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ABSTRACT
Subtropical dry forests are among the most vulnerable biomes to land

transformation at a global scale. Among them, the Dry Chaco suffers an accelerated

change due to agriculture expansion and intensification. The Dry Chaco ecoregion

is characterized by high levels of endemisms and species diversity, which are the

result of a variety of climates and reliefs, allowing a wide variety of environments.

The amphibian group exhibits a high richness in the Dry Chaco, which has been

barely studied in relation to land cover changes. We used ecological niche models

(ENMs) to assess the potential geographic distribution of 10 Leptodactylus species

(Anura, Leptodactylidae), which are mainly distributed within the Dry Chaco.

We characterized these distributions environmentally, analyzed their overlap with

land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how

these species potential distribution is affected by the transformation of land, and

quantified the proportional area of the potential distribution in protected areas.

We found that temperature seasonality is the main constraint to the occurrence of

the species studied, whose main habitats are savannas, grasslands and croplands.

The main threats to these species are the effects of climate change over spatial

patterns of seasonality, which could affect their breeding and reproduction mode;

the loss of their natural habitat; the exposure to contaminants used by intensive

agriculture and their underrepresentation in protected areas.
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Keywords Conservation, Chaco, Anura, Ecological Niche Model, Land cover, Leptodactylus,

Distribution

INTRODUCTION
Habitat destruction and fragmentation produced by changes in land use and land

cover (LULC), and climate change are major factors influencing the global decline of

populations and species (Bennett & Saunders, 2010). The humid tropics and amazon basin

were the main focus of research and debate in relation to the effects of land transformation

over biodiversity (Aide et al., 2013). Nevertheless, in Latin America, dry forests and

savanna/shrub biomes are experiencing the second highest rate of absolute deforestation,
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behind rainforests (Aide et al., 2013). The Great American Chaco–distributed across

Argentina, Paraguay, Bolivia and small areas of Brazil–and particularly the Dry Chaco, is

the only subtropical dry forest in the planet (sensu Olson et al., 2001). Since the early

1900s, the Dry Chaco has experienced extensive livestock ranching (Bucher & Huszar,

1999). At present, land use patterns are quite different across countries. The greatest

annual rates of landscape transformation were registered in Paraguay, reaching 4% in 2010

(the highest historical values in the entire region), followed by Argentina (Vallejos et al.,

2014). In Argentina, since the 1970s, the Dry Chaco suffered an accelerated change

due to agriculture expansion and intensification, especially of soybean and implanted

pastures (Zak, Cabido & Hodgson, 2004; Boletta et al., 2006; Grau, Gasparri & Aide, 2008).

Both in Argentina and Paraguay, chacoan habitats destruction has been identified as one

of the worst environmental disasters in South America (Taber, Navarro & Arribas, 1997;

Vallejos et al., 2014). While deforestation for intensive agriculture is also occurring in

Bolivia, most of the Bolivian Chaco is still forested (especially when compared to

Argentina and Paraguay) (Taber, Navarro & Arribas, 1997). Today, the predominant

natural vegetation of the Chaco corresponds to open woodlands of thorny forest,

interspersed with grasslands (Morello et al., 2012). The subtropical Dry Chaco constitutes

the second largest continuous forest, behind the Amazon rainforest (Eva et al., 2004) and

it is the less fragmented dry forest ecosystem in the world (Portillo-Quintero & Sánchez-

Azofeifa, 2010; Caldas et al., 2013). Consequently, it represents a major asset for

continental-scale biodiversity conservation, which is highly threatened by LULC changes.

Despite the current rate of habitat destruction and the ecosystem value of the Dry Chaco,

the system of protected areas is scarce and inefficient in most of its extension, e.g. only 2%

of the Argentinean Dry Chaco is protected under some type of legislation (Brown et al.,

2006).

The Dry Chaco ecoregion is characterized by high levels of endemism and diversity

of species, which are the result of a variety of climates and reliefs, deriving in a wide variety

of environments (The Nature Conservancy et al., 2005). Thus, analyses assessing the

impacts of LULC on the geographic patterns of distribution of taxonomic groups are of

major importance, since different taxa are affected in different ways by land use and by

its changes (Schulze et al., 2004; Leroux et al., 2010; Dallimer et al., 2012). Amphibians

exhibit high richness in the Dry Chaco, which has been scarcely studied in association to

land cover changes (Torres et al., 2014). This fact is worrying since amphibians have

become a high-priority group for conservation efforts (de Pous et al., 2010; Urbina-

Cardona & Flores-Villela, 2010; Trindade-Filho et al., 2012; Nori et al., 2013; Nori et al.,

2015) due to the concern about declines in their populations, and amphibian species

extinctions around the world (Young et al., 2001).

Anuran species of Leptodactylus inhabit both open (croplands, grasslands, and

shrublands) and closed vegetation (forest) areas; thus, the environmental heterogeneity

of the Dry Chaco can be explored through the distribution of the genus (de Sá et al.,

2014). The genus is the most diverse in the Dry Chaco, representing 25% of the

anuran species of the ecoregion (Cruz, Perotti & Fitzgerald, 1992; Brusquetti & Lavilla,

2006; Vaira et al., 2012), and at least one species of Leptodactylus has been declared as
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near threatened by the International Union for Conservation of Nature (2016). The genus

shows the highest diversity of reproductive modes within Leptodactylidae family, the most

diverse family of Neotropical anurans (200 spp). Conservation priorities of a certain

taxonomic group may also inform about the conservation requirements of other groups

(Rodrigues & Brooks, 2007). Under this assumption and taking into account that the most

diverse group may be representative of a wide group of taxa, the genus Leptodactylus

might be a good indicator to assess the responses of sensitive species to changes in LULC

in the Dry Chaco ecoregion.

