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Abstract

Prediction of response to specific cancer treatments is complicated by significant heteroge-

neity between tumors in terms of mutational profiles, gene expression, and clinical mea-

sures. Here we focus on the response of Estrogen Receptor (ER)+ post-menopausal breast

cancer tumors to aromatase inhibitors (AI). We use a network smoothing algorithm to learn

novel features that integrate several types of high throughput data and new cell line experi-

ments. These features greatly improve the ability to predict response to AI when compared

to prior methods. For a subset of the patients, for which we obtained more detailed clinical

information, we can further predict response to a specific AI drug.

Author summary

Breast cancer is the second most common type of cancer in women, with an incidence

rate of over 250,000 cases per year, and breast cancer cases show significant heterogeneity

in clinical and omic measures. Estrogen receptor positive (ER+) tumors typically grow in

response to estrogen, and in post menopausal women, estrogen is only produced in

peripheral tissues via the aromatase enzyme. Inhibition of aromatase is often an effective

treatment for ER+ tumors, but aromatase inhibitor therapy is not effective for all tumors,

and causes of this heterogeneity in response are largely not known. In this work, we pres-

ent a feature construction and classification method to predict response to aromatase

inhibitor therapy. We use network smoothing techniques to combine tumor omic data

into predictive features, which we use as input to standard machine learning algorithms.

We train predictive models using clinical data, including high-quality clinical data from

UPMC patients, and show that our method outperforms previous approaches in predict-

ing response to aromatase inhibitor therapy.
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Introduction

A number of recent large efforts have focused on collecting genomic data from tumors. While

these datasets led to several successful studies and insights, in many cases the clinical data

available for patients enrolled in these studies is incomplete. This makes it hard to use such

datasets for predicting tumor specific outcomes and tailoring treatments to individuals.

To develop accurate methods for for predicting treatment responses we need both, a com-

prehensive genomic dataset profiling the individuals being studied and accurate complimen-

tary clinical information. To date, methods that used the former (detailed genomic data)

usually were unable to use the latter for a significant number of individuals while methods that

only relied on clinical information are limited in their ability to distinguish between tumor

responses [1].

Consider, for example, the genomic data that is part of The Cancer Genome Atlas (TCGA,

[2]). Several methods have used this data to study general questions related to cancer biology

and prognosis. Examples include methods to identify molecular targets for cancer therapy [3],

enhancement / creation of general prognostic classification systems [4–6], de novo pathway

identification via identification of mutually exclusive mutations [7] and identification of genes

implicated in cancer via combinations of different data types [8]. In contrast, most efforts for

predicting response to specific treatments have been limited to much smaller datasets, usually

focused only on specific pathways or classes of mutations, and often only relying on in vitro
(cell line) experiments which have limited clinical utility [9–11]. Indeed, in many cases a key

challenge researchers face when trying to predict such specific response is the lack of detailed

and well-curated clinical data to supplement the high throughput molecular data in the large

databases.

Here we focus on response to aromatase inhibitors (AIs), which block the conversion of

androgen to estrogen and thus lower systemic estrogen. AIs show superior efficacy for the

treatment of postmenopausal ER+ breast cancer compared to tamoxifen [12]. Despite the sig-

nificant reduction of recurrence, resistance is common, and remains a tremendous clinical

and societal problem. Mechanisms of resistance are very heterogenous [13], and it is currently

not possible to accurately predict response for specific AI treatments. Thus, methods for pre-

dicting tumor specific AI responses are urgently needed, especially given availability of choices

of endocrine therapy, their potential side effects, and recent findings that extended endocrine

treatment benefits a subset of patients [14].

To predict AI response we developed computational methods to construct network

smoothed features based on breast cancer genomic data from the Cancer Genome Atlas

(TCGA) and combined these with manually curated clinical data for a subset of patients in

TCGA that were treated at the University of Pittsburgh Medical Center (UPMC). Many previ-

ous approaches have been developed to integrate multiple types of omic data using a variety of

techniques: multiple kernel learning [15–18], joint matrix factorization [19, 20], latent variable

models [21, 22], and other network-based data integration methods [23, 24], though most of

these methods have drawbacks in treatment-specific prediction tasks. Such methods are typi-

cally either unsupervised, and therefore intended for general-purpose clustering and stratifica-

tion of patients, or sacrifice genomic / clinical interpretability.

The UPMC clinical data included information on the treatment patients received, its effec-

tiveness and the outcomes. The genomic data we used included sequence variations, expres-

sion changes and cell line drug responses all smoothed using general protein-protein

interaction networks. We used the clinical and genomic features to predict treatment response

and overall survival. Overall we show that by combining genomic and clinical attributes we

can obtain high accuracy and predicting cancer survival and slightly improve this accuracy
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when incorporating functional cell line data. For the more challenging task of predicting treat-

ment outcome we show that both, the addition of the cell line data and the improved clinical

data, leads to greater accuracy and improves upon prior methods.

Results

To predict response to aromatase inhibitors we combine high throughput gene expression and

sequencing data with detailed clinical data for individual patients (Materials and methods).

While using the expression, mutation and interaction data directly in a prediction framework

can sometimes lead to useful results, as we show below in many cases such data is too sparse to

provide useful features given the (relatively small) number of patients. Thus, a major challenge

in the construction of successful prediction methods is learning useful summary features from

the high throughput data. Here we use network smoothing to combine expression, mutation,

protein interaction and drug response data across tumors and cell lines. These networks are

then converted to PCA components which can be computed for each tumor and summarize

the tumor expression and mutation information using the protein interaction network. These

components, together with the clinical data are then used as features for several different classi-

fiers we tested. Using these features and the labels obtained from the clinical records, we per-

form cross-validation experiments to examine our ability to predict non-response to

aromatase inhibitor treatment.

