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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the deadliest 

malignant diseases. Chronic hepatitis B virus (HBV) 

infection is the most common cause of HCC worldwide 
[1]. During HBV-induced carcinogenesis, HBV keeps 

evolving. Some HBV mutants can promote the 

development of HCC [2, 3]. Due to the absence of a 

proofreading function for HBV polymerase, HBV has a 

relatively higher mutation rate during virus replication 

[4]. Mutations, especially mutations in the preS region 

of the HBV genome, are associated with advanced liver 

diseases, including HCC [5]. Both preS1 and preS2 

deletions can cause unbalanced production of HBV 

envelope proteins, with consequent accumulation of the 
mutated large HBV surface antigen (LHBS) in the 

endoplasmic reticulum (ER) of hepatocytes, causing ER 

stress and, ultimately, HCC development [6–8]. A meta-
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ABSTRACT 
 

Background: Hepatitis B virus (HBV) variants in the preS region have been associated with hepatocellular 
carcinoma (HCC). However, the effect of the preS variants on HCC prognosis remains largely unknown. We 
aimed to identify the preS variants that reliably predict postoperative prognosis in HCC.  
Methods: RNA-seq data of 203 HCC patients retrieved from public database were screened for the preS variants 
related to HCC prognosis. The variants in the sera and tumors were then validated in our prospective cohort 
enrolling 103 HBV-associated HCC patients.  
Results: By analyzing prognosis-related gene sets in the RNA-seq data, 12 HBV preS variants were associated 
with HCC recurrence. Of those, G40C and C147T in the sera predicted an unfavorable recurrence-free survival in 
our cohort (hazard ratio [HR]=2.18, 95% confidence interval [CI]=1.37-3.47, p=0.001 for G40C; HR=1.84, 95% 
CI=1.15-2.92, p=0.012 for C147T). G40C and C147T were significantly associated with microscopic vascular 
invasion, larger tumor size, and abnormal liver function. Multivariate Cox regression analysis showed that G40C 
significantly increased the risk of HCC recurrence in patients with postoperative antiviral treatment. The HCC 
prognosis-prediction model consisting of α-fetoprotein and G40C in the sera achieved the best performance 
(sensitivity=0.80, specificity=0.70, and area under the curve=0.79). Functional analysis indicated that these two 
variants were associated with cell proliferation, chromosome instability, carcinogenesis, metastasis, and 
anticancer drug resistance.  
Conclusions: G40C and C147T are serological biomarkers for HCC prognosis and the prognostic model consisting 
of serological α-fetoprotein and G40C achieved the best performance in predicting postoperative prognosis. 
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analysis including 5563 HBV-infected patients has 

demonstrated that HBV preS deletion is significantly 

associated with an increased risk of HCC, with a 

summary odds ratio of 3.0 [9]. Importantly, HBV preS 

mutations especially deletions and some HCC-

associated preS point mutations are present at least 10 

years before the development of HCC [10]. These 

studies indicate that HBV preS mutations can predict 

the development of HCC in HBV-infected subjects. 

 

The recurrence rate of HCC is high after curative 

resection. It is important to predict the prognosis of 

HCC before surgical treatment. However, reliable 

biomarkers for predicting HCC prognosis are lacking. 

Previous studies have demonstrated that higher viral 

load, preS deletion mutations, and higher expression of 

LHBS with partial pre-S2 deletion in the tumors may 

significantly predict the postoperative prognosis of 

HBV-caused HCC (HBV-HCC) cases [11–14]. 

However, there is no study reporting whether nucleotide 

variants in the preS region of HBV genome are 

prognostic for HCC. In this study, HBV variants in the 

preS region associated with postoperative prognosis  

of HBV-HCC were first examined by analyzing RNA-

seq datasets of HCC tissues. The variants were 

independently validated in the sera and paired tumor 

tissues of HBV-HCC patients who received radical 

hepatectomy in a prospective cohort. 

 

RESULTS 
 

Screening of prognostic HBV preS variants in RNA-

seq data 

 

We combined the RNA-seq datasets of tumor samples 

of 203 HBV-HCC patients from a total of twelve 

studies. HBV reads could not be detected in 37 of them, 

while the median depth of HBV was 477.81 (IQR, 

71.05–1639.56) in the remaining 166 samples. The 

variants at the preS region (nt. 2848 to nt. 154) covered 

by more than 100 reads were extracted by a procedure 

taking sequencing error into account. The frequencies of 

those variants without sufficient coverage were 

considered not available. To estimate the associations 

between HBV variants and postoperative prognosis of 

HCC patients, HCC-specific prognosis-related gene sets 

were retrieved from MsigDB and compiled into an in-

house database, which contained six overall survival 

(OS)-related and seven recurrence-free survival (RFS)-

related gene sets (Supplementary Table 1). After 

adjusting for any potential batch effect, sample-level 

enrichment scores were calculated for every gene set 

and correlation tests were performed. It was found that 

12 HBV variants were significantly associated with 

RFS of HCC patients, while none was found to be 

associated with OS (Supplementary Table 2). 

Validation of prognostic HBV preS variants in a 

prospective cohort 

 

To validate these variant-prognosis associations 

predicted by RNA-seq data, 103 HBV-HCC patients 

were enrolled in our prospective cohort (Table 1). Their 

sera and tumor tissues were collected and subjected to 

clone-based Sanger sequencing for HBV preS region. 

Multiple clones were sequenced for each sample, with a 

median clone number in the serum sample of 9 (IQR, 7–

10) and in the tumor sample of 7 (IQR, 6–9). To inspect 

the inter-subject contamination, a heat map was plotted 

and indicated that there was no between-subject 

contamination (Supplementary Figure 1). The presence/ 

absence of the HBV variants was summarized for each 

sample. Our survival analysis indicated that G40C and 

C147T in the tumors were significantly associated with 

RFS (Supplementary Table 3). 