Current techniques of ecological niche models (ENMs) allow relating species

distribution data (species occurrence at known locations) with information about the

environmental and/or spatial characteristics of the locations (abiotic factors). The

environmental conditions of the localities where a species occur provide of just a

partial image of the niche which can be represented in the geographic space; thus, they

may be informative about the potential distribution of the species (Lobo, 2015). This

association leads to confusion between the concepts of Species Distribution Models

(SDM) and ENM, since it is natural to talk about SDM when inferences from the

occupied area are involved. However, if we try to model potential areas, which essentially

involves geographic localities with favorable conditions for the occurrence of a species

(i.e. conditions contained in its existing fundamental or realized niche, but which may be

present in other unoccupied regions), we must use ENM concept (Peterson & Soberón,

2012). ENM is a robust method to characterize regional species distributions (Seoane

et al., 2006; Ficetola et al., 2010), offering reliable information regarding environmental

constraints. These spatial analyses are the basis for assessing the effects of LULC changes

over the potential distribution of species, and for proposing conservation strategies.

In this study, we estimated the potential geographic distribution of 10 Leptodactylus

species, which are mainly distributed within the Dry Chaco; and we characterized

them environmentally, i.e. by assessing which environment variables are the most relevant

to determine the occurrence of these species. To spatially characterize the distributions

of Leptodactylus species, we analyzed the proportion of the ecoregions and the different

land cover types in the full range of the potential geographic distributions. We used

existing maps of cultivated areas from 1976 to 2013 to evaluate how the potential

distributions of these species have been affected by the expansion of the agricultural

frontier. To evaluate the state of protection of Leptodactylus chacoan species, we quantified

the proportion of the potential distribution of these species included within protected

areas, focusing on species included in International Union for Conservation of Nature

(IUCN) conservation categories.

MATERIALS AND METHODS
Selected species
We selected ten species of the genus Leptodactylus, whose main distribution area is in

the Dry Chaco ecoregion: Leptodactylus bufonius, L. chaquensis, L. elenae, L. fuscus,

L. gracilis, L. laticeps, L. latinasus, L. latrans, L. mystacinus and L. podicipinus. Among these

species, Leptodactylus laticeps is the only one considered as near threatened by IUCN
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assessments (Cortez et al., 2004); and vulnerable by the categorization of Argentinean

amphibians (Schaefer & Céspedez, 2012).

Occurrence data
Presence points databases were constructed based on revised specimens of collections,

databases of herpetological collections, bibliography and free databases. The material

revised proceeded from the following herpetological collections: Argentina: Fundación

Miguel Lillo (FML), Museo Argentino de Ciencias Naturales (MACN), Museo de la Plata

(MLP), private collections of Dr. Marı́a Laura Ponssa (L) and Dr. Julián Lescano (JL);

Brazil: Museu Nacional de Rio de Janeiro (MNRJ), Museu de Zoologia de São Paulo

(MZUSP), and Paraguay: Instituto de Investigaciones Biológicas del Paraguay (IIBP),

Museo Nacional de Historia Natural de Paraguay (MNHNP). The database of Laboratorio

de Genética Evolutiva (LGE, Instituto de Biologı́a Subtropical, Misiones, Argentina) was

also considered in the analysis. One hundred thirty five scientific articles were analyzed to

extract presence points. When presence points were scarce, we completed species records

with data obtained from Global Biodiversity Facility Information GBIF (accessed in

March 2016). We cleaned this information to avoid mistakes from outdated taxonomic

arrangements. All presence records are available in Supplemental Information 1.

We confirmed the species identifications when it was possible to avoid primary source

of error in niche modeling. We identified the species recognizing external morphology

features proposed in literature as descriptions of species, taxonomic and phylogenetic

revisions (e.g. Heyer, 1970; Heyer, 1978; Heyer, 2014; de Sá et al., 2014). We used a

binocular stereoscope when it was necessary.

We used the geographic coordinates of each specimen to georeference species

occurrences, using Google Earth whenever these coordinates were missing. We estimated

the uncertainties of these locations by considering the extent of the locality: each locality

was defined as a circle, with a point marking the most likely position (the geographic

center of the named place), and a radius representing the maximum distance from the

point within which the locality is expected to occur (Wieczorek, Guo & Hijmans, 2004).

The database was cleaned of records which were outside the known altitudinal range

of each species and whose uncertainty was higher than 10,000 m. Sampling bias in

geographic space (i.e. localities which are overrepresented in the collections) may lead to

biases in the inferences about the environmental requirements of the species. To avoid this

spatial bias and its consequent autocorrelation, we disaggregated occurrences of each

species at 10,000 m with ‘ecospat’ package (Broenniman et al., 2014; Boria et al., 2014)

implemented in R software. The conserved occurrence points were plotted in maps to

check the consistency with the known ranges of the species. We analyzed a total of 2,306

localities, and the number of occurrences per species varied between 33 for L. laticeps

and 467 for L. latrans (Table 1).

Ecological niche model and environmental characterization
To model the presence of a species, we used the theoretical Biotic-Abiotic-Mobility

approach (BAM) of Soberon & Peterson (2005), which captures and links the geographic
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and environmental dimensions of species distributions (Peterson & Soberón, 2012).