Our feature construction workflow is shown in Fig 1a, which demonstrates the combina-

tion of genomic data into predictive features for UPMC samples, TCGA samples, and LINCS

cell lines. Fig 1b shows the availability of features for each data source used in our analysis.

While the specific genes mutated in a pathway may vary between tumors, they are likely

close in the graph representing the interaction network. A graph smoothing method tries to

find mutated pathways by allowing information to propagate along edges in the graph and

then finding sub-graphs (a collection of connected nodes) that are weighted highly. These sub-

graphs represent a set of genes that are mutated in several tumors and so are useful for predict-

ing clinical outcomes for this set of patients. Smoothing is a general strategy and here we use it

to combine several different types of genomic data including mutation and expression changes

in tumors and drug response profiling in cancer cell lines. To summarize the smoothed net-

works in a few components (features) we perform PCA decomposition on the matrix obtained

across the tumors for each data type (mutations, expression and drug targets). See Materials

and methods for complete details.

Combined prediction model outperforms individual constructed features

We first tested our method on the set of 590 breast cancer TCGA samples that were either pre-

scribed aromatase inhibitors, or were not considered for this type of treatment given their ER

status, for which we assigned artificial “non-response” labels (see Materials and methods, Clas-

sification). Figure A in S1 Text shows the univariate predictive performance of individual fea-

tures we used based on ROC AUC metric, showing the top 20 and bottom 20 features sorted

by AUC. As can be seen, while none of the features provide very high accuracy on their own

(the best single feature is the mean across all genes of min{protein targets of arimidex,

smoothed differential expression} with an AUC of 0.81), several features are still informative

in isolation. Overall, the best single features are those using the PCA decomposition of the

expression data and those that combine expression and drug target information (protein tar-

gets of aromasin and gene targets of estrogen receptors). We also see that the drug targets fea-

tures from LINCS (Methods) related to Arimidex are only weakly informative which may
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Fig 1. (a) Flowchart of our general classification approach, showing the network smoothing procedure applied to multiple data types: somatic mutations, differentially

expressed genes, and protein targets for a particular drug. Smoothed mutations, differential expression, and drug targets are combined into network proximity

measures by computing the element-wise minimum of the smoothed scores. Correlation is computed between LINCS expression profiles and tumor gene expression

measurements. UPMC and TCGA samples are handled identically for most of the analysis pipeline until performing cross-validation: UPMC samples are used both in

isolation and in combination with TCGA samples. (b) shows feature availability for data types used in this analysis.

https://doi.org/10.1371/journal.pcbi.1006730.g001
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indicate that the specific cell line used for this drug (HA1E, kidney) is not enough for extract-

ing general drug response profile for Arimidex.

We next trained classifiers using all features to predict general response to aromatase

inhibitors. Fig 2a shows cross-validation performance in prediction of aromatase inhibitor

response, using probabilistic SVM and Random Forest (RF) classifiers, the top two perform-

ing methods among those we tested (See Supplement for the performance of the other classi-

fiers). We see that both classification methods lead to high mean ROC AUC (0.91),

demonstrating the advantage of integrating several different types of features. While both

methods performed equally well, it is much easier to interpret the RF results and so we focus

on these results below. Fig 2b shows the importance of each feature used by RF (using the

scikit-learn package [25]). Again, features that combine tumor expression changes

with drug target information seem to be the most useful including features based on estrogen

receptor targets and targets of aromasin. We also find a high scoring feature that combines

tumor mutation information with estrogen receptor target information. Specific genes con-

tributing to these high scoring PCA features are plotted in Figures B, C, and D in S1 Text.

These genes include TP53 whose mutations were identified as most significant contributors

for the top feature, in line with a recent study by Gellert et al. [26], in which TP53mutations

were associated with poor response in tumors treated with AIs. Other top genes included

CDH1, which is involved in cancer progression and metastasis [27], JUN, a transcription fac-

tor implicated in cell proliferation and angiogenesis in invasive breast cancer [28], and

KLK4, which codes for a kallikrein protein that is overexpressed in prostate cancer [29] and

is associated with an epithelial-mesenchymal transition-like effect in prostate cancer cells

[30].

Cell line results improve prediction performance

To obtain additional data for improving the ability of our method to predict tumor response

to aromtase inhibitors we performed cell line experiments. In these experiments we grew a

selection of ER+ and control ER- breast cancer cell lines in serum estrogen for 5 days and then

either kept the estrogen-containing serum for an additional 5 days, or switched to serum free

media, thus mimicking the removal of estrogen. Growth measure results for these cells are pre-

sented in Fig 3. As can be seen, for several cells there are significant differences with and with-

out serum estrogen. Since, unlike for the patients, we only have genomic data and no clinical

information for these cells, we developed a joint prediction method by combining tumor and

cell line derived classifiers (Materials and methods, Combining cell line and patient derived

classifiers). The joint prediction combined the predictions of the two separate classifiers

(tumor and cell line based) by learning a weight for each of them. As expected, given the small

number of the cell lines tested compared to the number of patients (13 vs. 590), the weight

assigned to the cell line predictor was lower (median γ = 0.0276, mean γ = 0.0286 across all

leave-one-out cross-validation folds for random forest classifiers). As can be seen in Figure Q

in S1 Text, with curves in the legend sorted by AUC, the addition of cell line information

slightly improves cross-validation performance (though this difference is not visible when lim-

iting AUC values to two decimal places).

