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Abstract

Modeling the spatial and temporal dynamics of soil temperature is deterministically complex due 

to the wide variability of several influential environmental variables, including soil column 

composition, soil moisture, air temperature, and solar energy. Landscape incident solar radiation is 

a significant environmental driver that affects both air temperature and ground-level soil energy 

loading; therefore, inclusion of solar energy is important for generating accurate representations of 

soil temperature. We used the U.S. Environmental Protection Agency’s Oregon Crest-to-Coast 

(O’CCMoN) Environmental Monitoring Transect dataset to develop and test the inclusion of 

ground-level solar energy driver data within an existing soil temperature model currently utilized 

within an ecohydrology model called Visualizing Ecosystem Land Management Assessments 

(VELMA). The O’CCMoN site data elucidate how localized ground-level solar energy between 

open and forested landscapes greatly influence the resulting soil temperature. We demonstrate how 

the inclusion of local ground-level solar energy significantly improves the ability to 

deterministically model soil temperature at two depths. These results suggest that landscape and 

watershed-scale models should incorporate spatially distributed solar energy to improve spatial 

and temporal simulations of soil temperature.
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1. Introduction

Soil temperature affects several key ecosystem properties. Through surface runoff and 

subsurface groundwater transport, soil temperatures can lead to increased stream 

temperatures, which in turn impact salmonid and other fish habitats [1]. Soil temperatures 

mediate rates of biogeochemical transformations in soils, strongly influencing local to 

global-scale patterns in the cycling, retention and loss of carbon and nutrients from 

ecosystems [2]. Seasonal soil temperature trends can shift photosynthetic recovery timing 

and therefore impact overall net primary production (NPP) [3]. Such soil temperature effects 

are subject to modification by physical landscape factors, such as object shading, slope 

aspect and thermal isolation from a detritus layer or snow pack [4].

Mechanistic watershed models such as Visualizing Ecosystem Land Management 

Assessments (VELMA) (2.0, U.S. Environmental Protection Agency—Western Ecology 

Division, Corvallis, OR, USA) [5], Soil andWater Assessment Tool (SWAT) (2009, Texas 

A&M, College Station, TX, USA) [6], Regional Hydro-Ecologic Simulation System 

(RHESSys) (2004, University of California, Santa Barbara, CA, USA) [7], and Hydrologic 

Simulation Program—Fortran (HSPF) (11, U.S. Environmental Protection Agency—

National Exposure Research Laboratory, Athens, GA, USA) [8] use a mechanistic (as 

opposed to statistical) approach to model hydrodynamics throughout a watershed using sub-

daily or daily time steps. Models such as these utilize equations to simulate hydrologic 

dynamics and soil moisture by tracking the rate of water transfer based on soil porosity, soil 

depth and the available precipitation.

Watershed models simulating soil temperature at multiple depths rely on several observed 

and simulated environmental variables including air temperature, precipitation, soil 

moisture, soil depth, and physical soil properties. For national and regional-scale modeling 

purposes, climate data can often be obtained from various governmental agencies such as the 

National Oceanic and Atmospheric Administration (NOAA), Natural Resources 

Conservation Service (NRCS) and others that maintain large-scale networks of climate 

monitoring stations such SNOTEL and SCAN [9]. At more local scales, climate data 

collection tends to focus on site-specific requirements, such as municipal airports, Long 

Term Ecological Research Stations and university research forests [10–13]. This can result 

in data limitations for spatially explicit models [14]. Several groups process the site data to 

produce spatial datasets at various spatial scales (e.g., Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) and Daily Surface Weather Data (Daymet)) [15,16]. 

Soil column properties can be acquired through field work or obtained by utilizing soil 

datasets (e.g., State Soil Geographic (STATSGO) and Soil Survey Geographic (SURGO)) 

[17].

While climate and soil properties influence soil temperatures, solar energy is the most 

significant environmental variable influencing soil temperature. There are existing spatial 
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models that account for solar energy inputs at a local or stream reach scale: SHADE2 (1.0, 

University of Georgia, Athens, GA, USA) [18], HeatSource (8.0, Oregon Department of 

Environmental Quality, Portland, OR, USA) [19], and iLand (1.0, Seidl and Rammer, 

Vienna, Austria) [20], utilize small-area representations of solar energy. However, these 

model’s spatial heterogeneity of shade is utilized for quantifying shade along stream reaches 

or within forest plots; not ground-level irradiance within models representing complete 

watersheds or landscapes.

