
biomimetics

Review

Lotus Effect and Friction: Does Nonsticky
Mean Slippery?

Md Syam Hasan and Michael Nosonovsky *

Mechanical Engineering Department, University of Wisconsin-Milwaukee, 3200 N Cramer St,
Milwaukee, WI 53211, USA; mdsyam@uwm.edu
* Correspondence: nosonovs@uwm.edu; Tel.: +1-414-229-2816

Received: 3 March 2020; Accepted: 11 June 2020; Published: 12 June 2020
����������
�������

Abstract: Lotus-effect-based superhydrophobicity is one of the most celebrated applications of
biomimetics in materials science. Due to a combination of controlled surface roughness (surface patterns)
and low-surface energy coatings, superhydrophobic surfaces repel water and, to some extent,
other liquids. However, many applications require surfaces which are water-repellent but provide
high friction. An example would be highway or runway pavements, which should support high
wheel–pavement traction. Despite a common perception that making a surface non-wet also
makes it slippery, the correlation between non-wetting and low friction is not always direct.
This is because friction and wetting involve many mechanisms and because adhesion cannot
be characterized by a single factor. We review relevant adhesion mechanisms and parameters
(the interfacial energy, contact angle, contact angle hysteresis, and specific fracture energy) and discuss
the complex interrelation between friction and wetting, which is crucial for the design of biomimetic
functional surfaces.
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1. Introduction

Biomimetics is mimicking living nature for engineering applications. The term “biomimetics”
was suggested by Otto Schmitt in the 1950s. A similar concept was developed also by Jack E.
Steele in 1958 under the name “bionics.” Both concepts were popularized during the next decades;
however, today the word “bionics” is common mostly in popular culture, while “biomimetics” is used
in scientific and engineering literature. More rigorous definitions (such as the International Organization
for Standardization Standard 18458 of 2015) distinguish between biomimetics (“an interdisciplinary
cooperation of biology and technology or other fields of innovation with the goal of solving practical
problems through the function analysis of biological systems, their abstraction into models, and the
transfer into and application of these models to the solution”), bionics (“a technical discipline that seeks
to replicate, increase, or replace biological functions by their electronic and/or mechanical equivalents”),
biomimicry or biomimetism (“philosophy and interdisciplinary design approaches taking nature as a
model to meet the challenges of sustainable development”), and bioinspiration (“a creative approach
based on the observation of biological systems”) [1].

Biomimetic approaches are currently quite common in a wide range of fields including materials
science, artificial intelligence, robotics, biomedical applications, and so on. Particularly important
applications are found in materials science, and they include self-healing, self-lubricating,
and self-cleaning materials and surfaces [2].

The most common example of a successful use of biomimetics in surface science is the lotus effect
for water-repellency and self-cleaning. Among natural leaves, the lotus (Nelumbo nucifera) leaf exhibits
extreme water repellence and hydrophobic behavior. When a water droplet is placed on a lotus leaf
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surface, the adhesion between the water and dust particles is greater than the adhesion between the
dust and the leaf surface. As a result, the water droplet picks up the dust particles and rolls off the leaf
surface immediately. The lotus (
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) is
also mentioned as a symbol of purity in the Quran (Al-Waqi‘ah 56:28) and the Hadith (The Book of
Purification 1:189) [1,3,4]. There are more than 70 words for lotus in Sanskrit [4].

The superhydrophobic and self-cleaning mechanism of the lotus leaf is due to a special hierarchical
roughness profile of its surface combined with wax coating, and it is called the “lotus effect” [5].
Quantitively, superhydrophobic surfaces are characterized by high values of the apparent water contact
angle (CA > 150◦) and low values of contact angle hysteresis (CAH < 10◦). Recent advancements in
micro-/nanotechnology have made it possible to design biomimetic surfaces with desired properties
like non-adhesiveness, water repellence or superhydrophobicity, icephobicity, self-cleaning capacity,
and so on. For example, biomimetic superhydrophobic surfaces are synthesized by using low surface
energy coatings or by introducing micro-/nano-level roughness on the surfaces [6].