The BAM model is composed of three components: 1) “B” components are the biotic

conditions, i.e. the appropriate suite of both present species (e.g. food) and certain absent

species (e.g. strong competitors, diseases). In general, this component is not included in

the modeling process due to the fact that it is very difficult to make accurate spatial

quantification of this kind of data (Barve et al., 2011). According to this and considering

that Leptodactylus species exhibit a broad food spectrum, for which considering the

component B becomes much more difficult, we do not included it in the present work.

2) The “A” components represent the abiotic conditions, e.g. bioclimatic variables; and

3) The “M” component is the region of the world which has been accessible to the species

via dispersal over relevant periods of time. This heuristic scheme assumes that stable

populations of a species will be found only in the intersection of the B, A, and M

components, (B∩A∩M) (Soberon & Peterson, 2005).

To delineate the “A” component, we selected environmental variables (i.e. climate and

soil variables) matching the temporal and geographic resolution of the studied species

occurrences. Climate variables refer to temperature and precipitation. Since anurans are

ectotherms, they are more vulnerable to environmental changes than other tetrapods

(Duellman & Trueb, 1994). Temperature is the most pervasive factor affecting the rate of

biological reactions and physiological processes of amphibians (Rome, Don Stevens &

John Alder, 1992); while precipitation is the most important extrinsic factor controlling

the seasonality of reproduction in anurans (Duellman & Trueb, 1994). As a matter fact, in

most of the species of temperate latitudes, reproductive activity depends on temperature

Table 1 Compiled records: number of compiled records from different sources (herpetological

collections, private anuran collections, bibliographic records and Global Biodiversity Information

data base) with geographic coordinates. Unique records: number of unique locality records.

Checked records: number of locality records whose specimens were checked from the total number of

unique records. Records not checked: locality records whose specimens were not checked from the total

number of unique records. Collections: not checked specimens of scientific collections. GBIF: locality

records obtained from Global Biodiversity Information Facility, Bibliographic records: locality records

obtained from literature. Disaggregate records: number of disaggregate records to 10,000 m.

Species

Compiled

records

Unique

records

Checked

records

Records not checked

Disaggregate

records

Collections GBIF Bibliographic

records

L. bufonius 1,562 334 198 93 – 43 271

L. chaquensis 1,099 463 237 111 – 115 383

L. elenae 354 136 81 2 – 53 122

L. fuscus 1,562 1,056 476 83 303 194 772

L. gracilis 422 200 89 38 – 73 178

L. laticeps 93 43 30 11 – 2 33

L. latinasus 1,716 488 246 106 – 136 416

L. latrans 2,138 514 264 228 – 22 467

L. mystacinus 641 335 169 70 – 96 292

L. podicipinus 824 273 117 37 15 104 214

Total 10,411 3,842 1,907 779 318 838 3,148
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and precipitation (Duellman & Trueb, 1994). Soil was hypothesized to be an important

predictor of the distribution of arid-adapted anurans, since it can affect water loss rates

during aestivation (Schalk, Montaña & Springer, 2015). Soil pH influences hatching

success in Pseudophryne bibronii (Chambers, Wilson & Williamson, 2006), thus, soil

characteristics could affect the success of the survival rate of terrestrial egg-laying

species, such as most Leptodactylus species. Climate information was obtained from

WorldClim database (Hijmans et al., 2005), which includes 19 variables of temperature

and precipitation. Soil information was obtained from SoilGrids1km database (Hengl

et al., 2014, through ISRIC–WDC Soils), which includes eight global soil variables

that summarize different aspects of soil at six depths. Most of these variables are not

independent; consequently, Pearson correlations were used to detect and exclude highly

correlated variables (r � 0.8). For soil variables, correlation analyses were made within

each depth and between depths (2.5, 22.5 and 45 cm depth). When high correlations were

detected, we kept the variables that most likely affect the ecology of anurans. Eight

bioclimatic variables were retained: BIO1 = Annual Mean Temperature, BIO2 = Mean

Diurnal Range (Mean of monthly (max temp - min temp)), BIO4 = Temperature

Seasonality (standard deviation of mean month temperature � 100), BIO5 = Maximum

Temperature of Warmest Month, BIO6 = Minimum Temperature of Coldest Month,

BIO12 = Annual Precipitation, BIO13 = Precipitation of Wettest Month, BIO14 =

Precipitation of Driest Month. Because the correlations of each soil variable between

depths were high (r > 0.9), only the variables of the most superficial depth (2.5 cm) were

kept. Six soils variables were retained: 1) Sand content, 2) Coarse Fragments, 3) Soil

organic carbon, 4) pH index, 5) Bulk density, and 6) Cation-exchange capacity. The

environmental databases used presented a spatial resolution of 2.5′ (approx. 5 � 5 km

per pixel at the equator).

A critical step for calibration, validation and comparison of ENMs is the definition of

the “M” component; i.e. the extent of the region where the model calibration will be

performed. The “M” component must be customized for each species and must be related

to an explicit a priori hypothesis (Barve et al., 2011). It is reasonable to take the set of

biotic regions within which a species is known to occur as the hypothesis of the M region

(Barve et al., 2011). Here, the M region was defined for each species by identifying the

ecoregions (sensu Olson et al., 2001) with known presences and by buffering the resulting

region to generate a soft edge. The buffer size was between 0.1� and 0.5�, depending
on each species data. A buffer of 0.5� was applied when the points were located marginally

in one ecoregion, and a smaller buffer (less than 0.5�), when the points were located

more uniformly in the ecoregions. This prevents from including areas where the species

had no access. We pruned the selected areas when they included some regions where

species obviously did not occur. For example, since Leptodactylus species are mainly

distributed in the lowlands, we excluded higher altitudes from the “M” regions according

to the altitudinal range known for each species.