Previous methods of incorporating solar energy within model representations of complete 

watersheds employ one or more proxy variables (e.g., canopy coverage or air temperature), 

or they simply utilize an average daily global irradiance value. Current environmental 

mechanistic models (e.g., VELMA, SWAT, RHESSys, HSPF) [5–8] use a global solar 

irradiance subroutine to calculate the total solar energy (W/m2) for the entire watershed or 

for sub-catchments. Due to their simpler ground-level solar energy representations, although 

these models capture the seasonal pattern of irradiance, they lack a spatially heterogenous 

representation of topographic and landscape object shading that affects ground-level solar 

energy levels. Solar energy estimate methods themselves include uncertainty due to 

environmental variables like cloud fraction and albedo [21]. Additional variables (i.e., 

aerosol optical properties, cloud asymmetry, water vapor distribution) may have seasonal 

and regional influence on the accuracy of solar energy estimates [22].

There remains a gap in soil temperature modeling where current approaches utilize global 

solar energy models that are not capturing local energy interactions. Finer-scale spatially 

distributed estimates of ground-level shade or solar energy could provide improved soil 

temperature estimates. This paper addresses this gap by incorporating local solar energy data 

within the soil temperature subroutine of an ecohydrological watershed model to determine 

its effect on simulated soil temperature predictions at multiple depths.

To demonstrate the utility of linking spatially explicit, ground-level solar energy data with an 

environmental model, we focus on improving VELMA’s soil temperature subroutine by 

incorporating spatially heterogeneous solar energy as an input driver. First, we discuss a 

commonly used global solar energy model and soil temperature model that are found in 

many deterministic watershed models, including VELMA. Next, we present VELMA’s 

original soil temperature subroutine that incorporates spatially explicit inputs of soil 

moisture and air temperature but does not employ any form of solar energy presentation. 

Following the original model, we then present VELMA’s modified soil temperature 

subroutine that incorporates spatially explicit inputs of ground-level solar energy, along with 

the inclusion of soil moisture and air temperature. We compare the predictive skill of the 

original and new forms of VELMA’s soil temperature subroutines using multiple United 

States Environmental Protection Agency (EPA) Oregon Crest-to-Coast Environmental 

Monitoring Transect (O’CCMoN) sites. This transect consists of several paired sites of 

forested and open landscapes [23]. We present results that demonstrate the benefit of 

including spatially explicit representations of solar energy within watershed-scale models 

that simulate soil temperature.
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2. Materials and Methods

Watershed models typically include solar energy directly or through a proxy variable to 

facilitate energy requirements needed within subroutine routines. Plant growth models may 

require a daily input of solar energy reaching the canopy to drive photosynthesis [24]. 

Stream temperature models predict shifts in water temperature through variables 

representing landscape shading, water temperatures, and air temperatures, all of which are 

solar energy proxies. Snowmelt models may need a daily input of solar energy or air 

temperature to drive snow melt [25]. While all these subroutines rely on solar energy at the 

earth’s surface, mechanistic models generally lack the ability to capture the spatiotemporal 

dynamics of solar energy reaching the ground post shadowing.

The soil temperature subroutine from VELMA [5] was chosen for testing. VELMA is a 

spatially distributed watershed model that simulates hydrologic and biogeochemistry 

processes within a gridded framework under mechanistic cell interactions. Using a gridded 

framework, VELMA describes each grid cell as having a ground-level surface and four sub-

surface voxels representing the landscapes soil strata. Each subsurface voxel is characterized 

by soil porosity and soil depth. Water transfers at a daily time step through VELMA’s voxel 

framework. Based on water transmission, nutrients and thermal energy migrate through the 

simulated soil substrate under mechanistic rules.

2.1. Previous Solar and Generalized Soil Modeling Methods

Watershed models often employ a clear-sky solar energy model when direct solar energy 

units are required. A common approach, and the method used by VELMA, is to calculate the 

clear-sky solar energy that reaches the earth’s surface as in Equation (1), where R is solar 

irradiance (W/m2), ecc is the eccentricity correction factor, w is the Earth’s constant angular 

velocity, T is the time frequency, dec is the solar declination, and γ is latitude [26]:

R = (24/π) × 4.921 × ecc × [wT × sin(dec) × sin(γ) + cos(dec) × sin(wT) × cos(γ)] (1)

The VELMA model uses Equation (1) to describe the amount of solar energy reaching the 

troposphere under clear sky conditions. This approach does not account for the topographic 

or object shading that locally reduces ground-level solar energy.