Superhydrophobic surfaces are characterized by low adhesion, which is due to the low surface
free energy. Therefore, materials having the low surface free energy are used to manufacture
superhydrophobic, non-adhesive biomimetic surfaces [7]. A variety of nonsticky, low-adhesion
fluorine polymers, polytetrafluoroethylene (PTFE; popularly known under its commercial name
“Teflon”), are used in different applications. For a smooth PTFE surface, the water CA varies between
109◦ to 114◦ and the surface free energy is low. The surface free energy of a PTFE surface can have a
minimum value of 22 mJ m−2 [8,9].

The concept of surface free energy can be used to analyze the wetting phenomena. The surface
free energy is often considered equivalent to the surface tension though they are not identical concepts.
Surface tension (measured in N/m) is commonly defined as the force acting along the interface but
perpendicular to the three-phase contact line. On the other hand, the surface free energy is measured in
J m−2 and it is equal to the energy required to form a surface with a unit area. At the surface, the atoms
and molecules have fewer bonds with neighboring atoms and molecules compared to the bulk. As a
result, they possess higher energy than the atoms and molecules in the bulk. This excess energy of the
surface atoms and molecules contributes to the surface free energy. The CA measurement is one of the
most popular methods of determining the surface free energy. In this method, the CA of the surface is
measured using different liquids (e.g., water and diiodomethane). Using the CA data and knowing the
surface tension forces of the liquids, the surface free energy can be calculated.

When a liquid droplet is placed on a solid surface, the solid and liquid surfaces reach an equilibrium
state, which corresponds to the minimum energy state of the three phases. In an ideal situation for a
smooth and homogeneous surface, the equilibrium value of the most stable contact angle (CA), θ0,
is expressed by the Young equation:

cos θ0 =
γsv − γsl

γlv
(1)

where γsv, γlv, and γsl are the surface tension forces (or interfacial energy) of the solid–vapor,
the liquid–vapor, and the solid–liquid interfaces, respectively, acting on the contact line.

The formation of adhesive bonds of solids in contact is influenced by the surface free energy. As a
result, the surface free energy influences the frictional behavior of sliding surfaces. This is because the
two main factors contributing to friction are the adhesion between contacting surfaces and surface
roughness. There are differences in the findings of different researchers about the relation between
the surface free energy and friction. Several researchers suggested that there is a linear relationship
between the surface free energy and the coefficient of friction (COF) [10,11]. A large surface free energy
leads to high adhesion in a solid–solid contact, which eventually results in an increase in the COF.
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Other researchers suggested that there is no general relationship between friction and surface free
energy [12]. The relationship between the surface free energy and friction is influenced by a lot of other
factors, which makes it complex.

Biomimetic superhydrophobic surfaces can be effective solutions in combating corrosion and
water-induced damages. However, there is a common perception that, for “nonsticky”, water-repellent,
hydrophobic/superhydrophobic surfaces, the COF of solid–solid contact is reduced [13]. One can argue
that the dry solid–solid friction depends on macro- and microscale roughness of the surface more than
on the chemical nature of the surface [14]. Therefore, the question arises whether it is practical to use
biomimetic, hydrophobic/superhydrophobic surfaces in applications that require water repellence
and high friction at the same time (e.g., pavements, highways, and runways). Therefore, finding the
correlation between the wetting and frictional properties of biomimetic hydrophobic/superhydrophobic
becomes important.

In this study, we review relevant adhesion mechanisms and parameters and strive to find the
complex interrelation between friction and wetting, investigating the effect of the surface free energy
and other surface parameters on both frictional and wetting properties (Figure 1).
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2. Role of Adhesion in Friction

The two major factors which contribute to friction are adhesion and surface roughness. Adhesion is
closely related to the surface energy and wetting; however, the role of adhesion in friction is
quite complex.

2.1. Adhesion vs. Deformation in Frictional Mechanisms

In this section, we will discuss the phenomenon of friction and the role of adhesion and deformation
in frictional mechanisms. Friction is an important topic of physics and engineering with a great
practical significance [15–17]. Friction is the resistance to motion, which is experienced in relative
motion of solid surfaces, liquid layers, or material elements in contact. The resistive tangential force is
the friction force. Dry friction, as the name implies, describes the friction between two solid surfaces.