 

In the correlation test of RNA-seq, the frequencies of 

G40C and C147T were all associated with a gene set 

named “KUROKAWA_LIVER_CANCER_EARLY_ 

RECURRENCE_UP” consisting of genes upregulated 

in HCC with early recurrence (r = 0.29, false discovery 

rate (FDR) = 0.025 for G40C; r = 0.24, FDR = 0.082 for 

C147T) (Supplementary Table 2). In the survival 

analysis of our 103 patients, the presence of these two 

variants in the tumors also predicted unfavorable RFS 

(HR = 1.78, 95% CI = 1.04–3.05, p = 0.045 for G40C; 

HR = 1.74, 95% CI = 1.03–2.95, p = 0.039 for C147T) 

(Figure 1A and Supplementary Table 3). 

 

Evaluation of the HBV variants as serological 

biomarkers for HCC prognosis 

 

To evaluate if these HBV variants serve as serological 

biomarkers predicting prognosis of HCC patients, we 

performed survival analyses using these variants in the 

sera. The presence of G40C and C147T in the sera both 

predicted unfavorable RFS (HR=2.18, 95% CI=1.37–

3.47, p=0.001 for G40C; HR=1.84, 95% CI=1.15–2.92, 

p=0.012 for C147T). Kaplan-Meier curves and log-rank 

tests also confirmed these results (Figure 1B). These 

two variants are polymorphic sites between the HBV 

genomes of HBV genotypes B2 and C2 compared to the 

HBV reference sequences and were highly linked. The 

wild types at nt. 40 and nt. 147 are G and C in genotype 

C2, and C and T in genotype B2, respectively. Besides, 

G40C does not alter amino acid, while C147T results in 

amino acid change from alanine to valine. By 

correlation tests, we found that the two variants tended 

to occur together, and their correlation coefficient was 

0.96 in the sera. If the patients with these two variants 
in the sera were treated as a group, survival analysis and 

Kaplan-Meier curve could confirm the prediction power 

of two individual variants (HR=2.18, 95% CI=1.37–
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Table 1. Baseline characteristics of patients enrolled in our cohorts†. 

Variable Level Cohort in the study (n = 103) 

Age - yr  50.09±8.71 

Gender 
Male 93 (90.3) 

Female 10 (9.7) 

BMI -kg/m2  23.50±3.75 

HBV genotype (sera) 

B 9 (8.7) 

C 67 (65.1) 

Mixture 27 (26.2) 

Ascites 
No 89 (86.4) 

Yes 14 (13.6) 

Tumor rupture 
No 100 (97.1) 

Yes 3 (2.9) 

Portal vein tumor thrombi 
No 84 (81.6) 

Yes 19 (18.4) 

Tumor number 
Single 85 (82.5) 

Multiple 18 (17.5) 

Tumor size 
<3cm 16 (15.5) 

≥3cm 87 (84.5) 

Cirrhosis 

No 7 (6.8) 

Mild Cirrhosis 71 (68.9) 

Cirrhosis 25 (24.3) 

Tumor capsule 

Complete 16 (15.5) 

Incomplete 73 (70.9) 

Absence 14 (13.6) 

Microsatellite 
No 74 (71.8) 

Yes 29 (28.2) 

Microscopic vascular invasion 
No 65 (63.1) 

Yes 38 (36.9) 

Tumor differentiation 

I 14 (13.6) 

II 7 (6.8) 

III 82 (79.6) 

BCLC staging 

0 0 (0.0) 

A 36 (35.0) 

B 48 (46.6) 

C 19 (18.4) 

Postoperative antiviral 

treatment 

No 58 (56.3) 

Yes 45 (43.7) 

HBeAg 
Negative 83 (70.6) 

Positive 20 (19.4) 

HBV DNA - log10 copies/mL 

Total bilirubin (mol/L) 

 3.94±1.36 

≤20 82 (79.6) 

>20 21 (20.4) 

Direct bilirubin (mol/L) 
≤7 75 (72.8) 

>7 28 (27.2) 

Albumin (g/L) 
35-55 93 (90.3) 

<35 OR >55 10 (9.7) 

AFP (ng/mL) 
≤20 42 (40.8) 

>20 61 (59.2) 

ALT (U/L) 
≤42 55 (53.4) 

>42 48 (46.6) 

AST (U/L) 
≤37 48 (46.6) 

>37 55 (53.4) 

GGT (U/L) 
≤61 50 (48.5) 

>61 53 (51.5) 

ALP (U/L) ≤129 84 (81.6) 
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>129 19 (18.4) 

Follow-up time (month) 
Median 30.97 

IQR 11.67–59.66 

HCC-related death 
No 41 (39.8) 

Yes 62 (60.2) 

Recurrence 
No 30 (29.1) 

Yes 73 (70.9) 

†Plus/minus values are means ± SD; Data are number (%), unless otherwise 
indicated. 
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; BMI, body mass index; GGT, γ –glutamyltranspeptidase; HBV, 
hepatitis B virus; HCC, hepatocellular carcinoma. 

 

3.47, p=0.001) (Supplementary Figure 2). Next, we 

investigated the associations of the combined HBV 

variant with clinical variables. It was found that the 

combined variant in the sera was significantly 

associated with microscopic vascular invasion 

(p<0.001), larger tumor size (p=0.019), and higher 

levels of γ-glutamyltranspeptidase (GGT) and alkaline 

phosphatase (ALP) (p=1.15×10-3 for GGT and p<0.001 

for ALP) (Table 2). We failed to perform stratified 

analysis for these two variants in the sera of HBV

 

 
 

Figure 1. Two HBV preS variants in the tumor tissues and sera predicted an unfavorable recurrence-free survival. (A) the 

tumor tissues. (B) the sera. Patients were split into two groups according to the presence (or absence) of the variant. Kaplan–Meier curves 
were plotted to visualize the difference. 
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Table 2. Association of the combined HBV variant with clinical variables†. 