Soil temperature modeling within many watershed models, whether utilizing a gridded 

representation of the landscape or aggregating to sub-catchment scales, typically uses some 

version of the Carslaw and Jaeger equation to quantify seasonal variation in soil temperature 

[27]:

Tsoil z, dn = T AA + Asur f × e−z/dd × sin ω × dn − z/dd (2)

where Tsoil(z, dn) is the soil temperature (°C) at depth z (mm) for day of the year dn, TAA is 

the average annual soil temperature, Asurf is the amplitude of the surface fluctuations, dd is 

Halama et al. Page 4

Water (Basel). Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



the damping depth (mm), and ω is the angular frequency of the damping oscillations by day 

(dn). At z = 0, the soil temperature reduces to the following:

Tsoil 0, dn = T AA + Asur f × sin ω × dn (3)

which is the average soil temperature perturbed by surface temperature fluctuations and 

reflects seasonal solar patterns. Conversely, at infinite depth, the soil temperature becomes 

equal to the annual average soil temperature. This formulation provides a relatively simple 

method for calculating soil temperatures at multiple depths throughout a watershed. 

However, the model requires specification of soil heat capacity as well as thermal 

conductivity to correctly specify the amplitude coefficient and the damping depth.

2.2. Soil Temperature Variations Due to Landscape Coverage

Temperature profiles of soils can dramatically vary between a forested versus open 

environment, even if the sites are located proximally near one another. Two sites can be 

exposed to very similar climate conditions, though due to forest canopy shading, the forested 

site will have reduced air temperature and a reduction in solar energy loading upon the soil 

surface. Figure 1 shows observed 2005 daily soil temperature differences between open 

(clear-cut harvested) site data minus forested site data for the O’CCMoN Soapgrass field site 

in Oregon (see Section 2.5.1 for field site locations).

Figure 1 highlights the soil temperature differences between open and forested sites. A 

positive temperature means the open site temperature was warmer than the forest site; 

conversely, negative temperature means the open site temperature was colder than the forest 

site. Two main observations should be made here: (1) layer 1 is always warmer than layer 2, 

and (2) for both soil layers the open site is always warmer in summer than the forest site, but 

is comparatively colder in winter and especially so in layer 2. The open site is significantly 

warmer from Julian day 45 through 310 (14 February through 6 November), with a peak 

difference of 4.2 °C on Julian day 111 (21 April).

Seasonal differences in the warming and cooling of soils in the open and forest sites (Figure 

1) certainly reflect changes in air temperature along with some complicating effects 

associated with inter-site variations in snow pack and associated insulative properties (Figure 

2). Other factors undoubtedly also come into play, such as the effects of seasonal changes in 

soil moisture (dry summers, wet winters) on soil thermal transmissivity.

Nevertheless, observed increases in summer air temperatures for the open site tended to be 

2.12 °C warmer than the forest site (Figure 2). The lowest thermal difference was −7.65 °C 

while the highest thermal difference was 8.0 °C. During the same period, soil layer 1 open 

site averaged 1.71 °C warmer than the forest site with a minimum of 1.0 °C and a maximum 

of 2.6 °C. However, soil layer 2 open site averaged −0.16 °C cooler than the forest site with 

a minimum of −1.0 °C and maximum of 1.3 °C. That is, while air temperature differences 

are driven by differences in solar radiation, in the open site there is clearly an additional 

direct effect of solar radiation on heat transfer to the ground surface and consequent 

warming of the soil column. This observation underscores the importance of quantifying the 
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direct effect of solar radiation on soil temperature, in combination with effects of soil 

moisture and other factors mentioned above.

2.3. Original VELMA Air Soil Temperature (AST) Subroutine

For calculating spatially distributed soil temperature, VELMA accounts for soil moisture 

damping and the oscillatory effects of solar energy through a modified version of the 

Carslaw and Jaeger equation. This approach accounts for the seasonal solar energy 

variability through a time phase lag modification of observed air temperature combined with 

a temperature modification based on a soil depth attenuation. VELMA’s subroutine, along 

with the equation previously presented by Carslaw and Jaeger (1959) (Equations (2) and 

(3)), does not account for spatial heterogeneity of solar energy reaching the ground due to 

topographic or object shading; instead, VELMA’s input variables account for the shift in soil 

temperature due to daily air temperature, soil moisture and soil depth (Figure 3).

For each layer, the AST subroutine calculates the soil temperature based on the thermal 

attenuation of daily air temperature. The input variables for the AST and AST-Solar models 

are mostly the same but might be utilized differently within each subroutine’s equation 

setup, with the exceptions of the AirLAG and ReducerSOLAR(Table 1).

The degree of attenuation is adjusted daily by the depth and soil moisture of each soil layer. 