The quantitative properties of friction between solid surfaces are generally subject to
Amontions–Coulomb’s laws of friction (sometimes called “Coulomb’s laws”). The first law states that
the friction force between the surface of two bodies is directly proportional to the normal load with
which the two bodies are pressed together. The proportionality constant is the COF. The COF between
two sliding surfaces is defined as the ratio of the frictional force (F f ) between them and the normal
force, N (the force pressing them together).

COF =
F f

N
(2)

According to the second law, the friction force and the COF do not depend on the apparent
(or nominal) area of contact between the contacting bodies. This is because the contact occurs only on
the tops of the asperities, and the real area of contact is only a small fraction of the apparent area of
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contact, at least for traditional engineering materials such as metals (however, for elastomers and soft
materials, the nominal and real areas of contact can be close to each other).

The third law governs the kinetic friction, and it states that the friction force is independent of
the sliding velocity. Amontons–Coulomb’s laws of friction are just empirical approximations and
are not theoretically justified propositions. In many cases, especially at the micro- and nanoscales,
Coulomb’s laws of friction are not valid. In particular, the friction force and the COF are not always
independent of the apparent area of contact [18]. Several experimental results have also established that
the COF is dependent on the size (macroscale vs. micro-/nanoscales), load, and sliding velocity [19,20].

The widely accepted theory of friction mechanisms was proposed by Bowen and Tabor [21].
They proposed that, for sliding contacts, friction mechanisms have two components: interfacial adhesion
between asperities and asperity deformation (ploughing) at the real areas of contact between the
surfaces (known as asperity contacts). The adhesion and deformation mechanisms are shown in
Figure 2. There is negligible interaction between the adhesion component (Fa) and the deformation
component (Fd) of friction, and the total friction force (F) can be presented as the sum of these two
friction components.

F = Fa + Fd (3)
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Adhesion occurs when dissimilar particles or solid surfaces are brought into contact under a
certain normal loading condition or a combination of normal and shear loads. The molecular forces
between the surfaces cause adhesion between them. The interaction force between the solids due to
adhesion can be caused by the covalent, ionic, metallic, or van der Walls bonds. When two surfaces are
placed in contact under load, the tip of the asperities of the two mating surfaces form the real area
of contact. The physical and chemical interactions between the asperities result in adhesion at the
interface [22]. The adhesion component Fa of the friction force is proportional to the real area of contact
(Ar) and to the shear strength (τa) of the material. The friction force for a dry contact due to adhesion
is defined as Fa = Arτa. In humid conditions or in the presence of lubricants, menisci or adhesive
bridges may be formed at the interface, which has a significant influence on the overall friction force.
Bhushan and Nosonovsky found that, during the sliding of two solid surfaces, the adhesion can be
significantly increased in the presence of a liquid film of the condensate or a preexisting film of the
liquid between them [23].

During sliding of two surfaces, the deformation component of friction is caused by both microscopic
and macroscopic deformations. At the microscopic level, the displacements of the interlocked surfaces
occur through the plastic deformation of the asperities. Asperities of the harder material plow grooves
in the softer material.

Surface roughness and relative hardness of the two surfaces greatly influence the deformation
component of friction. Reducing surface roughness reduces Fd. To maintain motion in the deformation
process, the lateral force equal or exceeding Fd is required. For perfectly smooth surfaces, no groove is
produced through the deformation of the contacting bodies in sliding. In case of plowing, the shear
strength of the material is proportional to the average value of the surface slope [24]. During plowing,
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wear particles of various sizes are generated. Wear particles along with contaminant particles trapped
between the sliding surfaces form a so-called “third body”. The contacts take place on high asperities
and particles [25]. The presence of the “third body” in plowing significantly increases the COF [26].

Friction is a complex phenomenon, with several mechanisms contributing to it. Adhesion and
deformation have the most significant contributions to the overall friction force.

2.2. Friction of Metals, Polymers, and Rubber

General tendencies in friction mechanisms were discussed in the preceding section. However,
particular sliding friction mechanisms can be different for different materials. For example, for friction
of metals, the deformation component is dominant, while for polymers, the adhesion component is
more significant. In this section, we will discuss the frictional mechanism and behavior of different
materials including metals, metal alloys, polymers, and elastomers such as rubber.