Variable Level 
The presence of the two HBV variants 

No Yes P value 

Microscopic vascular invasion 
No 50 (48.5) 15 (14.6) 8.35x10-4 

Yes 16 (15.5) 22 (21.4)  

Tumor size (cm)  5.89 ± 3.09 7.78 ± 3.88 0.019 

GGT (U/L)  86.3 ± 99.0 148.9 ± 122.2 1.52x10-4 

ALP (U/L)  95.0 ± 48.9 146.9± 184.5 1.15x10-3 

†Plus/minus values are means ± SD; Data are number (%), unless otherwise indicated. Wilcoxon rank sum test was 
performed for continuous variables. Chi-square test was applied for count data. The two HBV variants (G40C and 
C147T) were combined. GGT, γ-glutamyltranspeptidase; ALP, alkaline phosphatase. 

genotype C, as these variants were barely present in the 

samples (1/67 for G40C and 3/67 for C147T). We also 

scanned all the preS2 deletion sites in our data. It was 

found that pre-S2 deletion mutants were present in 85 

sera and 87 tumor samples, respectively. However, pre-

S2 deletion mutants were not associated with prognosis 

of HCC patients in our data (Supplementary Figure 3). 

 

All virological factors including HBV genotype and 

HBV variants and clinicopathological factors were 

subjected to the Cox proportional hazard model analysis 

to estimate postoperative survival. Significant variables 

in the univariate Cox regression analysis were included 

in the multivariate Cox model. The results show that 

tumor rupture (HR=3.91, 95% CI=1.14–13.35, p=0.03), 

microscopic vascular invasion (HR=3.03, 95% 

CI=1.72–5.34, p<0.001), α-fetoprotein (AFP) 

(HR=1.88, 95% CI=1.04–3.38, p=0.036), and ALP 

(HR=2.5, 95% CI=1.39–4.49, p=0.002) increased the 

risk of HCC recurrence, while age (HR=0.97, 95% 

CI=0.94–0.99, p=0.024) and antiviral treatment 

(HR=0.15, 95% CI=0.08–0.28, p<0.001) significantly 

decreased the risk of HCC recurrence (Supplementary 

Table 4). Because antiviral therapy is a very strong 

protective factor to prevent the recurrence of HCC, the 

multivariate Cox proportional hazard models were 

further stratified by antiviral treatment. The results 

show that G40C (HR=3.89, 95% CI=1.39–10.87, 

p=0.01), advanced BCLC staging (HR=4.63, 95% 

CI=1.53–14.02, p=0.007), and high level of AFP 

(HR=5.88, 95% CI=1.88–18.39, p=0.002) significantly 

increased the risk of HCC recurrence in the group with 

postoperative antiviral treatment; however, G40C was 

not associated with postoperative recurrence in HCC 

patients without postoperative antiviral treatment 

(Supplementary Table 5). 

 

Next, each clinical variable and the two HBV variants 

were introduced into the Cox proportional hazards 

model to build a model that could predict postoperative 

recurrence of HCC. It was found that the model 

consisting of serum AFP and G40C achieved the best 

performance (area under curve (AUC) = 0.79, 

sensitivity= 0.80, and specificity= 0.70). In this model, 

AFP was further discretized to achieve a better 

performance (Table 3). If the model was built by 

dichotomized AFP (≤20 or >20 ng/mL) alone, the 

prediction power was less optimal (AUC= 0.73, 

sensitivity=0.75, specificity=0.70) (Figure 2). The 

statistical test suggested that the AUC of the model 

containing AFP and G40C was significantly larger than 

that of the model containing AFP alone (p = 0.029). 

 

Gene dysregulation and biological functions related 

to the two HBV variants 

 

In the RNA-seq data, the correlation of these two HBV 

variants in the tumors was 0.99 (Figure 3A), which was 

quite consistent with the Sanger sequencing data. 

Furthermore, each of the variants could be identified in 

almost each read covering this HBV nucleotide in any 

positive sample. Based on this observation, the tumors 

in RNA-seq dataset were split into two groups: tumors 

with high and low frequencies of these variants. In total, 

109 tumor samples with sufficient coverage on these 

variants were retained for differential expression 

analysis. It was found that 169 genes were differentially 

expressed between the two groups. Among these genes, 

114 were upregulated, while 55 downregulated in the 

tumors with high frequencies of the HBV variants 

(Figure 3B and Supplementary Table 6). We observed 

that the HBV S gene was upregulated in the tumors with 

high frequency of the HBV variants (fold change = 

6.82, FDR = 0.028, Figure 3B, 3C). G40C and C147T 

were located at the promoter region of the HBV S gene. 

Therefore, transcription factor binding sites (TFBSs) 

were predicted for the promoter region (nt. 1 to nt. 154 

of the HBV genome). Multiple possible TFBSs were 

discovered at this region. These data suggest that the 

variants might be involved in regulating the 

transcription of HBV S gene (Supplementary Table 7). 

 

Next, gene set enrichment analysis (GSEA) was 

performed to investigate the gene sets enriched between 
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Table 3. Risk scores of HCC recurrence based on the presence of G40C 
and discretized AFP levels†. 