UPMC clinical data improves prediction of anastrozole response

The cross-validation results presented above correspond to an overall prediction of whether a

tumor responds to an aromatase inhibitor. In the “real world”, patients receive one out of

three AIs, and within our cohort Arimidex (anastrozole) was the most frequently prescribed

drug. Given some differences in mechanism of action, side effects and efficacies [31–33], we
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Fig 2. (a) Leave-one-out cross-validation results for prediction of non-response to all aromatase inhibitors, using random

forests and probabilistic support vector machines. (b) Feature importance from the random forest cross-validation results,

showing which constructed features contribute most to the random forest fit. Features prefixed with “Min.” denote elementwise

minimum of pairs of matrices, e.g. smoothed (“sm.”) drug targets of Arimidex and smoothed binary differential expression as

shown in the first feature listed. “sm. {ESR1, ESR2}” denotes network proximity to the ESR1 and ESR2 genes. Sample×gene

matrices are collapsed across genes in various ways to produce feature values for samples: mean or standard deviation across all

genes, or through PCA decomposition. Categorical clinical features are represented with one-hot encoding, and are shown as

“feature name_column name”, e.g. “er_cell_percentage_90-99%”.

https://doi.org/10.1371/journal.pcbi.1006730.g002
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next used our method to predict response to Arimidex. Results are shown in Fig 4a. While this

is a much more challenging prediction task than overall response to AIs (reflected in the

decreased overall accuracy) the results still show the predictive power of the features that we

compute. These results can be further improved with better clinical data.

Fig 3. Cell line growth data. (a) shows cell line growth ratios (day 5 cell count / day 0 cell count), with and without 1nM serum estrogen. (b) shows the cell line growth

measure defined in Eq 6. Threshold 1.0 was used to denote cell lines as responsive (green) or non-responsive (red).

https://doi.org/10.1371/journal.pcbi.1006730.g003

Fig 4. Cross-validation prediction results for non-response to anastrozole. (a) shows results for non-response to anastrozole with all available TCGA samples, and

(b) shows prediction results restricted to UPMC patients.

https://doi.org/10.1371/journal.pcbi.1006730.g004
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The discussion so far focused on all TCGA breast cancer samples. For a subset (n = 151) of

these patients we also have high-quality, manually-curated patient data, allowing us greater

accuracy in identifying and predicting clinical outcomes (a detailed list of the clinical variables

we extracted for this cohort is available on the supporting website). We thus examined the dif-

ference in performance between training and testing on all TCGA patients and using only

University of Pittsburgh/UPMC patients (n = 62 given anastrozole, and n = 89 which were

ER– or given any aromatase inhibitor). Results from this analysis are shown in Fig 4b and

Figure I in S1 Text. While we do not observe a large performance difference when predicting

response to all aromatase inhibitors (indicating that TCGA clinical features for such analysis

are likely good enough), we see a larger improvement when predicting of response to anastro-

zole alone (ROC AUC 0.73 for UPMC samples compared to 0.70 for all TCGA samples). This

indicates that accurate information about the specific drugs used for each patient, switching

between drugs and responses and side effects, all present in the UPMC curated data but not in

the TCGA data, can greatly help automated methods for feature construction in personalized

medicine analysis.

Comparison with other methods

To evaluate the usefulness of the features we constructed for this prediction task we first com-

pared the results of using these features to methods that only use the measured expression and

sequence data [34–39]. For this we constructed a “naïve” feature set, consisting only of somatic

mutations, differential expression, and binary indicator columns for the clinical features

(Methods). We repeat our cross-validation analysis using this feature set, using the “raw”

binary features, and using the top 8, 32, 128, and 512 components from PCA decomposition/

transformation of this matrix. Results are shown in Fig 5, Figure E in S1 Text and Figure G in

S1 Text for all aromatase inhibitors, and Figures F, H, and R in S1 Text for anastrozole. We see

that performance of these ‘naïve” feature is comparable for the “all aromatase inhibitor” case

(leave-one-out ROC AUC 0.90 for binary features, max 0.90 for PCA decomposition, vs. 0.91

for our constructed feature set), while it is significantly lower for the more challenging task of

predicting response to anastrozole (leave-one-out ROC AUC 0.59 for binary features, 0.62 for

PCA decomposition, vs. 0.70 for our constructed feature set). We also repeated the University

of Pittsbugh/UPMC-only analysis with this ‘naïve” feature set, and again note a large drop in

performance (with ROC AUC dropping from 0.70 to 0.44 for anastrozole). See Figures J and K

in S1 Text for full results.

We also compared our method to prior methods that used either a network based approach

to analyze mutation data [40], relied on mutually exclusive mutations [7] for prognosis classifi-

cation, or combined disparate network similarity measures across networks [23]. Results are

presented in Fig 5 and Figure R in S1 Text. In general we find that such methods, which only

use mutation information, do not perform as well as our methods that integrate several differ-

ent types of data including expression and drug targets.

We have also compared our method to prior methods that are specifically focused on pre-

dicting AI response. Turnbull et al. [41] performed feature selection on gene expression data

resulting in four genes which were used in a decision tree framework to predict tumor

response to AIs. We reimplement their decision tree classifier (Supporting Methods) and used

it for response predictions. Results are shown in Fig 5 for all aromatase inhibitor prediction,

and Figure R in S1 Text for specific prediction of anastrozole non-response. The low accuracy

of this method is likely due to the specific parameters used in the original study that are likely

not appropriate for a the larger dataset studied in this paper. See Supporting Results for more

details. Reijm et al. [42] developed an eight-gene classification system for prediction of AI
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response, and presented t-statistic values for association of these genes with tumor response.

Though there are conceptual differences between t-statistic values and logistic regression coef-

ficients, we nonetheless can use these t-values to produce continuous predictions of tumor

response with log-fold gene expression data (Supplementary Methods). Results for this

method are presented in Fig 5 and Figure R in S1 Text. We see reasonable performance for

prediction of aromatase inhibitor response (ROC AUC 0.76) though substantially worse per-

formance for anastrozole-specific response (ROC AUC 0.53).