For sliding friction, the deformation component of friction is dominant over the adhesion
component. The deformation component incorporates the force required for plowing and grooving
of surfaces. Irreversible plastic deformation is the dominant energy dissipation mechanism in a
metal–metal contact, while only little energy is lost in mostly reversible elastic deformation [27].
The presence of any contaminant in the contact region can significantly reduce contact and friction
between the two sliding surfaces. In the presence of air, the formation of an oxide film can separate
the mating surfaces and can reduce the adhesion and friction [21]. Noble metals (e.g., silver, gold,
and platinum) resist oxidation and exhibit high sliding COFs. Soft and ductile metals (e.g., lead and
tin) exhibit high sliding COFs due to a large contact area and a small elastic recovery. For an alloy,
generally, the COF is lower than that of its components [28].

The frictional behavior of polymers is significantly different from metals and alloys. The contact
of a polymer with another polymer or metal is predominantly elastic. During sliding, the deformation
component of friction results from the resistance of the material of one surface to be plowed by
the asperities of the other. In the plowing process, asperities of polymer surfaces undergo plastic,
elastic, and viscoelastic deformations. Adhesive bonds between the sliding polymer surfaces result in
the adhesion component of friction. In friction of polymers, the adhesion component surpasses the
deformation component [29]. In characterizing the friction of polymers, the formation and interaction
of the polymeric transfer layers play an important role. Menezes et al. found that the transfer layer
formation in polymer–steel contacts is controlled by the surface texture [30]. The formation of a
polymeric transfer layer causes the reduction of the COF and the wear rate [31]. On the other hand, an
incomplete polymeric transfer layer due to the lack of wear debris causes an increase in the COF [32].

Rubber is a polymeric material (i.e., elastomer) with significant importance. The frictional behavior
of rubber is unique. An extremely low elastic modulus accompanied by high internal friction of rubber
is the main reason behind this. Synthetic and natural rubbers are used in modern pneumatic tires. As a
result, rubber friction on different hard substrates is a topic of tremendous importance. Like other
polymers, rubber friction is attributed to adhesion and deformation components. In rubber–pavement
friction, pavement asperities cause pulsating deformations of the rubber. It results in viscoelastic energy
dissipation which contributes to the deformation component of friction. The adhesion component is
derived from the adhesive forces between rubber and the substrate. For rubber friction, the adhesion
component of friction is dominant over the deformation component.

Notable progress has been made in modeling the friction behavior of rubber and other
elastomers [33–36]. It was found that the COF of the rubber–road interaction is load-dependent.
Also, the thread deformation causes viscoelastic energy dissipation and an increase of the COF.
The rubber–road COF is not always a constant under varying tire loads. Smith and Uddin proposed a
theoretical model of tire–pavement friction [37]. They suggested that, when the rubber self-adhesively
envelops some of the microroughness of the contacted pavement, surface deformation hysteresis
occurs. Due to the surface deformation hysteresis, a fourth rubber force is observed that is independent
of tire loading. Persson studied rubber friction behavior for the tire–pavement contact and presented a
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theory of the hysteresis-based rubber friction [38]. He also suggested that, for a zero or low sliding
velocity, only the largest asperities of the roughness profile of the road touch the rubber surface. In each
contact region, the local pressure squeezes the rubber into many of the smaller-sized cavities that
contribute to the rubber–road COF.

Depending upon the surface roughness and mechanical properties, different materials have varying
adhesion and deformation characteristics. The contribution of these two components characterizes
friction during a contact between the surfaces of different materials.

2.3. Measures of Friction: The Coefficient of Friction, Surface Free Energy, Surface Roughness,
and Fractional Toughness

In the preceding sections, different mechanisms of friction and frictional characteristics of different
materials have been discussed qualitatively. In this section, we will discuss different parameters for
quantifying friction.

2.3.1. COF as a Measure of Friction

The COF is the traditional method of quantifying friction between two interacting surfaces.
Though sometimes the COF is convenient to use, it is not a sufficient parameter to quantify friction.
In many situations, the COF cannot be used as a reliable parameter to measure friction.