GTEMP is the resulting soil temperature due to: AirAVETEMP being the daily average air 

temperature (Table 1), AirLAG (Equation (5) from a prior AirAVETEMP (Table 1) based on 

seasonal oscillation, SoilDAMPING (Equation (7) influencing the soil moisture based on 

seasonal oscillation, DepthATTENUATION (Equation (9) based on soil depth and soil damping 

(Equation (7), PhaseLAG (Equation (6) influenced by the AirAVETEMP (Table 1) based on 

seasonal oscillation driven by LSDEPTH (depth to surface) (Table 1), SoilDAMPING (Equation 

(7), LTD (Equation (8) being the soil temperature accumulation at depth, and SoilBELOW 

(Table 1) influencing soil temperature from the lower soil layer:

GTEMP = AirAVETEMP + (AirLAG − AirAVETEMP − SoilDAMPING) × DepthATTENUATION (4)

AirLAG = Past Air Temperature at Julian Day′s PhaseLAG (5)

PhaseLAG = LSDEPTH/SoilDAMPING × (365/2π) (6)

SoilDAMPING= LTD×365
π (7)
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LTD = LTDACCUMULATION/SoilBELOW (8)

DepthATTENUATION = e∧ −LSDEPTH/SoilDAMPING (9)

Each day, the air temperature is given as an input for each cell within VELMA’s watershed 

framework. The SoilDAMPING (Equation (7) and LSDEPTH (Table 1) variables are used to 

dampen the variations of soil temperature at larger depths. Any soil temperature shifts due to 

solar energy are incorporated via a proxy of two oscillatory equations driven by past air 

temperature (Equation (5) and soil moisture damping (Equation (7). VELMA AST 

subroutine’s performances for open and forested landscapes are tested in the model testing 

section below.

2.4. New VELMA Air Soil Temperature-Solar (AST-Solar) Subroutine

The previously described soil temperature model does not utilize spatially explicit solar 

energy data, so we improved the model by adding the capacity to utilize spatially distributed 

ground-level solar energy to the current VELMA AST subroutine. This new model is called 

Air Soil Temperature-Solar (AST-Solar). The inclusion of solar energy within VELMA’s 

original AST model was mainly accomplished through the addition of the new parameter 

ReducerSOLAR (Equation (12). Like a natural system, solar energy, via the variable 

ReducerSOLAR (Equation (12), only impacts the top soil layer, called NetSoilTEMP1 

(Equation (10). NetSoilTEMP1 is defined as the following:

NetSoilTEMP1 = AirTEMP × ReducerSOLAR × DampingSOIL (10)

where daily average air temperature (AirTEMP; Table 1), DampingSOIL (Equation (11), and 

ReducerSOLAR (Equation (12) are multiplied together. AST soil moisture damping was 

included, yet simplified to only the inversion of each layer’s fraction of volume to volume 

(v/v) soil moisture (LayerSM; Table 1):

DampingSOIL = 1 − LayerSM (11)

Solar energy was built into the AST-Solar approach by accounting for the proportional 

relationship between each cell’s solar energy to the landscape cell with the maximum solar 

energy. At each simulation timestep, the spatially distributed solar energy and the 

watershed’s maximum solar energy at any location are both used to calculate the solar 

energy reduction called ReducerSOLAR (Equation (12). ReducerSOLAR represents the 

localized reduction in soil temperature due to shadowing in relation to the watershed’s 

maximum ground-level solar energy. The reduction of solar energy is calculated as follows:
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ReducerSOLAR = 1 − α × (1 − (CellSOLAR/MaxSOLAR)) (12)

where CellSOLAR is each cell of interest within the VELMA framework, MaxSOLAR is the 

landscape’s maximum solar energy value amongst all landscape cells per time step, and α is 

a calibration factor. The calibration factor α is a fraction [0.0–1.0, where 0.0 is no solar 

energy and 1.0 is no change to the solar energy] that allows control over the influence of 

ReducerSOLAR. But, to allow a direct and fair comparison of AST to AST-Solar, calibration 

factor α was not used in these tests.

VELMA utilizes four soil layers, and the thickness of each layer is customizable. VELMA 

soil temperature is not directly affected by solar energy, but rather through soil depth 

attenuation. For layers 2, 3 and 4, the soil temperature (NetSoilTEMPX) is calculated using 

the 2-day running average temperature of the soil layer directly above, plus a reduction by 

DampingSOIL (Equation (11):

NetSoilTEMPX = SoilAVE_TEMP × DampingSOIL (13)

SoilAVE_TEMP = (SoilTemp JDay + SoilTemp JDay − 1 )/2 (14)

where SoilTemp(JDay) (Table 1) is the current time steps soil temperature, and 

SoilTemp(JDay−1) (Table 1) is the prior time steps soil temperature. The soil moisture is 

applied as the DampingSOIL coefficient (Equation (11).