Discussion

We combined clinical and high throughput patient data with additional cell line experiments

to predict tumor response to aromatase inhibitors. We developed methods for constructing

PCA features by smoothing interaction networks overlaid with expression, mutation and drug

target data. Our clinical data consisted of abundant (though less accurate) data for all TCGA

patients and from a more detailed curated dataset for a subset of 151 patients in this set.

Fig 5. Performance comparison between multiple prediction strategies, for prediction of aromatase inhibitor non-

response.

https://doi.org/10.1371/journal.pcbi.1006730.g005
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To further improve the classifiers and the labels, we analyzed electronic medical records

within the University of Pittsburgh Medical Center (UPMC) system for the subset of TCGA

patients that were treated at UPMC. These elements constituted data involving known breast

cancer risk factors that either were not included in the TCGA data sets, or it was uncertain

how the data was obtained and/or validated. This included reproductive history of patients at

the time of breast cancer diagnosis, family history including both first and second degree rela-

tives as well as other malignancy history for the patients if applicable. Data involving comorbid

diseases that are common in adult populations including hypertension, diabetes, hyperlipid-

emia and metabolic information on patient’s weight at the time of diagnoses were also

obtained, as these may impact patients’ breast cancer specific survival as well as overall sur-

vival. In regards to tumor biology, information from the EMR was obtained to the specific

degree of hormone receptor status including H-score or percent staining as well as HER2/neu

status. As we show, the models we developed provide accurate general predictions for the suc-

cess of treatment with aromatase inhibitors. Focusing on treatment with a specific drug, Ari-

midex, we show that using the more detailed clinical data can lead to much better results when

using our methods, greatly improving upon the use of naïve features and on prior methods

suggested for this task.

For our labels, the analysis of EMRs allowed us to obtain the most up to date survival data.

While most TCGA based analysis relies on survival data that was collected several years ago,

EMRs are continuously updated and so we were able to use much more up to date informa-

tion. Finally, we were able to use the EMRs to determine reasons for stopping specific therapy

or drug including toxicity. Combined, the new features and improved labels, led to better per-

formance for the challenging task of predicting response to a specific drug as we showed in

Results.

The top-scoring PCA component in the random forest prediction is strongly influenced by

the cell cycle gene CCND1, overexpression of which correlates with early cancer onset and

tumor progression [43, 44]. It has been well known that proliferation is a strong predictive fac-

tor of endocrine treatment response, for example elegantly shown in a series of neoadjuvant

short-term pre-surgical studies [45–47]. Another gene that ranked highly in our feature impor-

tance score was CDH1. CDH1 encodes E-cadherin, a calcium-dependent cell-cell adhesion

protein, that is frequently mutated in a number of tumor types, including breast cancer. E-cad-

herin protein is lost in up to 95% of invasive lobular breast cancer, and is one of the hallmark

features of this disease, whereas it is lost in less than 5% of invasive ductal breast cancers [48].

We have previously shown that estrogen treatment of breast cancer cells results in downregula-

tion of E-cadherin, potentially contributing to estrogen-mediated activation of migration and

motility of cells [49]. In addition, we have shown that ILC cell lines with genetic loss of CDH1
have a unique estrogen response compared to IDC cell lines [50]. Thus the results from this

study further suggest a critical role for E-cadherin in response to estrogen and aromatase

inhibitors.

Much prior work has focused on the prediction of response to endocrine therapy in general

and aromatase inhibitors specifically [10, 51–53]. However, only a few of these studies are

directly comparable to this work. Many prior studies use data types unavailable for large clini-

cal datasets (e.g. proteomic data), focus on other organisms such as mice, or are restricted to

cell lines only. We therefore focused on comparison to relevant work and on the analysis of

the usefulness of the features constructed. As we show, for the more challenging task of pre-

dicting specific drug response our method outperforms especially when comparing the results

for the more accurate the University of Pittsburgh/UPMC cohort.

Our results indicate that, while high throughput datasets are key to constructing accurate

prediction methods, it is extremely important to couple these datasets with complete and
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accurate clinical data. While information on drug prescription and usage is available for all

individuals in the TCGA breast cancer dataset, we found several discrepancies between the

more detailed UPMC data and the TCGA data for the same individual. This may indicate that

data on other patients is noisy as well. We believe that our study provides a strong incentive

for additional efforts aimed at curation of such clinical data.

Materials and methods

Data

The input to our method consists of genomic and clinical BRCA (breast cancer invasive carci-

noma) data obtained from TCGA [54] and detailed clinical data for a subset of 151 University

of Pittsburgh/UPMC patients (data description on supplementary website). The UPMC data

provides specific treatments, reasons for changes in treatments, dates and responses for these

patients. Specifically, we used the following data types:

• Somatic mutations obtained from whole-exome sequencing.

• Gene expression data, postprocessed and provided as part of the COSMIC cancer gene cen-

sus [55], as both continuous log-fold change and binary differential expression status.

• LINCS [56] gene expression signatures for the cell lines treated with the drug we studied.

• Treatment data available in TCGA clinical information: drugs that each patient was pre-

scribed, and global “responded to treatment” status for the patient’s entire drug regimen.

• Treatment data parsed by University of Pittsburgh/UPMC researchers which in addition to

the TCGA information mentioned above includes detailed clinical information about dates

of specific events and reasons for patients who discontinued the use of a specific drug.

We focus on the three aromatase inhibitors prescribed most in BRCA patients: anastrozole

(Arimidex), exemestane (Aromasin), and letrozole (Femara). To construct labels for tumors

(response / non response) for each of these drugs, we examine the treatment information to

identify which patients were prescribed that drug, and whether the patient discontinued that

drug due to non-response. We then construct a “non-response” vector for each drug, denoting

a patient as positive if the patient discontinued that drug or died during treatment with it.