Amontons–Coulomb’s law predicted the COF as a linear proportionality constant. However, the linear
dependency of the friction force on the normal load is only valid for certain traditional materials
(e.g., metals) under certain loading conditions. McFarlane and Tabor found that the COF is dependent
on load [39]. For some composite materials, the COF shows entirely nonlinear behavior. The COF
value for a similar pair of materials in sliding contact varies significantly. Engineering handbooks
and tables warn the users and ask to take precautions in using the documented COF data because the
approximate reference data often varies in a wide range. For example, the COF values for steel-on-steel
sliding are reported between 0.09 to 0.6 in different references [40,41]. Since the COF is not a material
constant, no reference value of the COF for a given material combination can be assigned [42]. If the
value of the COF for a material combination is required, it can be found by experiment only.

The experimental values of the COF for the same material pair samples in sliding contact varies
greatly. In a study by the Versailles Project on Advanced Materials and Standards (VAMAS) program
in the 1990s, identical steel and aluminum oxide samples were sent to various laboratories across the
world, in Canada, Germany, France, the UK, Italy, Japan, and the USA [43]. The samples had the
same surface characteristics (i.e., roughness parameters), and identical laboratory environments were
created to run the experiments for finding the COF for sliding contact. However, the measured COF
values in different laboratories were found to be varying widely (between 0.4 to 0.9), resulting in what
is known as “the dependency of the COF on country” (Figure 3). The large variation of the results,
which apparently depended on poorly controlled and loosely defined factors during the experimental
measurements, shows that the COF is not a very well-defined parameter.

The COF is scale-dependent, and it varies significantly at the macro- and nanoscales [18,20,44].
At the nanoscale, the surface-to-volume ratios are high and all surface effects, such as friction and
adhesion, are significant and often dominant over the volumetric effects, such as inertia. There are
different approaches to the scaling behavior of friction, which include the investigation of the scale
effect on friction, scaling laws of friction, or the formulation of the nanoscale friction laws [18].

While Amontons–Coulomb’s laws are the foundation of tribology, these laws are not considered
fundamental laws of nature but rather approximate empirical rules. Friction is perceived as a collective
name for various unrelated effects of a different nature and of diverse mechanisms, such as adhesion,
fracture, and deformation, lacking any internal unity or universality. For all of these reasons, although the
COF is widely used, it is not a sufficient parameter to characterize friction properly. In the following
sections, we will discuss other parameters that can characterize friction.
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2.3.2. Surface Free Energy as a Measure of Friction

The surface free energy of the sliding surfaces is closely related to their frictional behavior.
Rabinowicz studied the influence of the surface free energy on friction and wear of sliding surfaces [45].
He proposed a mathematical model for finding the COF of sliding surfaces. He found that the COF
for the sliding contact increases linearly with the increasing value of the surface energy. Nakao et al.
studied the effect of the surface free energy on the COF of carbonaceous hard coatings. They found
that the COF of various carbonaceous hard coatings decrease with the decreasing surface free energy of
sliding surfaces. However, they found no proportional relationship between the COF and the surface
free energy [11].

Kalin and Polajnar studied the effect of wetting and the surface free energy on friction for
oil-lubricated friction [46]. They found that, for analyzing the effect of the surface free energy on the
COF, it is convenient to use the spreading parameter (SP) instead of the CA:

SP = γsv − γlv − γsl (4)

where γsv, γlv, and γsl are the surface tension forces (or interfacial surface energy) of the solid–vapor,
the liquid–vapor, and the solid–liquid interfaces, respectively. They found that the smaller the value of
SP, the smaller the COF for the sliding surface. A small value of the SP of a surface corresponds to a
low surface free energy. Therefore, the smaller the surface free energy, the smaller the COF between
the sliding surfaces. A low surface free energy causes a weak interaction between the surface and the
lubricating oil. Due to the weak interaction, the slip is high and the COF between the sliding surfaces
is low. On the other hand, there are other studies that claim that there is no direct relation between the
COF and surface free energy. For example, Bäckström et al. studied the influence of the surface free
energy on paper-to-paper friction [12]. They found no general relation between surface free energy
and the COF.

The surface free energy is an important parameter to characterize frictional behavior. Generally,
for two sliding surfaces, the larger the surface free energy, the larger the adhesion and, the larger the
adhesion, the larger the friction.