ENMs were calibrated using a maximum entropy method, MAXENT v3.3.3K (Phillips,

Anderson & Schapire, 2006) in batch mode implemented in R-package “ENMGadgets”

(Barve & Barve, 2016). Maxent fits models based on the probability distributions that
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show maximum entropy (i.e. closest to uniform), subject to the correlations of known

presences of species with the environmental conditions across the study area (Phillips,

Anderson & Schapire, 2006). Most default settings were kept but we defined five bootstrap

replications and raw outputs (i.e. continuous probability values). We randomly

partitioned occurrence data in two subsets: 50% of the occurrences were used to calibrate

the model, and the remaining 50% were used for model evaluation. Given the observed

limitations of the Receiver Operating Characteristics Curve (ROC) approach we used

a partial ROC area under the curve (AUC) to evaluate the performance of the model

(Lobo, Jiménez-Valverde & Real, 2008). Partial ROC allows for differential weighting of

omission and commission errors and focuses on meaningful predictions for model

evaluation (Peterson, Papeş & Soberón, 2008). We restricted ROC space to predictions

corresponding to omission error � 5%, and we then randomly sub-sampled 50% of the

available evaluation data 1,000 times and estimated the ratios of simulated AUCs and

null expectations of AUC (Peterson, Papeş & Soberón, 2008) using Partial-ROC software

(Barve & Barve, 2016). Probabilities were determined by direct count of null replicate

frequencies of AUC ratios falling below the observed value.

To identify the variables which contributed the most to the model, we used a jackknife

test on the original environmental variables. This test removes one environmental variable

from the full list at a time and recalculates the model to quantify the contribution of

each variable to the overall model performance.

Spatial analyses
The resulting ENM can be projected in the geographic space, thereby depicting the

potential distribution area of each species (Araújo & Peterson, 2012). We assumed that the

species analyzed are in ecological equilibrium (i.e. their populations are not migrating)

and that the potential distribution obtained corresponds to their historical distribution.

The assumption of equilibrium of a population within its ecological niche (or single

environment) implies ignoring mutation pressures from the environment and migration

processes (Levene, 1953). State of stable equilibrium should not be viewed as a primary

property of ecological systems, but it is a feature that can emerge from extrapolation to

large spatial scales (DeAngelis & Waterhouse, 1987). The estimates of the geographic range

extent obtained by ENM techniques have proved to be more representative than those

obtained by traditional methods (e.g. minimum convex polygon (MCP)), particularly

when data are scarce or when species are rare (Marcer et al., 2013; Pena et al., 2014; Syfert

et al., 2014); and also avoid potential subjective bias of experts (Fourcade et al., 2013).

We used a minimum threshold (Anderson, Lew & Peterson, 2003) to convert raw model

outputs (i.e. continuous probability values) to distribution estimates (i.e. a binary

representation). We modified this threshold–which, by default, includes 100% of the

training data–to consider the potential error in the occurrence data, by choosing the

highest threshold which included (100–E)% of the training data, assuming E = 5%

(Table 2). E is an estimate of the proportion of the occurrence data that is likely to include

the georeferenciation error (Peterson, Papeş & Soberón, 2008). This is a conservative

method that minimizes the commission rate. This threshold defines that 95% of the
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observed presences are predicted as such, representing, in other words, the sensitivity of

the model (Allouche, Tsoar & Kadmon, 2006). We then projected the distributional

estimates of the ENM in space to obtain a quantitative potential geographic distribution.

The spatial reference used for the analyses was Lambert Azimuthal Equal Area (LAEA)

projection at a spatial resolution of approximately 5 � 5 km per pixel at the equator.

The analyses and maps were developed with QGis software v. 2.16.2 (QGIS Development

Team, 2016).

Land cover and ecoregion characterization
To spatially characterize the potential distribution of each Leptodactylus chacoan species,

we quantified the proportion of their extent which overlapped with ecoregions (sensu

Olson et al., 2001) and with the different categories of land cover for Latin America

produced by Blanco et al. (2013). The 24 land cover categories (e.g. broadleaf forests,

needle leaf forests, mixed forests, shrublands, grasslands, water bodies, urban areas and

croplands) are based on the FAO/UNEP Land Cover Classification System (LCCS). We

also assessed the relationship between Leptodactylus occurrences and major habitat types,

by assigning land cover categories in two groups “Forest habitats” (e.g. Subtropical

broadleaf deciduous and evergreen forests, Tropical broadleaf deciduous and evergreen

forests) and “open habitats” (e.g. Croplands, Tropical, Subtropical and Temperate

shrublands, Tropical, Subtropical and temperate grasslands).

Land transformation in the Dry Chaco
We assessed whether the potential distribution of Leptodactylus frogs matches that of

chacoan cultivable areas, i.e. suitable agriculture areas which are likely to be transformed

to either pastures or croplands. In order to evaluate this, we estimated the proportion of

each species distribution area affected by agriculture expansion, taking into account

cultivated plots of the entire Dry Chaco region from 1976 to 2013 (Vallejos et al., 2014).

Protected areas
To explore the degree of protection of Leptodactylus species, we quantified the

proportional protected area within the full range of the potential geographic extent of

each species, taking into account the protected areas categories I to VI assigned by the

IUCN (Dudley, 2008) (Ia: Strict Nature Reserve; Ib: Wilderness Area; II: National Park; III:

Natural Monument or Feature; IV: Habitat/Species Management Area; V: Protected

Landscape/Seascape; VI: Protected area with sustainable use of natural resources) and

National Parks, even those that were not included in any IUCN category. Shape files of the

protected areas were obtained from the World Database of Protected Areas (IUCN &

UNEP-WCMC, 2016).