Pre-processing the omics data

We constructed a binary mutation matrixM, a log-fold gene expression matrix E, and a binary

differential gene expression matrix D, with samples as rows and genes as columns. We use C
(A) to denote the set of column labels of matrix A, so that e.g. C(M) is the set of genes that

appear in the TCGA somatic mutation data. Similarly, we define R(A) as the set of row labels

of matrix A, corresponding to the distinct samples (individuals) present in each data set.

The mutation matrices M are defined as

M½i; j� ¼

(
1 if gene j is mutated in sample i;

0 otherwise
ð1Þ

The COSMIC database [55] provides differential gene expression data for TCGA samples,

represented as log-fold change between tumor and matched normal samples in the same

tumor/tissue. The COSMIC database additionally annotates each log-fold differential expres-

sion measurement with “over”, “under”, or “normal” gene expression, for genes with log-fold

differential expression outside σ = 2 standard deviations from the mean in each sample. We
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collect the continuous log-fold gene expression measurements into a matrix E, and collect the

normal/over/under expression status into a binary matrix D:

D½i; j� ¼

(
1 if gene j is over� or under � expressed in sample i;

0 otherwise
ð2Þ

The TCGA BRCA data includes somatic mutations in 22,232 genes across 1,081 samples, and

differential expression for 17,747 genes in 1,079 samples.

In addition to the condition specific omics data we also use general interaction datasets. We

use the HIPPIE protein-protein interaction network [57, 58] (version 2.1, released 2017-07-

18), which contains confidence scores for 318,757 interactions between 17,204 proteins. Addi-

tionally, we use gene expression data from the LINCS LDS-1191 assay, which contains mea-

surements of gene expression in cell lines after gene knockouts and introduction of small

molecules (“perturbagens”). We use gene expression data in cell lines given the chemotherapy

agent Taxol, and the aromatase inhibitor Arimidex.

Gene set network smoothing

As has been shown in the past, protein interaction networks provide a useful way to overcome

data sparsity and noise when predicting cancer responses [4]. Here we use the network propa-

gation/smoothing method described in Vanunu et al. [59] to combine omics data across

patients. Given a network G = (V, E, w) with V as the set of proteins, E as the set of their inter-

actions, w(u, v) representing the reliability of an interaction (u, v)2E, and a prior knowledge

vector Y: V! [0, 1], we compute a function F(v) 8v 2 V that is both smooth over the network

and accounts for the prior knowledge about each node.

This network smoothing process uses a normalized edge weight matrixW0, computed via

Laplacian normalization of the edge weight matrixW: we first construct a diagonal matrix Δ
with Δ[i, i] = ∑j W[i, j], and computeW0 = Δ−1/2 WΔ−1/2. Given a prior knowledge vector Y, we

then compute the smoothed vector F using the iterative procedure described by Zhou et al.
[60]. Starting with F(0) = Y, we update F at iteration t as follows:

FðtÞ ¼ aW 0Fðt� 1Þ þ ð1 � aÞY ð3Þ

This procedure is repeated iteratively until convergence; namely we stop when kF(t)−F(t−1)k2 <

�. Note that Laplacian normalization produces aW0 with |λ|max� 1, which is required for this

iterative method to converge.

When Y is a binary vector, i.e. Y[u]2{0,1}8u 2 V, the value F[v] for a gene v in the

smoothed vector F naturally corresponds to a continuous measure of network proximity

between v and the “selected” genes s 2 S� V for which Y[s] = 1. We therefore this network

smoothing method to compute scores of proximity for each gene with respect to multiple gene

sets:

• For each tumor, genes in which that tumor harbors a non-synonymous somatic mutation.

• Differentially expressed genes in each tumor, from the COSMIC cancer gene census [55].

• Protein targets of breast cancer drugs, from queries to DGIdb [61].

• Estrogen receptor proteins ESR1 and ESR2.

• Genes targeted by (transcription factors) ESR1 and ESR2, as listed in the TRRUST database

[62].
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For each aforementioned gene set S, we construct a binary prior knowledge vector YS:

YS½s� ¼

(
1 if s 2 S \ V;

0 otherwise
ð4Þ

We then perform network propagation on the vector YS, producing a vector FS. Note that

not all genes in the set S are necessarily included in the protein interaction network, and there-

fore the vectors Y for e.g. somatic mutations in a tumor can differ from rows of the somatic

mutation matrix M.

For somatic mutations and differential expression, we then collect the smoothed vectors

into “propagated” matricesMP and DP, with R(MP) = R(M) = R(DP) = R(D) and C(MP) = C
(DP) = V. Intuitively, the propagated matricesMP and DP contain the per-sample binary vec-

tors ofM and D smoothed over the network. In biological terms, each row of these matrices

represents the network proximity of each gene product to mutated and differentially expressed

genes in that sample. Consequently, as illustrated in Fig 1, the columns of these matrices pro-

vide propagated mutation and differential expression profiles for each gene product across all

samples, indicating the proximity of the respective gene product to the products of mutated or

differentially expressed genes in the respective sample.

Network-integrated proximity features

We next combine the smoothed matricesMP and DP with the smoothed vectors of multiple

gene sets S as mentioned above:

• Proteins targeted by anastrozole

• Proteins targeted by exemestane

• Proteins targeted by letrozole

• Estrogen receptor proteins

• Genes targeted by estrogen receptors

Protein targets of each drug are obtained from queries to DGIdb [61], and gene targets of

estrogen receptors are obtained from the TRRUST database [62].

Given one of the smoothed “target” vectors described above, denoted as T, we compute a

new matrixMP,T:

MP;T ½i; j� ¼ minfMP½i; j�;T½j�g ð5Þ

That is, for some tumor i and gene j, the valueMP,T[i,j] quantifies gene j’s proximity to both

somatic mutations in tumor i and the gene set S represented by the smoothed vector T. We

compute DP,T similarly, replacing MP with DP in Eq 5.