2.3.3. Surface Roughness and Friction

Dry sliding friction is greatly influenced by surface topography and surface roughness. There have
been many theoretical and experimental studies to analyze surface topography and friction in terms
of roughness parameters [47–53]. Various surface roughness parameters have been suggested to
characterize the surface roughness.
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Roughness parameters are generally classified into three categories: amplitude parameters,
spacing parameters, and hybrid parameters. Amplitude parameters characterize the vertical deviation
of the surface profile relative to a reference plane. The most common amplitude parameter is the
average roughness, Ra, the arithmetic average of the absolute values of the profile height deviations
from the mean line of the roughness profile. Mathematically, for a 2D roughness profile z(x), Ra is

given by Ra =
1
L

∫ L
0 |z−m|dx. Here, L is the sampling length of the profile and m = 1

L

∫ L
0 zdx is the mean

value of z(x). Root mean square (RMS) roughness, Rq, is another amplitude parameter. The RMS is

also known as the standard deviation, σ, and is given by Rq =

√
( 1

L

∫ L
0 (z−m)2dx).

The skewness parameter characterizes the symmetry of the profile about the mean line.

The mathematical formula of the skewness is given by Rsk = 1
σ3L

∫ L
0 (z−m)3dx. The kurtosis is

the roughness parameter that characterizes the sharpness of the profile, Rku = 1
σ4L

∫ L
0 (z−m)4dx.

When surfaces with widely varying frictional characteristics have the same value of Ra, the kurtosis
can be used to differentiate between them [50,51]. The maximum height of the profile, Rt, is another
amplitude parameter defined as the absolute vertical distance between the highest profile peak, Rp,
and the lowest profile valley, Rv, along the sampling length of the roughness profile, Rt = Rp + Rv.
The maximum height is useful for studying the effect of surface roughness on sliding friction in
presence of lubrication [49].

Besides these amplitude parameters, mean peak spacing, Sm; mean profile slope, ∆a; and core
roughness depth, Rk, are important roughness parameters to characterize the COF [54]. These roughness
parameters are related to the shape of the asperities of the surface profile. Sm is defined as the mean
spacing between peaks at the center line along the sampling length of the profile and given by the
formula, Sm = 1

n
∑n

i=1 Si . Here, Si is the individual peak spacing and n is the total number of profile

peaks. ∆a is the average of all slopes ( δyi
δxi

) between each two successive points over the sampling length

and is given by the formula ∆a =
1

n−1
∑n−1

i=1
δyi
δxi

. Rk is obtained from the subtraction of the minimum
and the maximum heights of the core surface profile.

A different approach is the characterization of a rough surface profile as a random signal.
The relevant spacing parameter is the correlation length, which is the typical horizontal distance at
which correlation in the levels at two arbitrary point become irrelevant.

Note that parameters traditionally used for the study of friction may be different from those
used for the study of wetting. For biomimetic superhydrophobic surfaces, roughness is an important
property. The traditional roughness parameters such as Ra, Rq, and Rku are not sufficient for the analysis
of mechanisms involving superhydrophobicity [55]. Different roughness parameters are needed for
this purpose. The CA, θ, of a rough solid surface having a roughness profile consisting of asperities
and valleys was calculated by Wenzel as follows:

cosθ = R f cosθ0 (5)

where R f is a roughness factor which is the ratio of the of the actual surface to the geometric surface.
Nosonovsky and Bhushan showed that, for patterned surfaces, the nondimensional spacing factor,
S f , is an important parameter to characterize roughness [55]. For a patterned surface having circular
flat-top pillars with diameter D and pitch P, S f =

D
P .

We discussed different traditional roughness parameters and their use in characterizing friction.
Different surface roughness parameters have a strong correlation with the COF. For biomimetic
superhydrophobic surfaces, apart from the traditional parameters, new roughness parameters
are required.