RESULTS
Ecological niche model and environmental characterization
The partial ROC tests indicated significant predictive ability of the models (p < 0.001). For

all species, bioclimatic variables (temperature and precipitation) were the most important

predictors. The temperature variables (temperature seasonality, the maximum
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temperature of warmest month and the minimum temperature of coldest month) were

the most important variables for seven out of 10 species. Only for one species’ potential

distribution (L. podicipinus) the precipitation (precipitation of wettest month) was

important. For two species’ potential distribution a soil variable (PH index) was the most

important (Table 2).

Spatial analysis
The potential distribution areas ranged from less than 40,000 km2 for L. laticeps to

7.5 million km2 for L. fuscus, with values between 1 and 3.5 million km2 for most species

(Fig. 1). Leptodactylus fuscus and L. latrans were the species with the largest potential

distribution ranges (above 5 million km2) (Fig. 1).

Land cover and ecoregion characterization
The level of overlaps of the potential distribution areas of Leptodactylus species ranged

from 30 to 72% with “forest habitats” and from 29 to 71% with “open habitats” (Table 3).

Among forest habitats categories, the highest overlaps were found in Subtropical broadleaf

deciduous forests, Tropical broadleaf evergreen forests and Subtropical broadleaf

evergreen forests. Among open habitat categories, the highest overlap occurred with

croplands.

All the species considered in this study distributed beyond the Dry Chaco ecoregion

(Fig. 2). Leptodactylus laticeps, L. bufonius, L. latinasus, L. elenae and L. chaquensis are

mostly Dry chacoan species, with at least 25% of their geographic range occurring in the

Dry Chaco. These species potentially inhabit less ecoregions than the other species

(Supplemental Information 2). On the other hand, the remaining five species (L. latrans,

L. fuscus, L. podicipinus, L. mystacinus, L. gracilis) potentially inhabit in a greater number

of ecoregions (Supplemental Information 2).

Land transformation in Dry Chaco

By the end of 2013, 1.8 million km2 of Dry Chaco (19% of the natural area in the entire

ecoregion) were transformed to agriculture (Vallejos et al., 2014). The percentage of

remaining natural areas inhabited by Leptodactylus chacoan species in the Dry Chaco

decreased every year from 1976 to 2013 due to agricultural expansion, although the

greatest transformation occurred after 1996 (Fig. 3). The largest percentage of potential

chacoan area loss was 16% (L. mystacinus and L. podicipinus), while for seven species the

loss of chacoan area were between 15% (L. bufonius, L. gracilis, L. latinasus and L. latrans)

and 14% (L. chaquensis, L. fuscus and L. laticeps). The minimum loss of potential chacoan

area was 13% (L. elenae) (Fig. 3).

Protected areas
The highest proportion of the potential distribution area in protected areas was found

in Leptodactylus fuscus, L. latrans and L. mystacinus (between 6 and 11%), while the

remaining species (L. bufonius, L. chaquensis, L. elenae, L. gracilis, L. latinasus, L. laticeps

and L. podicipinus) exhibited between 3.5 and 5% of their potential distribution in

protected areas (Fig. 4). The near threatened (Cortez et al., 2004) and vulnerable
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Table 3 Percentages of overlap of the distributions models of chacoan species of Leptodactylus with land cover categories from

Blanco et al. (2013).

Land cover L.
bufonius

L.
chaquensis

L.
elenae

L.
fuscus

L.
gracilis

L.
laticeps

L.
latinasus

L.
latrans

L.
mystacinus

L.
podicipinus

Forest habitats Tropical broadleaf

evergreen forest

7.46 18.06* 28.21* 36.18* 0.36 1.93 0.30 21.12* 11.22* 34.70*

Tropical broadleaf

deciduous forest

0.55 0.27 0.47 0.15 0.00 0.06 0.00 0.08 0.09 0.29

Sub-tropical broadleaf

evergreen forest

5.87 8.56 9.79 6.37 23.38 0.68 6.65 9.34 11.28* 6.62

Sub-tropical broadleaf

deciduous forest

41.73* 14.95* 22.70* 5.03 5.00 69.12** 22.36* 6.73 10.99* 9.14

Temperate broadleaf

evergreen forest

0.00 0.00 0.00 0.01 0.03 0.00 0.01 0.03 0.02 0.00

Temperate broadleaf

deciduous forest

0.00 0.03 0.00 0.01 0.09 0.00 0.01 0.02 0.03 0.00

Total 55.62** 41.87* 61.18** 47.74** 28.86** 71.80** 29.33** 37.32** 33.63** 50.75**

Open habitats Tropical shrubland 0.09 6.70 6.86 15.09** 0.01 0.04 0.00 12.46** 7.70 9.55

Tropical grassland 0.00 0.00 0.01 7.60 0.00 0.00 0.00 0.18 0.00 0.19

Sub-tropical shrubland 17.32** 8.38 5.57 1.52 11.61** 10.07** 14.69** 4.69 7.28 4.61

Sub-tropical grassland 0.30 1.80 0.01 0.36 10.29 0.00 10.61 2.60 3.80 0.36

Temperate shrubland 0.00 0.11 0.00 0.00 0.83 0.00 0.03 1.90 1.17 0.00

Temperate grassland 0.00 0.00 0.00 0.03 0.24 0.00 0.22 0.26 0.03 0.00

Cropland 22.87** 36.25** 21.24** 24.99** 41.08** 15.17** 38.69** 36.27** 42.98** 29.24**

Others 3.80 4.89 5.13 2.66 7.08 2.93 6.43 4.32 3.42 5.30

Total 44.38** 58.13** 38.82** 52.26** 71.14** 28.20** 70.67** 62.68** 66.37** 49.25**

Notes:
* Values show overlap percentages higher than 10%.
** Values show overlap percentages higher than 50%.