AFP (ng/mL) Discretized AFP G40C Score 

<20 0 0 0 

≥20 and <200 1 0 1.365 

≥200 and <400 2 0 2.730 

≥400 3 0 4.095 

<20 0 1 2.000 

≥20 and <200 1 1 3.361 

≥200 and <400 2 1 4.727 

≥400 3 1 6.092 

†AFP, α-fetoprotein; HCC, hepatocellular carcinoma. 

these two groups of tumors. In total, 47 positively and 5 

negatively enriched gene sets were identified in the data 

(Supplementary Table 8). In the five negatively enriched 

gene sets, the top ranked gene set suggested that these 

HBV variants were associated with proliferation and 

chromosome instability (CHIANG_LIVER_CANCER_ 

SUBCLASS_PROLIFERATION_DN, normalized 

enrichment score (NES) = -2.73, familywise-error rate 

(FWER) < 0.001) (Figure 3D). In addition, its 

complementary gene set “CHIANG_LIVER_CANCER_ 

SUBCLASS_ PROLIFERATION_UP” was enriched 

positively in the data (NES = 2.62, FWER < 0.001) 

(Supplementary Table 8). Another top ranked negatively 

enriched gene set was “CHIANG_LIVER_CANCER_ 

SUBCLASS_CTNNB1_UP” (NES = -2.66, FWER < 

0.001), which confirmed the results of our survival 

analyses (Figure 3E). Besides these gene sets, other 

prognosis-predicting gene sets were significantly 

enriched, including LEE_LIVER_CANCER_ 

SURVIVAL_UP (NES = -2.32, FWER = 0.005) and 

LEE_LIVER_CANCER_SURVIVAL_DN (NES = 2.39, 

FWER = 0.001), indicating that the HBV variants 

predicted unfavorable OS. In addition, 

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 

(NES = 2.41; FWER < 0.001) and VILLANUEVA 

_LIVER_CANCER_KRT19_UP (NES = 2.16, FWER = 

0.01) were significantly enriched, indicating that the two 

HBV variants facilitate metastasis. Our results also 

suggest that these HBV variants are associated with 

tumorigenesis, anticancer drug resistance, and interferon

 

 
 

Figure 2. ROC curves for the HCC recurrence prediction models using AFP alone and AFP plus G40C. (A) Model using AFP alone. 

(B) Model using AFP and G40C. ROC, receiver operating characteristic; AFP, α-fetoprotein; HCC, hepatocellular carcinoma. 
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response (BOYAULT_LIVER_CANCER_SUBCLASS_ 

G3_UP, NES = 2.41, FWER = 0.001; 

KOBAYASHI_EGFR_SIGNALING_24HR_DN, NES = 

2.32, FWER = 0.001; and FARMER_BREAST_ 

CANCER_CLUSTER_1, NES = -2.15, FWER = 0.051) 

(Figure 3F and Supplementary Table 8). 

 

DISCUSSION 
 

In this study, RNA-seq datasets of 203 HCC samples 

were firstly screened for HCC prognosis-related HBV 

variants in the preS region. A total of 12 variants related 

to RFS were initially identified. Of those, G40C and 

C147T were successfully validated both in the sera and 

in the tumors of 103 HBV-HCC patients in our 

prospective cohort. Interestingly, the two variants were 

actually polymorphic sites between the genomes of 

HBV genotypes B2 and C2 and highly linked with each 

other, either in the RNA-seq data of the tumor tissues or 

in the Sanger sequencing data of both the sera and the 

tumor tissues. G40C is also a representative of HBV 

genotype B2 or genotype mixture with genotype B2. 

Compared to genotype C2, HBV genotype B2 or 

genotype mixture increases the risk of HCC recurrence, 

which is concordant with our previous study [15]. The 

results of multivariate Cox proportional hazard models

 

 
 

Figure 3. Correlation of the two variants and their functional analysis in RNA-seq data of HBV-HCC tumors. (A) The correlation 

(lower triangle) and frequency distributions (diagonal) of these two variants. The two variants tended to occur simultaneously. (B) Volcano 
plot for differentially expressed genes between groups with high or low frequency of the two variants. (C) The HBV S gene was significantly 
upregulated. (D) The gene set represents the gene signature of proliferation and chromosome instability. (E) The gene set represents the 
gene signature of recurrence-free survival. (F) The gene set represents the gene signature of tumorigenesis. NES, normalized enrichment 
score. FWER, familywise-error rate. 



 

www.aging-us.com 22263 AGING 

show that G40C, advanced BCLC staging, and high 

level of AFP significantly increased the risk of HCC 

recurrence in the group with postoperative antiviral 

treatment, while there was no effect in the group 

without postoperative antiviral treatment (Supple-

mentary Table 5). Antiviral treatment can decrease the 

occurrence and recurrence of HCC in high-risk HBV-

infected subjects [14, 16, 17]. This result indicates that 

postoperative antiviral treatment could not decrease the 

risk of HCC recurrence in patients with HBV genotype 

B carrying G40C.  

 

Our results show that G40C as a represent of C147T 

and HBV genotype B2 was a significant serological 

biomarker for HCC recurrence. AUC of the optimized 

model consisting of HBV G40C and AFP in the sera 

was 0.79. The prediction power of this prediction model 

is better than the one we previously developed using 

clinical variables composed of the levels of HBV DNA 

load, the presence of liver cirrhosis, the level of AFP, 

and BCLC stage [18]. Furthermore, the Cox prediction 

model based on the AJCC tumor stage and ratios of 

serum preS2 deletion as deleted by a preS gene chip 

was also developed for the prediction of postoperative 

prognosis in HBV-HCC [12, 19]. It has been confirmed 

that the AUC of this model is 0.741 in the main cohort 

and 0.704 in the validation cohort [12]. Apparently, our 

model established in this study should be more powerful 

than the currently published ones in predicting 

postoperative prognosis in HBV-HCC. This model is 

worth translating into clinical practice. 

 

Some studies have confirmed the carcinogenic potential 

of the preS2 mutated proteins in both transgenic mice 

and cell culture [7, 20, 21]. The rtM204I/sW196* 

preS/S truncation induce the cell transformation and 

tumorigenesis ability via altered host gene expressions, 

including MGST2, HIF1A, and TGFbi. Downregulated 

TGFbi may be a common mechanism for oncogenicity 

in HBV surface truncation mutants [22]. PreS2 

deletions modulate cellular processes with a potential 

impact on liver disease. The accumulation of mutated 

envelope proteins in the ER leads to ER stress, DNA 

damage, centrosome overduplication, and genomic 

instability [23–25]. HBV preS2 interacted with the 

preS2-responsible region and activated the hTERT 

promoter, resulting in the upregulation of telomerase 

activity and the promotion of HCC development [22]. 