2.3.4. Fracture-Related Parameters

A different approach to friction has been suggested by some physicists who emphasize the
similarity between sliding and the shear mode crack (called in fracture mechanics “Mode II crack”)
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propagation [56]. The Mode II crack propagation for in-plane shear loading is shown in Figure 4.
Svetlizky and Fineberg investigated the onset of frictional sliding between two polymethylmethacrylate
(PMMA) blocks by measuring the real area of contact Ar and strain fields near the interface between
the blocks [57]. They found that the stress distribution at the transition from static to dynamic friction
is in good quantitative agreement with the singular solutions for the motion of a rapid shear crack,
as predicted by linear elastic fracture mechanics.
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Ben David et al. found that nucleation locations are often regions where the shear-to-normal
stress ratio, τ(x)/σ(x), is at the maximum [42]. They suggested that the effective fracture energy Γ
reflects the local adhesive strength of the interface, as determined by σ(x), which is proportional to
the real area of contact at every point. Consequently, Γ is not a material-dependent quantity as in the
fracture of bulk materials but, instead, reflects the local strength of the interface. For a bulk material,
it is often assumed to be twice the surface free energy of the material: Г = 2γ. For a frictional rapture,
the effective value of Г is much smaller than γ because the real area of contact is only a small fraction
of the apparent area of contact. On the other hand, τ(x) is proportional to the density of strain energy
stored. The ratio τ(x)/σ(x) reflects the balance between the potential energy available before rupture in
the vicinity of each point and the energy needed to rupture the interface. The locations where τ(x)/σ(x)
is at maximum depend upon many random factors, such as the surface roughness, loading distortions,
and imperfections. Consequently, it is difficult to attribute a value of the COF as a critical ratio of
shear-to-normal load. The crack tip velocity is controlled by the balance of the specific fracture energy
and the dynamic energy release rate, G.

Shlomai and Fineberg have studied experimentally the onset of frictional sliding at a bimaterial
interface between polycarbonate (PC) sliding on polymethylmethacrylate (PMMA) with approximately
40% mismatch of the elastic wave velocities [58]. They observed a propagating slip-pulse, which could
be interpreted as a manifestation of the Adams [59] instabilities, following a similar assessment by
Ben-Zion [60] of the instabilities observed in the dynamic ruptures of earthquake faults, such as the San
Andreas fault in California. These dynamic instabilities were predicted for the frictional sliding of two
moderately dissimilar (in terms of their elastic properties) smooth elastic half-spaces with a nonzero
constant COF between them. Later, the same phenomenon was also found for non-smooth (e.g., wavy)
surfaces with zones of asperity contacts and separation [61]. The propagation of a train of frictional
sliding pulses can result in an effective decrease of the apparent or observed COF in comparison with
the local value of the COF [62].

The fracture mechanics-based approach (often used for the study of earthquakes [63]) uses
quantitative parameters, alternative both to the COF employed by engineers and to free surface energy
used in physical chemistry. These alternative parameters are the effective fracture energy and the
dynamic energy release rate.
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3. Adhesion, Surface Roughness, and Superhydrophobicity

In this section, the adhesion mechanisms in wetting will be discussed. We will analyze the contact
angle hysteresis (CAH) as a measure of friction. Finally, the effects of the surface roughness and
adhesion on wetting phenomena will be discussed.

3.1. Contact Angle vs. Contact Angle Hysteresis

The CA between a liquid droplet and a solid surface is used to quantify the wettability of the
surface by the liquid. A hydrophilic surface is wet by water if a water droplet placed on it produces
a CA less than 90◦. On the other hand, on a hydrophobic surface, a water droplet produces a CA
greater than 90◦. A hydrophobic surface is characterized by a low surface energy. Due to its low
surface energy, the contact area and adhesion between the solid surface and a water droplet are small.
When the CA exceeds 150◦, the surface is superhydrophobic [64]. A superhydrophobic surface has a
very low surface energy. As a result, the contact area and adhesion between the solid surface and the
liquid droplet are also very small.