We use these matrices to compute features for response to treatment in tumor i:

• Row-wise mean, representing the total network proximity between a tumor’s somatic muta-

tions (or differential expression) and genes in a predefined set (e.g. targets of a specific drug).

• Row-wise standard deviation, quantifying the variance of mutational or differential expres-

sion proximity to drug targets.

In addition to these summary statistics for each tumor, we also perform PCA decomposi-

tion of these “minimum” matricesMP,T and DP,T, and use the top 10 PCA components as pre-

dictive features. Plots of PCA component scores for genes are shown in Figures B, C, and D in
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S1 Text—in these figures, genes are sorted by absolute value of there scores as assigned by

PCA decomposition, and these absolute values are plotted as the importance of each gene for

that PCA component.

LINCS expression features

We obtained data from the LINCS project [56] L1000 LDS-1191 assay, which has profiled the

gene expression of many cell lines under normal conditions, after introduction of small mole-

cules (“perturbagens”), and under gene knockouts. We selected the experiments involving the

drugs analyzed in this study and identified the DE genes for each of these treatments.

Two relevant drugs have been administered to cell lines by the LINCS consortium: Taxol (a

taxane, also known as Paclitaxel and Abraxane), and the aromatase inhibitor Arimidex. Each

of these two drugs were tested on a single cell line, and we create LINCS features for each

tumor by combining that tumor’s continuous log-fold differential expression with the expres-

sion change induced by that drug in the appropriate cell line. We compute two features for

each (tumor,drug) pair:

• Correlation between that tumor’s differential expression and the cell line differential expres-

sion induced by administering that drug.

• Dot product between that tumor’s differential expression and the cell line differential expres-

sion induced by administering that drug.

While the two features above are conceptually similar, we note that in addition to the direc-

tion of agreement, the dot product also represents themagnitude of change in expression

between a tumor and the cell line in question.

Clinical feature extraction

We use the following categorical variables from the general TCGA clinical data:

• Tumor pathological stage

• Node pathological stage

• Metastasis pathological stage

• Overall pathological stage

• Histological type

• ICD-10 type

• ICD-O-3 histology

• HER2 immunohistochemistry level result

• Post-surgery margin status

We expand each categorical variable listed above into 0/1 indicator columns for use in clas-

sification methods. We additionally extract the estrogen receptor status of each tumor, used

for selecting additional patients based on prior clinical knowledge.

Classification

With the above features, we perform cross-validation experiments to assess our ability to pre-

dict response to aromatase inhibitor treatment. We examine all patients who were given any of

the aforementioned drugs: 279 patients were given anastrozole, 51 were given exemestane, and
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80 were given letrozole. An additional 180 samples were not considered for aromatase inhibi-

tor therapy due to having ER– tumors, which are known not to respond to AI therapy. In this

general aromatase inhibitor response prediction task, we assign a patient a “non-response”

label if they were removed from any such drug for clinical reasons, or if the patient died during

drug treatment. We also include prior clinical knowledge in this “all aromatase inhibitor” anal-

ysis; we integrate this prior knowledge by also computing the above features for the 180

patients who were not given an aromatase inhibitor, but who had estrogen receptor negative

(ER–) tumors. These tumors are known not to respond to this type of treatment, so we assign

these samples “non-response” labels. We use the features discussed above to learn various

types of classifiers including logistic regression (with both L1 and L2 regularization), Random

Forest and Probabilistic SVMs. For each of these methods and each setting we perform leave-

one-out cross-validation.

Cell line treatment

We performed cell line experiments to compare breast cancer cell line growth with and with-

out the addition of estrogen. We initially grow cell cultures for 5 days, with estrogen present,

simulating the initial growth of breast cancer in a patient. We then separately grow cultures

with a continued supply of serum estrogen, or with replacement cell medium that lacks estro-

gen—the environment without estrogen simulates the introduction of an aromatase inhibitor.

We measure cell line growth with and without serum estrogen after the initial growth period,

and from these cell counts we compute measures of how much each cell line responded to the

presence of estrogen. We performed this experiment with 12 replicates of each cell line, 6 with

and 6 without estrogen after the initial growth period, and used a mixture of ER+ and ER– cell

lines (details in Table B in S1 Text). We computed a growth measure for these cells as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1nM E2 GR � 1

no E2 GR � 1
1nM E2 GR � no E2 GRð Þ

r

ð6Þ

with “GR” denoting growth ratio with or without serum E2.

Cell line experiment

MCF-7, BT474, BT483, CAMA1, Uacc812, ZR75-1 ZR75-30 and T47D breast cancer cell lines

were purchased from American Type Culture Collection [ATCC], Manassas, VA, USA.

SUM44PE was purchased from Asterand Bioscience, Detroit, MI, USA, and 600MPE cells

were a gift by Dr. Rachel Schiff. For the estrogen removal experiments, the cells were kept for 5

days in IMEM supplemented with 10% charcoal stripped serum (CSS) with 1nM E2, and then

plated into 96-well plates with or without 1 nM estradiol. An exception are Sum44PE cells that

were kept in IMEM with 2% CSS. After 5 days, cell numbers were measured using Cell-titer

Glo (Promega, Madison, WI, USA) according to the manufacturer’s instructions. Lumines-

cence was measured with GloMax1multi-Detection System (Promega, Madison, WI, USA),

using a VICTOR X4 plate reader (PerkinElmer, Waltham, MA, USA). Bars represent the mean

of six biological replicates ± SD. 17β-Estradiol (E2) was obtained from Sigma-Aldrich

(St. Louis, MO, USA).