However, the mechanism by which the nucleotide 

variants in the preS2 of HBV promote the recurrence of 

HCC remains unknown. G40C and C147T are located 

in the HBV preS2 region and as well as the promoter 

region of the HBV S gene. The expression of the HBV 
S gene was upregulated 6.82 times in the tumors with 

high frequency of the two variants, compared to those 

with low frequency of the two variants (Figure 3C). The 

HBV variants may alter the binding of the TFBSs to the 

promoter, which regulates the transcription of HBV S 

gene (Supplementary Table 7). In this study, we also 

provided evidence showing that the two HBV variants 

facilitated cell proliferation, chromosome instability, 

tumorigenesis, metastasis, and anticancer drug 

resistance. It may explain the reason that HBV 

Genotype B2 increases the risk of HCC recurrence. 

Further experimental studies using cell lines and animal 

models are suggested to validate the cancer promoting 

function of the HBV with the two variants. 
 

In summary, the present study indicates that HBV preS 

variants G40C and C147T as representatives of HBV 

Genotype B2 are highly linked with each other, and 

may serve as prognostic biomarkers in both sera and 

tumor tissue samples of HBV-HCC patients. The AUC 

of the optimized model combining G40C with AFP was 

0.79. HBV preS G40C variant and serological AFP are 

easily examined in HBV-HCC patients and helpful for 

making therapeutic decision before surgery. Thus, the 

model is worth translating into clinical practice. 

 

MATERIALS AND METHODS 
 

RNA-seq data analysis to screen for HBV variants 

related to HCC prognosis 
 

The original RNA-seq data of 203 HCC patients from 

12 studies (SRP062885, SRP069212, SRP099053, 

SRP174991, SRP256409, SRA074279, SRP039694, 

SRP108560, SRP118972, SRP120360, SRP188371, and 

SRP220071) were retrieved from the Sequence Read 

Archive database [26–34]. HBV variants in the region 

of preS1/preS2 were extracted as previously described 

and those with average frequencies ≥ 25% and more 

than 100 valid values were kept for downstream 

analyses [35]. The read count matrix was obtained by 

Salmon [36]. During the process, the annotation of 

human genes was combined with that of HBV ones. 

Thus, the abundances of HBV genes were evaluated 

along with the human genes during the quantification 

process. Combat-Seq method was applied to adjust the 

potential batch effect among different studies [37]. The 

gene set names containing “survival” (or “recurrence”) 

and “liver cancer” were retrieved from gene sets of 

chemical and genetic perturbations in MsigDB 

(http://software.broadinstitute.org/gsea/index.jsp) as 

liver-specific prognosis-related gene sets. Sample-level 

prognosis scores were calculated by gene set variation 

analysis in which classical maximum deviation method 

was performed to compute the enrichment statistics 

[38]. The parameter “min.sz” was set to 10 during the 
process. The function “cor.test” in R language was 

applied to calculate the Pearson correlations between 

variant frequencies of HBV loci and prognosis scores. 

http://software.broadinstitute.org/gsea/index.jsp
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The Benjamini–Hochberg (BH) method was performed 

among the prognostic gene sets per variant to calculate 

FDRs. Any association with FDR < 0.1 was kept for 

downstream analyses. For differential expression gene 

analysis, edgeR was applied [39, 40]. P values were 

adjusted by BH method. Genes with fold change ≥ 2 

and FDR < 0.05 were collected as differentially 

expressed genes. For GSEA analysis, the gene’s read 

count was converted into Fragments Per Kilobase of 

exon model per Million mapped fragments (FPKM). 

Taking the signal-to-noise ratio as input, the 

“GSEAPreranked” tool in GSEA software was 

performed to detect the gene sets enriched in the data 

[41]. Gene sets with FWER ≤ 0.1 were considered as 

significantly enriched. 

 

Independent validation of the HBV variants in HBV-

HCC patients 

 

In total, 103 consecutive HBV-infected HCC patients 

who received radical hepatectomy from this research 

group of the Eastern Hepatobiliary Surgery Hospital 

(Shanghai, China) were enrolled and confirmed by 

pathology from February 2011 to March 2012. Resected 

tumors were subjected to pathological examination for 

tumor-free resection margin > 1 cm without evidence of 

cancer metastasis. Preoperative peripheral blood 

samples and tumor tissues of participants were collected 

and stored at -80° C immediately after surgery. Routine 

laboratory tests related to liver function were measured 

using international standard methods and matched 

reagents (HITACHI 7600, Hitachi Koki Co. Ltd., 

Hitachinaka City, Japan; Wako Diagnostics Reagents, 

Wako Pure Chemical Industries Ltd., Osaka, Japan). 

Alpha-fetoprotein concentrations were routinely 

measured on the Cobas e601 immunoassay analyzers 

and matched reagents (Roche Diagnostics, Manheim, 

Germany) with electrochemiluminescence technology. 

Participants were surgically treated and followed-up 

according to the standard protocols as previously 

described [14]. The follow-up was finished on October 

1st, 2019. All participants were self-reported Han 

Chinese. This study was approved by the ethics 

committee of Eastern Hepatobiliary Surgery Hospital. 

All patients provided written informed consent. 

 

HBV DNA of preoperative sera and tumors was 

extracted using QIAamp DNA blood mini kit (Qiagen, 

Hilden, Germany). The HBV genome between nt.2743 

and nt.255 (from nt.2743 to nt.3215 and from nt.1 to 

nt.255) was amplified using nested PCR and sequenced 

using the cloning-based sequencing method as 

previously described [42]. Ten clones of each sample 
were randomly selected for Sanger sequencing. 