2.5. Subroutine Testing

We utilized data from EPA’s O’CCMoN sites to test any change in accuracy and seasonal 

performance between the AST versus AST-Solar soil temperature subroutines. The 

O’CCMoN transect dataset provided observed driver data of air temperature, photosynthetic 

active radiation (PAR) as micromoles/meter2/second (μmoles/m2/s), and soil moisture as 

volume to volume at two soil layer depths [23]. EPA’s observed O’CCMoN data helped to 

compare the AST versus AST-Solar models. Each O’CCMoN site also provided observed 

soil temperature at two depths. The soil temperature data were used to generate goodness-of-

fit metrics against the simulated model results.

2.5.1. O’CCMoN Testing Sites—For model testing, the four following O’CCMoN 

locations were chosen: Cascade Head, Moose Mountain, Soapgrass, and Toad Creek. Each 

O’CCMoN location contains one forested site and one open clear-cut site (Figure 4).

Overall, these sites span a wide range of elevations and habitat diversities between the coast 

and the Cascade Mountain snow zone (Table 2).
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The Cascade Head open site was installed outside the Cascade Head Experimental Forest 

and Scenic Research Area-Forestry Sciences Laboratory (EFSRA-FSL) in the managed 

landscape at an elevation of 157 m (Table 2). The Cascade Head forest site is located 190 m 

to the northeast in a predominantly Douglas-fir forest at an elevation of 190 m (Table 2). The 

Moose Mountain, Soapgrass, and Toad Creek sites are positioned on the western side of the 

Cascades Mountain Range at increasing elevations and experience moderate to extreme 

weather. The Moose Mountain open site was installed within a forest clear-cut at an 

elevation of 668 m with the forest site located 460 m to the northeast in a predominantly 

Douglas-fir forest at an elevation of 658 m (Table 2). The Soapgrass open site was installed 

within a forest clear-cut at an elevation of 1298 m with the forest site located 1190 m to the 

northeast in a predominantly Douglas-fir forest also at an elevation of 1190 m (Table 2). The 

Toad Creek open site was installed within a forest clear-cut at an elevation of 1202 m with 

the forest site located 471 m to the east in a predominantly Douglas-fir forest at an elevation 

of 1198 m (Table 2).

The soil temperature probes were all installed in the same manner at all EPA O’CCMoN 

locations for both the open site and forested site. In each location, two soil temperature 

sensors were installed at a depth of 15 cm and 30 mm, respectively, from the mineral soil 

surface, i.e., just below the O-horizon [23]. The testing of the AST and AST-Solar 

subroutines did not involve any data collection, but rather leveraged the data collected 

through the EPA O’CCMoN project. These data and the details of field work can be found in 

the documents at the data repository [23].

2.5.2. AST versus AST-Solar Subroutine Setup—The AST and AST-Solar 

subroutines were both ran from 1 January 2005 through 31 December 2005 at a daily time 

step. For each site, the same O’CCMoN observed air temperature and soil moisture data 

were used as the data drivers for both subroutines [23]. The O’CCMoN data are measured in 

30-min intervals, yet the VELMA model functions at a daily time step. To match the 

VELMA temporal grain, all observed O’CCMoN data were averaged to a 24-h period.

The VELMA spatial framework, per cell, contains four voxel layers; therefore, the AST and 

AST-Solar subroutines function under this spatial framework. Yet, the O’CCMoN dataset 

contains soil temperature probe data at only two depths. The AST and AST-Solar soil 

moisture probe depth variables for layer 1 and 2 were set to match the sensor depths of 15 

cm and 30 cm [23]. Since the O’CCMoN data sites contained only two soil moisture probe 

depths for the sites selected, the AST and AST-Solar voxel layer three and four soil 

temperature results could not be evaluated and were excluded.

The AST-Solar model utilized the additional solar energy driver data. For the AST-Solar 

open site simulations, the CellSOLAR and MaxSOLAR variables utilized open site solar energy 

data. For the AST-Solar forest site simulations, the CellSOLAR variable utilized the forest site 

solar data, while the MaxSOLAR variable was calculated using the open site solar energy 

data.

The variable ReducerSOLAR is utilized as a fractional variable scaled from zero to one 

(Equation (12). This setup allows any solar energy units to be implemented through this 
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method. CellSOLAR being the solar energy per location and MaxSOLAR representing the 

location with the most solar energy means for an open site, the CellSOLAR and MaxSOLAR 

values will similar if not the same. In this scenario, ReducerSOLAR will cause minimal to no 

reduction to the soil temperature. Conversely, forest site CellSOLAR and MaxSOLAR values 

will be quite different. In this scenario, ReducerSOLAR will cause a reduction in the soil 

temperature.