Combining cell line and patient derived classifiers

We separated a random 10% of patients to use for training weights between tumor and cell

line classifiers, and used the remaining 90% of patients for cross-validation analysis. In each

cross-validation fold, we fit classifiers to the corresponding training set of patients, and then
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used those classifiers to produce non-response predictions of the 10% of patients initially set

aside. We then computed predictions for those 10% of patients using classifiers trained on cell

lines, and chose the optimal convex combination of tumor and cell line predictions in the

training set, producing final prediction p = γpc+(1 − γ)pp, with pc denoting predictions from

cell lines and pp denoting predictions from tumors. The validation set predictions then com-

bines the tumor and cell line predictions via the hyper-parameter γ tuned by cross-validation

(note that in this way we can use the full set of features for tumors while still using the cell lines

in the prediction algorithm).

Supporting information

S1 Text. Supporting information. Descriptive statistics of the UPMC patient cohort, details

of comparisons with other methods, and results of additional analyses.

(PDF)

S1 Data. Analysis scripts and processed data (network-constructed features) used to pro-

duce the results shown in this work.

(ZIP)

Acknowledgments

We would like to thank Dr. David Davidson for helpful discussions. The results published here

are based on data generated by TCGA. Information about TCGA and the investigators and

institutions who constitute it can be found at https://cancergenome.nih.gov/.

Author Contributions

Conceptualization: Matthew Ruffalo, Roby Thomas, Adrian V. Lee, Steffi Oesterreich, Ziv

Bar-Joseph.

Data curation: Matthew Ruffalo, Roby Thomas, Jian Chen.

Funding acquisition: Ziv Bar-Joseph.

Investigation: Matthew Ruffalo, Steffi Oesterreich, Ziv Bar-Joseph.

Methodology: Matthew Ruffalo, Jian Chen, Adrian V. Lee, Ziv Bar-Joseph.

Resources: Steffi Oesterreich, Ziv Bar-Joseph.

Supervision: Ziv Bar-Joseph.

Validation: Matthew Ruffalo, Jian Chen, Adrian V. Lee, Steffi Oesterreich, Ziv Bar-Joseph.

Visualization: Matthew Ruffalo.

Writing – original draft: Matthew Ruffalo, Ziv Bar-Joseph.

Writing – review & editing: Matthew Ruffalo, Roby Thomas, Adrian V. Lee, Steffi Oester-

reich, Ziv Bar-Joseph.

References
1. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast

cancer response to aromatase inhibition. Nature. 2012; 486(7403):353–360. https://doi.org/10.1038/

nature11143 PMID: 22722193

Network-guided prediction of aromatase inhibitor response in breast cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006730 February 11, 2019 16 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006730.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006730.s002
https://cancergenome.nih.gov/
https://doi.org/10.1038/nature11143
https://doi.org/10.1038/nature11143
http://www.ncbi.nlm.nih.gov/pubmed/22722193
https://doi.org/10.1371/journal.pcbi.1006730


2. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The cancer genome

atlas pan-cancer analysis project. Nature genetics. 2013; 45(10):1113–1120. https://doi.org/10.1038/

ng.2764 PMID: 24071849

3. Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol-

ogy & therapeutics. 2014; 142(2):164–175. https://doi.org/10.1016/j.pharmthera.2013.12.004

4. Zhang W, Ota T, Shridhar V, Chien J, Wu B, Kuang R. Network-based Survival Analysis Reveals Sub-

network Signatures for Predicting Outcomes of Ovarian Cancer Treatment. PLoS Comput Biol. 2013; 9

(3):e1002975+. https://doi.org/10.1371/journal.pcbi.1002975 PMID: 23555212

5. Banerjee M, Muenz DG, Chang JT, Papaleontiou M, Haymart MR. Tree-based model for thyroid cancer

prognostication. The Journal of Clinical Endocrinology & Metabolism. 2014; 99(10):3737–3745. https://

doi.org/10.1210/jc.2014-2197

6. Ruffalo M, Husseinzadeh H, Makishima H, Przychodzen B, Ashkar M, Koyutürk M, et al. Whole-exome

sequencing enhances prognostic classification of myeloid malignancies. Journal of biomedical informat-

ics. 2015; 58:104–113. https://doi.org/10.1016/j.jbi.2015.10.003 PMID: 26453823

7. Leiserson MD, Reyna MA, Raphael BJ. A weighted exact test for mutually exclusive mutations in can-

cer. Bioinformatics. 2016; 32(17):i736–i745. https://doi.org/10.1093/bioinformatics/btw462 PMID:

27587696

8. Ruffalo M, Koyutürk M, Sharan R. Network-Based Integration of Disparate Omic Data To Identify “Silent

Players” in Cancer. PLOS Comput Biol. 2015; 11(12):e1004595. https://doi.org/10.1371/journal.pcbi.

1004595 PMID: 26683094

9. Kavuri SM, Jain N, Galimi F, Cottino F, Leto SM, Migliardi G, et al. HER2 activating mutations are tar-

gets for colorectal cancer treatment. Cancer discovery. 2015; 5(8):832–841. https://doi.org/10.1158/

2159-8290.CD-14-1211 PMID: 26243863

10. Kang J, D’Andrea AD, Kozono D. A DNA repair pathway–focused score for prediction of outcomes in

ovarian cancer treated with platinum-based chemotherapy. Journal of the National Cancer Institute.