Genotyping was performed by HBV subtype analyzer 

(STAR) as previously described [35]. For a clone, 

scores were assigned for Genotype A to H. The 

genotype of a clone was identified as the one with the 

largest score. Samples with clones of multiple 

genotypes were defined as mixture. Variants of each 

clone and preS2 deletion sites were retrieved from 

BLAST alignments [43]. Clones that failed to align to 

the HBV genome were excluded from the subsequent 

analysis. Sample-level variants were then summarized 

via collecting the variants of all clones in a sample. In 

simple terms, in any clone of a sample, if a variant was 

detected at a nucleotide of the HBV genome, then we 

considered that the variant was present at that locus in 

that sample. The pairwise distances of the clones from 

serum samples were calculated by MEGA X and then 

visualized to inspect identical clones and therefore 

inter-subject contamination [44]. 

 

Statistical analysis 

 

Clinical and baseline characteristics were summarized 

by using mean values with standard deviation or median 

values with interquartile range (IQR, 25th to 75th 

percentiles) for continuous variables. Proportions were 

applied for categorical values. Univariate Cox 

regression analysis and log-rank test were applied to 

estimate the associations between the presence of the 

viral variants and patients’ OS and RFS. Kaplan–Meier 

method performed survival analysis and generated a 

survival plot. The selected HBV variants and each 

clinical variable were subjected to the Cox regression 

analyses to compute the risk scores and build HCC 

recurrence prediction models. Given that xi is the ith 

variable and βi is its coefficient, then the risk score of a 

patient is calculated as:  

 

1

n

i i

i

Risk Score  
=

=  

 
The number of variables (i.e., n in the formula) was set 

to 2 according to the Harrell’s guidelines [45]. The best 

one was determined by the AUC. The receiver 

operating characteristic (ROC) curves were plotted by R 

package pROC [46]. The statistical significance 

between two AUCs was determined by the one-sided 

test applied by the function “roc.test” in the pROC 

package with default parameters. TFBS were predicted 

by Find Individual Motif Occurrences [47]. The match 

p-value was set to 0.001 to gain more sensitivity. 

TFBSs with false discovery rate (FDR) of < 0.25 and 

overlap with G40C or C147T were collected. For 

clinical variable association test, differences were 

determined by Wilcoxon rank sum test or χ2 tests as 
appropriate. P<0.05 was considered significant. All 

analyses were two-side and performed using SPSS, 

version 21 (Armonk, NY). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Heat map of pairwise distances of the clones from the serum samples. Every row or column represents 

a clone. The grids on the diagonal line represent the distances between a clone and itself, which are all 0 (marked by black). 
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Supplementary Figure 2. Combined variants predicted unfavorable recurrence-free survival. G40C and C147T were combined 
because of their high frequency of concurrence. Kaplan–Meier curve was plotted to visualize the prognosis difference. 

 

 
 

Supplementary Figure 3. The prognostic value of the preS2-deletion mutations in the HCC patients from our cohort. (A) the 

serum samples, overall survival; (B) the serum samples, recurrence-free survival; (C) tumoral samples, overall survival; (D) tumoral samples, 
recurrence-free survival. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 6. 

 

Supplementary Table 1. Liver cancer-specific and prognosis-related gene sets. 

Gene set Pubmed ID 

Overall survival-related gene sets 

LEE_LIVER_CANCER_SURVIVAL_DN 15349906 

LEE_LIVER_CANCER_SURVIVAL_UP 15349906 

HOSHIDA_LIVER_CANCER_SURVIVAL_UP 18701503 

HOSHIDA_LIVER_CANCER_SURVIVAL_DN 18701503 

KIM_LIVER_CANCER_POOR_SURVIVAL_UP 21320499 

KIM_LIVER_CANCER_POOR_SURVIVAL_DN 21320499 

Recurrence-free survival-related gene sets 

IIZUKA_LIVER_CANCER_EARLY_RECURRENCE 12648972 

HOSHIDA_LIVER_CANCER_LATE_RECURRENCE_UP 18923165 

HOSHIDA_LIVER_CANCER_LATE_RECURRENCE_DN 18923165 

WOO_LIVER_CANCER_RECURRENCE_UP 18381945 

WOO_LIVER_CANCER_RECURRENCE_DN 18381945 

KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 15288478 

KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_DN 15288478 

 

Supplementary Table 2. Association between HBV variants frequencies and HCC recurrence-related gene sets. 

Variant Gene set 
Pearson 

correlation 
P value FDR 

G40C KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.29 2.11E-03 2.54E-02 

G45C KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.28 2.19E-03 2.63E-02 

A85G KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.27 2.21E-03 2.65E-02 

A87G KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.25 5.39E-03 6.47E-02 

T93C KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.26 4.51E-03 5.42E-02 

C96A KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.25 4.77E-03 5.72E-02 

C99A KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.26 4.13E-03 4.96E-02 

C105T KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.26 3.91E-03 4.69E-02 

C110G KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.25 6.11E-03 7.33E-02 

C127A KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.26 3.69E-03 4.43E-02 

G132A KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.28 1.82E-03 2.19E-02 

C147T KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_UP 0.24 6.87E-03 8.24E-02 

Abbreviations: FDR, false discovery rate. 
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Supplementary Table 3. Recurrence-related HBV variants validated by sanger 
sequencing in the tumors. 

Variant Hazard ratio 95% confidence interval P value 

G40C 1.78 1.04–3.05 4.49E-02 

G45C 1.63 0.95–2.79 8.63E-02 

A85G 1.74 1.02–2.98 5.30E-02 

A87G 1.72 1.01–2.91 5.45E-02 

T93C 1.54 0.90–2.62 1.29E-01 

C96A 1.74 1.02–2.98 5.30E-02 

C99A 1.60 0.95–2.71 9.00E-02 

C105T 0.94 0.55–1.61 8.31E-01 

C110G 1.69 0.98–2.92 7.23E-02 

C127A 1.43 0.86–2.40 1.83E-01 

G132A 1.59 0.95–2.67 8.94E-02 

C147T 1.74 1.03–2.95 4.84E-02 
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Supplementary Table 4. Cox regression analysis for the factors significantly affected the recurrence of 
postoperative HCC patients. 

