature extraction module, in which

two new parameterization schemes based on the non-negative decomposition of bird sound

spectrograms through the application of the NMF algorithm are proposed. In the first scheme

(NMF_CC), cepstral-like coefficients are calculated by replacing the conventional triangular

mel-scaled auditory filter bank with a NMF-based filter bank. In particular, NMF is used for

the unsupervised learning of this auditory filter bank, so that the resulting filters are perceptu-

ally motivated according to the bird vocal production system. In the second scheme (H_CC),

short-time acoustic characteristics are derived from the NMF activation coefficients. In both

cases, the frame-by-frame features are finally combined at a larger temporal scale through a

temporal integration process in which statistical measures of these parameters (the mean, stan-

dard deviation and skewness) are computed over segments of syllable duration.

The whole front-end has been tested on an SVM-based ABSC system, and the results have

been analyzed by using a linear mixed model in which the parameterization is considered as

a fixed effect and the bird species and fold are taken into account as random effects. With

the first parameterization, the best performance is achieved when NMF_CC and their first

Fig 7. Examples of vocalization spectrograms from the following different bird species: (a) Aramides cajanea; (b) Rupornis

magnirostris; (c) Piranga olivacea; (d) Piranga rubra; (e) Crypturellus cinereus; and (f) Crypturellus soui. The two first examples

illustrate that, although sounds of some species present an important content in low frequencies as in the case of speech (a), in general,

their spectral characteristics are very distinct from the speech spectra (b); (c) and (d) show the acoustic similarity between sounds of

different species, which may produce errors in the classification process; and (e) and (f) contain examples of very noisy spectrograms, which

are very likely to be misclassified.

https://doi.org/10.1371/journal.pone.0179403.g007
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derivatives are considered. The results show that the filters learned by NMF are best suited for

modeling the bird vocal production mechanism in comparison to the mel-scaled filter bank.

In the second parameterization, H_CC by itself does not outperform MFCC; however, its com-

bination with MFCC produces better results than either of the individual feature sets. These

classification rates are further improved when the first derivatives are also included and the

MFCC are substituted with NMF_CC in the combination. In this case, a relative error reduc-

tion with respect to the conventional MFCC system of approximately 20.14% is achieved, and

this difference in performance is statistically significant.
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