2012; 104(9):670–681. https://doi.org/10.1093/jnci/djs177 PMID: 22505474

11. Ellis MJ, Perou CM. The genomic landscape of breast cancer as a therapeutic roadmap. Cancer discov-

ery. 2013; 3(1):27–34. https://doi.org/10.1158/2159-8290.CD-12-0462 PMID: 23319768

12. Lønning PE, Eikesdal HP. Aromatase inhibition 2013: clinical state of the art and questions that remain

to be solved. Endocrine-related cancer. 2013; 20(4):R183–R201. https://doi.org/10.1530/ERC-13-0099

PMID: 23625614

13. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor resistance. Nature

Reviews Cancer. 2015; 15(5):261. https://doi.org/10.1038/nrc3920 PMID: 25907219

14. Blok E, Derks M, van der Hoeven J, van de Velde C, Kroep J. Extended adjuvant endocrine therapy in

hormone-receptor positive early breast cancer: current and future evidence. Cancer treatment reviews.

2015; 41(3):271–276. https://doi.org/10.1016/j.ctrv.2015.02.004 PMID: 25698635

15. Gönen M, Alpaydın E. Multiple kernel learning algorithms. Journal of machine learning research. 2011;

12(Jul):2211–2268.

16. Speicher NK, Pfeifer N. Integrating different data types by regularized unsupervised multiple kernel

learning with application to cancer subtype discovery. Bioinformatics. 2015; 31(12):i268–i275. https://

doi.org/10.1093/bioinformatics/btv244 PMID: 26072491

17. Guadagni F, Zanzotto FM, Scarpato N, Rullo A, Riondino S, Ferroni P, et al. RISK: A random optimiza-

tion interactive system based on kernel learning for predicting breast cancer disease progression. In:

International Conference on Bioinformatics and Biomedical Engineering. Springer; 2017. p. 189–196.

18. Nascimento AC, Prudêncio RB, Costa IG. A multiple kernel learning algorithm for drug-target interaction

prediction. BMC bioinformatics. 2016; 17(1):46. https://doi.org/10.1186/s12859-016-0890-3 PMID:

26801218

19. Fujita N, Mizuarai S, Murakami K, Nakai K. Biomarker discovery by integrated joint non-negative matrix

factorization and pathway signature analyses. Scientific reports. 2018; 8(1):9743. https://doi.org/10.

1038/s41598-018-28066-w PMID: 29950679

20. Chen J, Zhang S. Discovery of two-level modular organization from matched genomic data via joint

matrix tri-factorization. Nucleic Acids Research. 2018;. https://doi.org/10.1093/nar/gky440

21. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent

variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009; 25

(22):2906–2912. https://doi.org/10.1093/bioinformatics/btp543 PMID: 19759197

22. Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. A fully Bayesian latent variable model for

integrative clustering analysis of multi-type omics data. Biostatistics. 2017; 19(1):71–86. https://doi.org/

10.1093/biostatistics/kxx017

Network-guided prediction of aromatase inhibitor response in breast cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006730 February 11, 2019 17 / 19

https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
http://www.ncbi.nlm.nih.gov/pubmed/24071849
https://doi.org/10.1016/j.pharmthera.2013.12.004
https://doi.org/10.1371/journal.pcbi.1002975
http://www.ncbi.nlm.nih.gov/pubmed/23555212
https://doi.org/10.1210/jc.2014-2197
https://doi.org/10.1210/jc.2014-2197
https://doi.org/10.1016/j.jbi.2015.10.003
http://www.ncbi.nlm.nih.gov/pubmed/26453823
https://doi.org/10.1093/bioinformatics/btw462
http://www.ncbi.nlm.nih.gov/pubmed/27587696
https://doi.org/10.1371/journal.pcbi.1004595
https://doi.org/10.1371/journal.pcbi.1004595
http://www.ncbi.nlm.nih.gov/pubmed/26683094
https://doi.org/10.1158/2159-8290.CD-14-1211
https://doi.org/10.1158/2159-8290.CD-14-1211
http://www.ncbi.nlm.nih.gov/pubmed/26243863
https://doi.org/10.1093/jnci/djs177
http://www.ncbi.nlm.nih.gov/pubmed/22505474
https://doi.org/10.1158/2159-8290.CD-12-0462
http://www.ncbi.nlm.nih.gov/pubmed/23319768
https://doi.org/10.1530/ERC-13-0099
http://www.ncbi.nlm.nih.gov/pubmed/23625614
https://doi.org/10.1038/nrc3920
http://www.ncbi.nlm.nih.gov/pubmed/25907219
https://doi.org/10.1016/j.ctrv.2015.02.004
http://www.ncbi.nlm.nih.gov/pubmed/25698635
https://doi.org/10.1093/bioinformatics/btv244
https://doi.org/10.1093/bioinformatics/btv244
http://www.ncbi.nlm.nih.gov/pubmed/26072491
https://doi.org/10.1186/s12859-016-0890-3
http://www.ncbi.nlm.nih.gov/pubmed/26801218
https://doi.org/10.1038/s41598-018-28066-w
https://doi.org/10.1038/s41598-018-28066-w
http://www.ncbi.nlm.nih.gov/pubmed/29950679
https://doi.org/10.1093/nar/gky440
https://doi.org/10.1093/bioinformatics/btp543
http://www.ncbi.nlm.nih.gov/pubmed/19759197
https://doi.org/10.1093/biostatistics/kxx017
https://doi.org/10.1093/biostatistics/kxx017
https://doi.org/10.1371/journal.pcbi.1006730


23. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating

data types on a genomic scale. Nature methods. 2014; 11(3):333. https://doi.org/10.1038/nmeth.2810

PMID: 24464287

24. Vitali F, Cohen LD, Demartini A, Amato A, Eterno V, Zambelli A, et al. A network-based data integration

approach to support drug repurposing and multi-target therapies in triple negative breast cancer. PloS

one. 2016; 11(9):e0162407. https://doi.org/10.1371/journal.pone.0162407 PMID: 27632168

25. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-

ing in Python. Journal of Machine Learning Research. 2011; 12(Oct):2825–2830.
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