Variables 
No.  (%) of patients 

(n=103) 

Univariate analysis Multivariate analysis 

HR (95% CI) 
P 

value 
HR (95% CI) P value 

Age (years) 103 (100) 0.96 (0.94–0.99) 0.008 0.97 (0.94–0.99) 0.024 

HBV genotype 
Genotype C 67 (65.05) 1    

Not Genotype C 9 (8.74) 1.97 (1.23–3.15) 0.005   

G40C 
G 66 (64.1) 1    

C 37 (35.9) 2.17 (1.36–3.47) 0.001   

C147T 
C 64 (62.1) 1    

T 39 (37.9) 1.83 (1.15–2.92) 0.01   

Tumor rupture 
No 100 (97.1) 1  1  

Yes 3 (2.9) 4.57 (1.40–14.91) 0.012 3.91 (1.14–13.35) 0.03 

Portal vein tumor 

thrombi 

No 84 (81.6) 1    

Yes 19 (18.4) 4.24 (2.44–7.36) <0.001   

Tumor size 
<3cm 16 (15.5) 1    

≥3cm 87 (84.5) 2.52 (1.16–5.52) 0.02   

Tumor capsule 
Complete 16 (15.5) 1    

Incomplete/Absence 87 (84.5) 2.55 (1.17–5.57) 0.019   

Microscopic 

vascular invasion 

No 65 (63.1) 1  1  

Yes 38 (36.9) 5.26 (3.22–8.59) <0.001 3.03 (1.72–5.34) <0.001 

Tumor 

differentiation 

I/II 21 (20.4) 1    

III 82 (79.6) 2.82 (1.40–5.69) 0.004   

BCLC staging 
0/A 36 (35.0) 1    

B/C 67 (65.0) 3.00 (1.74–5.20) <0.001   

Postoperative 

antiviral treatment 

No 58 (56.3) 1  1  

Yes 45 (43.7) 0.17 (0.10–0.29) <0.001 0.15 (0.08–0.28) <0.001 

AFP 
≤20 ng/mL 42 (40.8) 1  1  

>20 ng/mL 61 (59.2) 2.78 (1.62–4.76) <0.001 1.88 (1.04–3.38) 0.036 

AST (U/L) 
≤37 48 (46.6) 1    

>37 55 (53.4) 1.71 (1.07–2.74) 0.024   

GGT (U/L) 
≤61 50 (48.5) 1    

>61 53 (51.5) 1.99 (1.25–3.18) 0.004   

ALP (U/L) 
≤129 84 (81.6) 1  1  

>129 19 (18.4) 2.05 (1.19–3.54) 0.01 2.50 (1.39–4.49)) 0.002 

Abbreviations: CI, confidence interval; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HR, hazard ratio; AST, aspartate 
aminotransferase; GGT, γ –glutamyltranspeptidase; AFP, α-fetoprotein; ALP, alkaline phosphatase. 
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Supplementary Table 5. Cox regression analysis for the factors significantly affected the 
recurrence of postoperative HCC patients stratified by antiviral treatment. 

Variables 
Multivariate analysis 

HR (95% CI) P value 

With postoperative antiviral treatment (n=45) 

G40C 
G 1  

C 3.89 (1.39–10.87) 0.01 

BCLC staging 
0/A 1  

B/C 4.63 (1.53–14.02) 0.007 

AFP (ng/mL) 
≤20 1  

>20 5.88 (1.88–18.39) 0.002 

Without postoperative antiviral treatment (n=58) 

Age (years)  0.96 (0.93–0.99) 0.024 

Tumor rupture 
No 1  

Yes 5.07 (1.43–17.99) 0.012 

Microscopic vascular invasion 
No 1  

Yes 4.00 (2.07–7.72) <0.001 

ALP (U/L) 
≤129 1  

>129 2.85 (1.43–5.65) 0.003 

Abbreviations: CI, confidence interval; HCC, hepatocellular carcinoma; HR, hazard ratio; AFP, α-fetoprotein; 
ALP, alkaline phosphatase. 

 

Supplementary Table 6. Differentially expressed genes in the tumors with high/low frequencies of two HBV 
variants. 

 

 

Supplementary Table 7. Transcription factor binding sites predicted in the region of preS2. 

Motif ID Transcription factor Start Stop Strand Score P value FDR 

MA0484.1 HNF4G 138 152 - 8.38 2.25e-4 0.06 

MA0505.1 Nr5a2 29 43 + 4.90 4.93e-4 0.07 

MA0505.1 Nr5a2 40 54 - 3.34 7.89e-4 0.07 

MA0505.1 Nr5a2 35 49 + 3.21 8.21e-4 0.07 

MA1101.1 BACH2 30 43 - 6.69 3.69e-4 0.10 

MA0114.3 Hnf4a 136 151 - -4.58 4.23e-4 0.11 

MA0501.1 MAF::NFE2 28 42 - 3.16 4.18e-4 0.12 

MA1147.1 NR4A2::RXRA 35 49 - 5.77 5.69e-4 0.15 

MA0150.2 Nfe2l2 32 46 - 3.61 7.08e-4 0.20 

MA0728.1 Nr2f6(var.2) 27 41 + -18.34 8.13e-4 0.23 

MA0138.2 REST 135 155 + -3.04 9.58e-4 0.23 

Abbreviation: FDR, false discovery rate. 
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Supplementary Table 8. Gene sets enriched in the tumors with high/low frequencies of two HBV variants. 