3. Results

Model results for each of the O’CCMoN sites are summarized in Table 3. Overall, the 

inclusion of spatially distributed solar energy improved the simulated solar temperature 

results. Both open and forested sites exhibit gains in accuracy, though the inclusion of 

spatially distributed solar energy was most beneficial for the forest sites. Below, all data are 

distinguished using the following attributes: site location, open versus forest environment, 

and soil layer. O’CCMoN sites with open versus forest locations are listed with 

abbreviations under “Sites” in Table 3. Soil Layer 1 and Soil Layer 2 are referred to as SL1 

and SL2, respectively.

The performance of the AST-Solar model at the Soapgrass site increased for soil layers 1 

and 2 at both the open and forest sites compared to the AST model, but especially for soil 

layer 2 (Table 3). Specifically, the SGO-SL1 performance increased from a r2 of 0.80 to 0.85 

(Table 3; Figure 5A), while the SGO-SL2 performance increased from a r2 of 0.69 to 0.90 

(Table 3; Figure 5C). The SGF-SL1 performance increased from a r2 of 0.69 to 0.92 (Table 

3; Figure 5B), while SGF-SL2 performance increased from a r2 of 0.57 to 0.89 (Table 3; 

Figure 5D).

The results among all sites are unique for each site, though the seasonal pattern and 

increased performance are similar over the year. Since the patterns are similar for each of the 

different sites, only the Soapgrass site results are graphically represented. Due to the 100-

day PhaseLAG (spin-up) requirement of the AST model, only Julian days 101 through 365 

are graphically represented.

The performance at Cascade Head (CH) increased for the AST-Solar subroutine compared 

with the AST subroutine for soil layers 1 and 2 for the forest site, but the performance only 

improved soil layer 2 of the open site. The open site soil layer 1 was the only simulation that 

exhibited a decrease in simulated versus observed agreement by decreasing from a r2 of 0.83 

to 0.77. In contrast, the CHO-SL2 performance increased from a r2 of 0.71 to 0.95. All 

CH14 simulations improved. The CH14-SL1 performance increased from a r2 of 0.74 to 

0.87, while the CH14-SL2 performance increased from a r2 of 0.71 to 0.94.

The performance of the AST-Solar subroutine compared with the AST subroutine at the 

Moose Mountain (MMO) increased for soil layers 1 and 2 at both the open and forest sites, 

particularly for soil layer 2. The MMO-SL1 performance increased from a r2 of 0.81 to 0.92 

(Table 3). The MMO-SL2 performance increased from a r2 of 0.67 to 0.93 (Table 3). The 

MMF-SL1 performance increased from a r2 of 0.89 to 0.93 (Table 3). The MMF-SL2 

performance increased from a r2 of 0.70 to 0.94 (Table 3).
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The performance of the AST-Solar subroutine over the AST subroutine at the Toad Creek 

increased for soil layers 1 and 2 at both the open and forest sites. The TCO-SL1 

performance increased from a r2 of 0.82 to 0.83, while the TCO-SL2 performance increased 

from a r2 of 0.73 to 0.92 (Table 3). The TCF-SL1 performance increased from a r2 of 0.83 to 

0.90, while the SGF-SL2 performance increased from a r2 of 0.64 to 0.89.

4. Discussion

VELMA’s original soil temperature model functioned well without the inclusion of spatially 

distributed solar energy (see Table 3; Figure 5), yet the inclusion of spatially distributed 

solar energy can provide significant improvements to simulated ecological processes driven 

by solar energy. The inclusion of local ground-level solar energy data improved VELMA’s 

AST subroutine simulations of soil temperature from more than one perspective. First, the 

observed versus modeled comparisons for all sites improved, with one exception. The only 

exception was the CHO site, which was a landscape anomaly amongst the sites due to the 

station existing within a regularly maintained grass lawn at the headquarters of the research 

area (i.e., Cascade Head EFSRA-FSL). The TCO site received the smallest soil temperature 

modeling improvement with SL1 r2 increasing from 0.82 to 0.83, yet the TCF site showed a 

significant SL2 improvement with a r2 increase of 0.73 to 0.92. The largest single layer 

improvement was observed at the SGF site with the SL1 r2 increasing from 0.69 to 0.92 and 

SGF-SL2 r2 increasing from 0.57 to 0.89. It is worth reiterating that though the AST-Solar 

subroutine has a calibration parameter, no calibration was applied when simulating any of 

the sites to ensure the AST to AST-Solar estimates of soil temperature were a fair 

comparison of the subroutine performance.