Figure 1 Distribution area (in MMKm2) of Leptodactylus chacoan species.
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Figure 2 Maps for each Leptodactylus chacoan species, showing: distribution models, in grey;

calibration area of the distribution model, (i.e. “M” region), in black line; presence data, in

purple points. The different colors correspond to the ecoregions proposed by Olson et al. (2001); and

illustrate that all the species considered are distributed beyond the Dry Chaco ecoregion. (A) Lepto-

dactylus bufonius (B) L. chaquensis (C) L. elenae (D) L. fuscus (E) L. gracilis (F) L. laticeps (G) L. latinasus

(H) L. latrans (I) L. mystacinus (J) L. podicipinus.
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(Vaira et al., 2012) species Leptodactylus laticeps showed only 3.6% of its potential

distribution in protected areas (Fig. 5).

DISCUSSION
We found that the main constraining variable of the potential distribution of

Leptodactylus chacoan species is temperature (temperature seasonality, maximum

temperature of warmest month and minimum temperature of coldest month), and that

these species are found in both forest and open areas. In the Dry Chaco ecoregion, they

inhabit cultivable areas which are being transformed from natural vegetation to pastures

Figure 3 Percentage of transformation of natural area to cultivated plots in the Dry Chaco from

1976 to 2013, for each Leptodactylus chacoan species.

Figure 4 Percentage of protected area within the potential distribution range of Leptodactylus
chacoan species.
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and croplands. Leptodactylus species are underrepresented under the current system of

protected areas. This combination of features suggests that Leptodactylus chacoan species

are vulnerable to both climate change and habitat transformation. This situation is

especially critical for L. laticeps, which besides being already threatened is distributed

mainly in the Dry Chaco and is poorly represented in the system of protected areas.

Ecological niche model and environmental characterization
Our results show that the most important bioclimatic variable explaining species

occurrence (in 70% of the studied species) was temperature. Other studies have also

shown that climate (especially temperature and rainfall) is a determinant factor for

amphibians (e.g. Parris, 2004; Urbina-Cardona, Olivares-Pérez & Reynoso, 2006). Since

amphibians are ectothermic organisms, environmental temperature is probably a major

constraint to their ecophysiological traits; for example, their mobility and their energy

balance may be affected by temperature (Bennett, 1990). Physiological traits turn

amphibians strongly sensitive to environmental conditions (Ferder & Burrgren, 1992), and

consequently to climatic change (Pounds, Fogden & Campbell, 1999; Pounds et al., 2006).

Projected climate changes over the 21st century include rises in surface temperature,

and in the frequency and duration of heat waves and the occurrence of extreme

precipitation events (IPCC, 2014). Also, seasonality will be affected by more frequent

hot temperature extremes and fewer cold temperature extremes over most land areas

(IPCC, 2014). Particularly, in south-eastern South America, which includes Dry Chaco

ecoregion, changes in precipitation produce wetter conditions (Christensen et al., 2007).

Under these scenarios, it is expected that populations change their geographic ranges

to coldest areas, i.e. to higher altitudes or latitudes (Harsch et al., 2009; Thomas, 2010;

Figure 5 Map showing the potential distribution of Leptodactylus laticeps, in grey. Protected areas

overlaying the potential distributions of Leptodactylus laticeps are filled polygons in green.
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Chen et al., 2011), although in the case of amphibians, this is unlikely due to their low

dispersal ability. Measurements of the home range size of amphibians show a mean home

range size of 40 m2 (Wells, 2007). Moreover, the capacity for amphibian behavioral

thermoregulation is limited because the cooling effect of evaporative water loss from skin

counteracts heat gain by basking (Hutchinson & Dupe, 1992). Studies revealed that the

effects of climate change over amphibians involve changes in the timing of breeding of

some species (Blaustein et al., 2010; Carey & Alexander, 2003), instead of changes in their

distributions (Corn, 2005). For example, no colonization of higher altitude areas

associated with declines of Anaxyrus boreas has been found (Livo & Yeakley, 1997). In

subtropical areas, the period of activity of amphibians and their population dynamics are

strongly influenced by climate seasonality, e.g. reproduction behavior of most species

occurs in the warm season of the year (Conte & Machado, 2005). For many species of

Leptodactylus genus, the reproductive season matches with wet and/or warm season,

e.g. L. latinasus, (Gallardo, 1964; Canavero et al., 2008), L. bufonius (Cei, 1980), L. gracilis,

(Canavero et al., 2008; Ximenez & Tozetti, 2015), L. mystacinus, (Gallardo, 1964), L. fuscus,

(Martins, 1988; Prado, Uetanabaro & Haddad, 2005; Lucas et al., 2008), L. elenae

(Prado, Uetanabaro & Haddad, 2005), L. chaquensis (Gallardo, 1987; Prado, Uetanabaro &

Haddad, 2005; Canavero et al., 2008) and L. podicipinus (Cei, 1980; Vizotto, 1967;

Rossa-Feres & Jim, 1994); although it was reported that populations of L. podicipinus

from the Brazilian pantanal exhibit a continuous reproductive cycle throughout the year

(de Almeida Prado, Uetanabaro & Lopes, 2000; Prado, Uetanabaro & Haddad, 2005). The

Dry Chaco presents a monsoonal climate, in which rains are concentrated in the warm

season. Since the reproduction of most amphibians is associated to water, modifications

in water balance in the area could have significant effects on their breeding timing and

behavior. Thus, our results suggest that climate change could affect Leptodactylus chacoan

species in different and unpredictable ways.