Gene set Size ES NES P value FWER 

Gene sets enriched in the tumors with low frequencies of two HBV variants 

CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_DN 178 -0.52 -2.73 <1E-3 <1E-3 

CHIANG_LIVER_CANCER_SUBCLASS_CTNNB1_UP 170 -0.51 -2.66 <1E-3 <1E-3 

CAIRO_HEPATOBLASTOMA_CLASSES_DN 213 -0.44 -2.35 <1E-3 0.003 

LEE_LIVER_CANCER_SURVIVAL_UP 177 -0.44 -2.32 <1E-3 0.005 

FARMER_BREAST_CANCER_CLUSTER_1 47 -0.52 -2.15 <1E-3 0.051 

Gene sets enriched in the tumors with high frequencies of two HBV variants 

NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON 145 0.62 2.86 <1E-3 <1E-3 

CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_UP 174 0.56 2.62 <1E-3 <1E-3 

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 152 0.52 2.41 <1E-3 <1E-3 

BOYAULT_LIVER_CANCER_SUBCLASS_G3_UP 190 0.51 2.41 <1E-3 0.001 

LEE_LIVER_CANCER_SURVIVAL_DN 174 0.51 2.39 <1E-3 0.001 

KAMMINGA_EZH2_TARGETS 40 0.65 2.39 <1E-3 0.001 

NIKOLSKY_BREAST_CANCER_8Q12_Q22_AMPLICON 122 0.54 2.38 <1E-3 0.001 

NIKOLSKY_BREAST_CANCER_17Q11_Q21_AMPLICON 105 0.54 2.32 <1E-3 0.001 

KOBAYASHI_EGFR_SIGNALING_24HR_DN 251 0.47 2.32 <1E-3 0.001 

BURTON_ADIPOGENESIS_3 93 0.54 2.32 <1E-3 0.001 

MITSIADES_RESPONSE_TO_APLIDIN_DN 247 0.47 2.28 <1E-3 0.001 

ROSTY_CERVICAL_CANCER_PROLIFERATION_CLUSTER 140 0.50 2.27 <1E-3 0.001 

SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 445 0.44 2.25 <1E-3 0.002 

WONG_EMBRYONIC_STEM_CELL_CORE 332 0.45 2.24 <1E-3 0.002 

BORCZUK_MALIGNANT_MESOTHELIOMA_UP 308 0.44 2.20 <1E-3 0.006 

AGUIRRE_PANCREATIC_CANCER_COPY_NUMBER_UP 294 0.45 2.19 <1E-3 0.007 

VILLANUEVA_LIVER_CANCER_KRT19_UP 167 0.46 2.16 <1E-3 0.01 

CHIN_BREAST_CANCER_COPY_NUMBER_UP 23 0.68 2.16 <1E-3 0.01 

CHIANG_LIVER_CANCER_SUBCLASS_UNANNOTATED_DN 192 0.46 2.15 <1E-3 0.011 

RHODES_CANCER_META_SIGNATURE 65 0.54 2.15 <1E-3 0.011 

ABRAMSON_INTERACT_WITH_AIRE 43 0.57 2.14 <1E-3 0.014 

DAVICIONI_MOLECULAR_ARMS_VS_ERMS_DN 174 0.45 2.11 <1E-3 0.022 

LI_WILMS_TUMOR_VS_FETAL_KIDNEY_1_DN 164 0.46 2.10 <1E-3 0.023 

LE_EGR2_TARGETS_UP 107 0.48 2.09 <1E-3 0.029 

REN_BOUND_BY_E2F 61 0.52 2.07 <1E-3 0.042 

WOO_LIVER_CANCER_RECURRENCE_UP 103 0.48 2.07 <1E-3 0.043 

PAL_PRMT5_TARGETS_UP 200 0.43 2.07 <1E-3 0.043 

WAMUNYOKOLI_OVARIAN_CANCER_GRADES_1_2_UP 139 0.46 2.07 <1E-3 0.044 

HEIDENBLAD_AMPLIFIED_IN_PANCREATIC_CANCER 55 0.53 2.07 <1E-3 0.047 

BIDUS_METASTASIS_UP 210 0.43 2.06 <1E-3 0.051 

JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_DN 56 0.53 2.06 <1E-3 0.052 

WHITEFORD_PEDIATRIC_CANCER_MARKERS 113 0.47 2.06 <1E-3 0.052 

JIANG_AGING_CEREBRAL_CORTEX_DN 45 0.55 2.06 1.55E-03 0.054 

MEINHOLD_OVARIAN_CANCER_LOW_GRADE_DN 19 0.67 2.05 <1E-3 0.058 

TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_DUCTAL_NORMAL_UP 66 0.51 2.05 <1E-3 0.059 

GRAHAM_NORMAL_QUIESCENT_VS_NORMAL_DIVIDING_DN 87 0.49 2.05 <1E-3 0.061 

NIKOLSKY_BREAST_CANCER_17Q21_Q25_AMPLICON 298 0.41 2.04 <1E-3 0.069 

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_14 143 0.45 2.04 <1E-3 0.072 

MARKEY_RB1_ACUTE_LOF_UP 229 0.42 2.04 <1E-3 0.074 

DING_LUNG_CANCER_EXPRESSION_BY_COPY_NUMBER 100 0.47 2.03 <1E-3 0.076 

CROONQUIST_IL6_DEPRIVATION_DN 95 0.47 2.03 <1E-3 0.076 

HOSHIDA_LIVER_CANCER_SUBCLASS_S2 114 0.45 2.03 <1E-3 0.082 

RHODES_UNDIFFERENTIATED_CANCER 69 0.50 2.03 <1E-3 0.085 

VECCHI_GASTRIC_CANCER_ADVANCED_VS_EARLY_UP 169 0.43 2.02 <1E-3 0.088 

BLUM_RESPONSE_TO_SALIRASIB_DN 336 0.40 2.02 <1E-3 0.091 

FUJII_YBX1_TARGETS_DN 194 0.43 2.02 <1E-3 0.091 

MARKEY_RB1_CHRONIC_LOF_UP 107 0.47 2.02 <1E-3 0.097 

Abbreviation: ES, enrichment score; NES, normalized ES; FWER, familywise-error rate. 
 