Beyond the r2 goodness-of-fit metrics, the daily variability in the modeled AST-Solar soil 

temperature data was reduced. This can be seen in all the graphs presented above by 

comparing how the AST subroutine demonstrated a repeated overestimation and 

underestimation of soil temperature compared to the observed data. However, the AST-Solar 

subroutine’s noise was greatly reduced. This noise pattern in AST was due to the significant 

influence from the daily average air temperature driver data. Therefore, the static equations 

that provided oscillatory proxies for solar energy did not fully parallel the environmental 

phenomena of solar energy. In part, this disparity explains the resulting noisy estimations of 

soil temperature when solar energy was not directly included in the subroutine.

VELMA’s AST soil temperature subroutine required a 100-day soil temperature simulation 

spin-up period. This time lag allowed for a sufficient temporal delay in the driver data 

utilized by Equation (6) (note that this time lag is only required for the first year of multi-

year AST simulations). The purpose of the lag time was to account for the seasonal weather 

influence on the soil column. For the new AST-solar subroutine, this lag was no longer 

required due to the addition of localized daily solar energy data interacting with the existing 

soil moisture within layer 1.

Both the AST and AST-Solar subroutines do not model the insulation effects of snow pack 

[4]. Further work could include snow depth and its insulative effects on soil temperature. 

This would improve the soil temperature estimates in the winter, due the insulation of heat 
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from the snow pack preventing the soil temperature from getting colder or even freezing. For 

the AST-Solar model, this may further improve performance with observed data (Figure 5, 

panels A–D) for days where snow pack persisted at Soapgrass (Figure 2) as well as 

goodness-of-fit metrics for the other O’CCMoN monitored sites. Similarly, further 

improvements in AST-Solar soil temperature estimates may be possible by including 

VELMA predictions of surface detritus (dead leaves and wood) and ground-level leaf 

biomass (proxy for leaf area index) that contribute to near-surface shading of mineral soil 

surfaces in open and forest sites.

The subroutine performance improvements reported here are due to the influence of local 

solar energy, which alters the resulting soil temperature. The prior soil temperature model 

predominantly utilized average air temperature as a proxy for energy, which is commonly 

done in watershed models. Though VELMA is a spatially distributed model, the default 

weather model is driven by single site location climate data. This setup resulted in 

homogeneous average air temperature across the simulated watershed. This is true for all 

forest cells and bare open prairie or forest clear-cut cells alike. By including local solar 

energy representation, the subsequent modeling of soil temperature was enhanced due to the 

improved model representation of the real world. This mainly was accomplished through the 

inclusion of the environmental variable solar energy that causes direct and significant 

influence on the phenomena soil temperature.

5. Conclusions

Watershed models are widely used to simulate the effects of land use change on the 

environment and the quantity and quality of hydrologic components throughout a watershed. 

In this paper, we demonstrated that local solar energy information improved soil temperature 

modeling estimates simulated by a soil temperature subroutine within a larger 

ecohydrological watershed model. These models were compared with observed data for soil 

temperatures at two depths within both open and forested environments among four 

observed data sites (i.e., EPA’s O’CCMoN transect data) [23].

Overall, by including explicit information regarding the spatial distribution of solar energy 

across a landscape, watershed models can better capture the spatiotemporal variations of soil 

temperature in both forested and open sites. Therefore, researchers that utilize spatially 

distributed or semi-distributed mechanistic watershed models should consider incorporating 

spatially explicit solar energy models (e.g., Penumbra [30,31]) or other spatially 

heterogeneous descriptions of ground-level solar energy to better represent energy exchange 

at the surface. This is especially true when modeling discrete landcover types such as 

forested, open, water, and agricultural cover and when modeling the impacts of riparian 

shading on soil temperature and stream temperature, as well as the effect of solar energy on 

fish habitat.

Finally, while we presented improvements of a soil temperature subroutine within an 

ecohydrological model, other subroutines can also benefit by the inclusion of spatiotemporal 

representations of ground-level solar energy. The integration of local solar energy 

information with watershed models and all their subroutines could potentially benefit several 
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processes, such as snow melt, water temperature, and plant growth via photosynthesis. 

Integration of spatially explicit ground-level solar energy models with environmental models 

can provide dynamic feedbacks between other environmental processes, such as tree growth 

and shade. As tree growth is simulated within watershed models, their heights could be 

transferred back to the ground-level solar energy model in a dynamic mechanism, which 

then would alter the amount of solar energy that is intercepted by the canopy and does not 

reach the ground. This dynamic integrated modeling approach could be extremely beneficial 

for looking at the long-term effects of planting riparian buffers and determining the duration 

required for stream temperatures to be reduced by some threshold. Because solar energy is 

amongst the most impactful environmental variables in natural and managed ecosystems, 

further investigations would greatly benefit from the application of watershed-scale models 

that are dynamically coupled with spatially-explicit solar energy models.
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Figure 1. 
Daily differences in soil temperature (°C) between open (clear-cut) and forest sites at the 

O’CCMon Soapgrass site. Temperature differences were calculated as the Open Site 

temperature minus the forest site temperature at each Julian day during the year 2005. Thus, 

positive values denote days where the open site soil temperature was warmer than the forest 

site soil temperature. Open minus forest soil temperature differences were calculated for 

each of the two soil depths, 15 cm (red line) and 30 cm (blue line) below the soil surface. 