Spatial analyses
Land cover and ecoregion characterization
In general, the Leptodactylus species studied inhabit both forest and open areas in similar

proportions, with even a greater proportion in open areas. This result matches that of

Torres et al. (2014), who found that the response of the probability of presence of all

the analyzed amphibian species in Argentinean northwestern Dry Chaco to woody

biomass was negative. The importance of open habitats for Leptodactylus species suggests

that these species evolved in landscapes which were more similar to open habitats than to

forests, a scenario proposed for the pre-European landscape of the Chaco (Morello &

Saravia Toledo, 1959a; Morello & Saravia Toledo, 1959b; Adámoli et al., 1972; Adámoli

et al., 1990; Bucher & Huszar, 1999), in which the substantial contemporary woodland

advance has been a result of domestic livestock overgrazing (Morello & Saravia

Toledo, 1959a; Morello & Saravia Toledo, 1959b; Adámoli et al., 1990). Thus, savannas

might have been an important cover type where part of the chacoan biota evolved

(Torres et al., 2014).
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Among the open habitat categories, “croplands” was the most important for all species,

which is also consistent with observational field data (e.g. Peltzer et al., 2006; Ponssa &

Barrionuevo, 2008; Attademo et al., 2014; Prado & Rossa-Feres, 2014; Guerra & Aráoz,

2015). The IUCN categorization (2016) mentions that L. bufonius, L. chaquensis, L. elenae,

L. fuscus, L. latinasus, L. latrans, L. mystacinus and L. podicipinus are or appear to be

well adapted to anthropogenic disturbances, while Leptodactylus gracilis is found in

anthropic areas only in southern Brazil (Heyer et al., 2004). The present study also shows

that L. gracilis may inhabit anthropogenic areas, since 71% of their potential geographic

range is covered by open habitats, from which 41% is covered by croplands. Moreover,

L. gracilis, L. latinasus and L. mystacinus have been suggested to be invading species, due

to their abundance in agricultural ponds, and their ability to constitute stable populations

in these environments (Sanchez et al., 2013).

Land transformation in Dry Chaco
The dynamics of land cover transformation to agriculture shows that one half of analyzed

Leptodactylus species may inhabit mainly cultivable areas. The percent loss of their

potential distribution area within the Dry Chaco is near of the transformation rate of

natural habitats to cultivated plots from 1976 to 2013. The largest percentages of decrease

were found for L. mystacinus and L. podicipinus. This is particularly worrying for

L. laticeps and L. bufonius, species which are distributed mainly in the Dry Chaco,

which the loss of chacoan area represent the 14% and 10% of their entire potential

distribution respectively. The entire dry diagonal region is suffering the same process

of natural habitat loss described for the Dry Chaco, e.g. the Cerrado biome is being

transformed for soybean production (Fearnside, 2001;Warnken, 1999). The Caatinga and

the Cerrado (Beuchle et al., 2015), are also experiencing a continuous net loss of natural

vegetation, and an expansion of sugarcane crops in the ‘‘dry diagonal’’ (Manzatto et al.,

2009). This scenario represents potential threats to species with high percent loss in

the Dry Chaco (mentioned above) and to those inhabiting the “Dry Diagonal,” such as

L. latrans and L. podicipinus. The projected increase in annual rainfall may accelerate

deforestation rates due to agriculture expansion, which would have a significant effect in

the conservation of Leptodactylus chacoan species. It has been observed that deforestation

in the Chaco is to some extent controlled by annual rainfall (Grau, Gasparri & Aide, 2005).

This may be especially relevant for the conservation of L. laticeps. At least 20% of the

potential distribution area of this species, which is already threatened, has already been

transformed to agriculture in the last 40 years. Additionally to habitat loss and/or

fragmentation in the Dry Chaco, the fact that Leptodactylus anurans potential geographic

range currently corresponds to croplands and cultivable areas raises concern about the

potential threats to which they may be exposed, e.g. contamination. It has been

shown that anuran species breeding within or around agricultural areas are usually

exposed to pesticides (Peltzer, Lajmanovich & Beltzer, 2003; Peltzer et al., 2006), which

produce teratogenic effects, growth and development retardation, and consequently,

decreasing survivorship (Hayes et al., 2006). This could be a serious risk for these well

adapted to anthropogenic disturbances Leptodactylus species, and particularly for
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Leptodactylus latinasus, L. chaquensis, L. latrans, L. mystacinus, L. gracilis and L. fuscus,

whose reproduction habits involve the exploitation of soil depressions in cultivated

areas (Vasconcelos & Rossa-Feres, 2008; Silva & Rossa-Feres, 2007; Guerra & Aráoz, 2015;

Peltzer et al., 2006).

Most of the anuran species undergo ontogenetic niche shifts (aquatic larvae and

terrestrial adults); which is the case of Leptodactylus anurans, whose clutch deposition

mode involves aquatic or terrestrial foam nests, aquatic larvae, and terrestrial adults. Thus,

anthropic landscape transformation may produce a “habitat-split” (Becker et al., 2007),

i.e. a spatial separation between remnants of terrestrial habitat and breeding sites

(Dunning, Danielson & Pulliam, 1992). Habitat split presents a strong negative effect on

anuran species with aquatic larvae, and is a determinant factor of population size,

structure, and distribution, acting within a single generation (Becker et al., 2007).