The data gap between Julian days 67 and 74 was due to sensor errors.
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Figure 2. 
Daily air temperature (°C) and snow depth (cm) for both the forest and open sites at the 

Soapgrass station. A positive air temperature difference means the open site was warmer 

than the forest site. A positive depth difference means the open site had more snow than the 

forest site.
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Figure 3. 
Combined AST and AST-Solar subroutines’ schematic depicts the input data driving both 

models and displays the crucial data input difference between AST and AST-Solar with 

Temporal Phase Lag influencing only AST and Solar Energy influencing only AST-Solar.
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Figure 4. 
EPA Oregon Crest-to-Coast Environmental Monitoring (O’CCMoN) transit sites with 

environmental West to East trends and details for the sites used in this study. Figure adapted 

from the Crest to Coast Overview document [28].
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Figure 5. 
All panels compare observed data for the year 2005, AST model results, and AST-Solar 

model results. (Panel A) Soapgrass Open Site Soil Layer 1 temperature results. (Panel B) 

Soapgrass Forest Site Soil Layer 1 temperature results. (Panel C) Soapgrass Open Site Soil 

Layer 2 temperature results. (Panel D) Soapgrass Forest Site Soil Layer 2 temperature 

results. Simulation r2 values are calculated using Julian days 101–365. Ignoring the first 100 

days prevented the AST model from being penalized for its 100-day phase lag, which only 

occurs during the first year of simulation.
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Table 1.

AST and AST-Solar subroutine input variables.

AST Variables Descriptions

AirAVETEMP Fixed value of 8.2 (°C)

AirLAG Historic air temperature derived from the PhaseLAG.

LSDEPTH Soil column depth to center (mm) per layer of interest

LTDACCUMULATION Summation of the thermal deltas per layer of interest

SoilBELOW Soil layer below the current layer being calculated

AST-Solar Variables Descriptions

AirTEMP Daily average air temperature in the open site

SoilAVE_TEMP Two-day running average (°C)

ReducerSOLAR Derived value from the input solar energy data

LayerSM Volume to volume soil moisture level

SoilTemp(JDAY) Current time steps soil temperature value

SoilTemp(JDAY−1) Prior time steps soil temperature value
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Table 2.

O’CCMoN Open and Forest Site Characteristics.

Site Name Elevation (m) Vegetative State Annual Rainfall (cm) Tree Height (m) Soil Parent Material

Cascade Head: Open (CHO) 157 Lawn -

Cascade Head: Forest (CH14) 190 Alder Douglas-fir 
Sitka Spruce

200–250 50–60 Marine
Sediment

Moose Mountain: Open 
(MMO)

668 Clear-cut

150–180

-

Volcanic

Moose Mountain: Forest 
(MMF)

658 Douglas-fir 50–60

Soapgrass: Open (SGO) 1298 Clear-cut

180–200

-

Volcanic

Soapgrass: Forest (SGF) 1190 Douglas-fir 60–70

Toad Creek: Open (TCO) 1202 Clear-cut

180–200

-

Volcanic

Toad Creek: Forest (TCF) 1198 Douglas-fir 50-60

Note: All information in this table was obtained from the O’CCMoN dataset documentation, except the annual rainfall which was obtained through 
the PRISM 1981–2010 annual rainfall normals [29].
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Table 3.

VELMA-AST and VELMA-AST3 O’CCMoN results.

O’CCMoN Location Sites

Soil Layer 1 Soil Layer 2

AST (r2) AST3 (r2) AST (r2) AST3 (r2)

Cascade Head
Open Site (CHO) 0.83 0.76 0.71 0.95

Forest Site (CH14) 0.74 0.87 0.71 0.94

Moose Mountain
Open Site (MMO) 0.81 0.92 0.67 0.93

Forest Site (MMF) 0.89 0.93 0.70 0.94

Soapgrass
Open Site (SGO) 0.80 0.85 0.69 0.90

Forest Site (SGF) 0.69 0.92 0.57 0.89

Toad Creek
Open Site (TCO) 0.82 0.83 0.72 0.92

Forest Site (TCF) 0.83 0.90 0.64 0.89
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