Protected areas
We found that the percentages of Leptodactylus species distributions represented in

protected areas are scarce (11% or less). Consequently, most of their geographical ranges

(i.e. approximately 90%) may be vulnerable to human disturbance. A similar pattern

was found for threatened anurans of Northeastern Brazil (Adelophryne baturitensis,

Adelophryne maranguapensis, Allobates olfersioides and Agalychnis granulosa) (Campos,

Brito & Solé, 2013). Added to the underrepresentation of chacoan species of Leptodactylus

in protected areas, it has been found that the current assignment of protected areas to

IUCN categories does not correspond to the expected gradient of naturalness (Leroux

et al., 2010; Bishop et al., 2004; Chape et al., 2005; Dudley, 2008). Leroux et al. (2010)

showed that the global protected areas network lacks of strictly-protected areas with

low human influence.

Leptodactylus laticeps is under Near Threatened and Vulnerable conservation categories

by Cortez et al. (2004) and the Argentinian assessment (Vaira et al., 2012), respectively.

Our results show that L. laticeps inhabits the Dry Chaco ecoregion almost exclusively,

mainly the Subtropical broadleaf deciduous forest (a typical natural land cover of Dry

Chaco). The land transformation analysis showed that this species inhabits cultivable

lands inside the Dry Chaco ecoregion, which, in combination with the

underrepresentation of L. laticeps in protected areas and the expansion of agriculture

around chacoan protected areas, increases the risk of ecological isolation (Matteucci &

Camino, 2012). In Copo National Park, an Argentinean protected area of Dry Chaco, the

increase in human corridors (e.g. roads) between 1976 and 1988 has been followed by an

increase of the surrounding parceled land between 1988 and 2007 (Matteucci & Camino,

2012). Furthermore, habitat connectivity is severely compromised in the Argentinean Dry

Chaco, where there are no ecological corridors connecting protected areas (Burkart, 2007).

In Paraguay, actions to keep habitat connections have been limited to proposals such as

the Biodiversity Corridor of the Dry Chaco (Comisión Mundial de Áreas Protegidas

Paraguay, 2007). This proposal includes protected areas located at the northern end of

the potential distribution range of L. laticeps: Teniente Agripino Enciso, Médanos del

Chaco and Defensores del Chaco National Parks, the Natural Monument Cerro Timane
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Cabrera, Guasú Natural Reserve; and the Kaa Illa National Park in Bolivia. Also, the

protected area systems in Latin America are deficient in the administration of economic

resources, equipment, human resources and legal and regulatory frameworks (Brown

et al., 2006; Castaño-Uribe, 2008). For instance, in Latin America and the Caribbean

region: 1) Paraguay presents the lowest number of human resources per unit of protected

area and the lowest rate of investment resources of the nation by protected hectare; 2) in

Argentina, the staff has no specialized functions, lacking of own equipment; and 3) from

2001 to 2006, both in Argentina and in Paraguay, the amount of money allocated to

protected areas decreased (Castaño-Uribe, 2008). In addition to these global concerns,

it has been reported that L. laticeps species suffer of international commercial exploitation

for pet trade (Schaefer & Céspedez, 2012; Cortez et al., 2004).

CONCLUSIONS
To conclude, the main constraint to the potential distribution range of Leptodactylus

chacoan species is temperature. Consequently, climate change associated to modifications

of seasonality patterns could affect the breeding time and reproductive mode of these

anurans. Land transformation for agriculture activities in the Dry Chaco exhibits an

increasing trend in natural habitats rate of loss, where Leptodactylus chacoan species

inhabit. This implies three potential adverse effects on amphibians: 1) habitat loss;

2) “habitat split,” produced by landscape fragmentation; and 3) exposure to contaminants

used by intensive agriculture activities. The state of Leptodactylus protection is deficient,

due to the scarcity of protected natural habitats in the region, and the underrepresentation

of the potential distribution range of Leptodactylus species within protected areas (on

average, around 5% of their potential distributions). This situation implies a strong

concern about L. laticeps populations, whose main threats are agriculture activities and

hunting pressure. In the Dry Chaco, open areas, such as savannas, grasslands and

croplands, are the main habitat of Leptodactylus species. However, the current

conservation focus in the Dry Chaco is on forest habitats, for which conservation

planning should be redesigned to take into account the natural savannas and grasslands,

in order to more comprehensively protect and account for habitat heterogeneity.
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Young BE, Lips KR, Reaser JK, Ibáñez R, Salas AW, Cedeño JR, Coloma LA, Ron S, La Marca E,

Meyer JR, Munoz A, Bolanos F, Chaves G, Romo D. 2001. Population declines and amphibian

conservation in Latin America. Conservation Biology 15(5):1213–1223

DOI 10.1111/j.1523-1739.2001.00218.x.

Zak MR, Cabido M, Hodgson JG. 2004. Do subtropical seasonal forests in the Gran Chaco,

Argentina, have a future? Biological Conservation 120(4):589–598

DOI 10.1016/j.biocon.2004.03.034.

Medina et al. (2016), PeerJ, DOI 10.7717/peerj.2605 27/27

http://dx.doi.org/10.11606/issn.2316-9079.v7i2p127-142
http://dx.doi.org/10.1080/13658810412331280211
http://dx.doi.org/10.1186/s40555-015-0125-8
http://dx.doi.org/10.1111/j.1523-1739.2001.00218.x
http://dx.doi.org/10.1016/j.biocon.2004.03.034
https://peerj.com/
http://dx.doi.org/10.7717/peerj.2605

	Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References