The Young equation (Equation (1)) provides the observed (apparent) equilibrium value of the
CA. The equilibrium value is obtained experimentally by placing accurately a sessile droplet on a
solid surface so that it is in equilibrium. However, wetting scenarios may be much more complex.
Sometimes the CA depends on whether liquid advances or recedes on the substrate. The advancing
CA (θAdv) corresponds to the maximum value of the CA on a solid substrate when a liquid droplet
is placed on it, and the receding CA (θRec) corresponds to the minimum value. The sessile droplet
method and the tilting plate method of measuring θAdv and θRec are shown in Figure 5a–c.
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The difference between the advancing and the receding contact angles is termed as the contact
angle hysteresis (CAH). The CA and CAH give an indication of the adhesion between water and a
solid surface [65]. Chemical and topographical heterogeneity (e.g., microroughness) of the surface
contributes to CAH [66]. Contact line (CL) is the line where the liquid, solid, and vapor phases meet.
Due to CAH, the CL is pinned in metastable positions. As a result, the sliding or rolling of the water
droplet on an inclined surface is resisted. There are notable commonalities between solid–solid and
solid–liquid friction. In a solid–solid contact, adhesion hysteresis (AH) is the difference between
the energy required to separate two surfaces and the energy gained by bringing them in contact.
Frictional shear stress is contributed by the AH in adhesive dry friction. In a solid–liquid contact,
the CAH is also influenced by AH [24]. Due to the AH, the solid–liquid contact area changes. As a result,
it affects the CA and CAH. For a liquid–solid contact, CAH can be a measure to characterize friction.
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The effects of micro- and macroscale roughness on surface wetting properties are well established.
The characterization and synthesis of superhydrophobic and hydrophilic surfaces have been studied
extensively over the years [67–71]. Whether a surface is hydrophobic or hydrophilic depends upon the
adhesion of water molecules to the solid surface. Usually, hydrophobic/superhydrophobic surfaces are
characterized by a high CA and low CAH. A high CA value indicates a low liquid–solid adhesion.
Also, a low CA hysteresis corresponds to a low liquid–solid adhesion. Unusually, a surface can have a
large CA (hydrophobic) and can exhibit large CAH (strong adhesion to water) simultaneously [72].
In nature, this phenomenon is found in the petals of the red rose and is known as the “rose petal
effect” [73,74]. Feng et al. studied the “rose petal effect” and found the existence of nanofolds on each
micropapilla top [75]. A red rose petal has a close array of such micropapillae on its surface. They found
that these hierarchical micro- and nanostructures provide enough roughness for superhydrophobicity
in a rose petal. At the same time, they generate a high adhesion to water, which ensures that a water
droplet does not roll off even when the petal is turned upside down.

To summarize, adhesion and roughness significantly influence the wetting properties. The CA
and CAH are the common indicators of solid–liquid adhesion. Roughness contributes to pinning the
triple line causing CAH. Also, CAH provides information about the solid–liquid friction.

3.2. Lotus-Effect-Based Superhydrophobic Materials

Roughness at the nano- and microlevels has significant effects on the CA and CAH, which is
observed naturally in lotus leaves. The lotus effect and lotus-effect-based superhydrophobicity have
been studied extensively in recent years [1,76–80]. In the study of two German botanists, Barthlott and
Neinhuis, the unique dual scale micro-/nanostructures of the lotus leaves were revealed [81]. They found
that the unique hierarchical micro-/nanostructures of a lotus leaf is due to a low surface energy
epicuticular wax crystalloids and to a cuticular surface, which is highly rough at the micrometer scale.
The combination of the dual scale roughness and low surface energy wax allows air to be trapped
under the floating water drops that causes the “lotus effect” [82]. Consequently, small solid–liquid
adhesion, a high CA, and a low CAH are observed.

There have been many efforts to synthesize lotus-effect-based superhydrophobic materials
for different applications. For example, Kim et al. studied the process of synthesizing a surface
with a hierarchical structure similar to the lotus leaf [83]. They were able to successfully mimic
the superhydrophobic properties of the lotus leaf by dipping sandblasted porous alumina into
polytetrafluoroethylene (PTFE) solution.

Liu and Li suggested a method of combining the lotus effect with the biomimetic shark skin
effect. They used polydimethylsiloxane (PDMS) containing nano-silica as a substrate and treated it
with heat. They were able to synthesize a surface having both the shark-skin surface morphology and
the lotus leaf-like hierarchical micro-/nanostructures [84]. Yang et al. proposed the fabrication of a
superhydrophobic coating mimicking the lotus leaf effect using strawberry-like Janus hemispherical
particles [85]. The flexibility of the fabrication process allows the synthesis of unique coatings
on substrates with varied composition and shape. Also, the coatings were durable enough to
tolerate organic solvents and high-water flushing speeds. Haghdoost and Pitchumani adopted an
electrodeposition technique for the fabrication of superhydrophobic surfaces [86]. Through a two-step
electrodeposition process in a concentrated copper sulfate bath, they synthesized a copper deposit
having multiscale surface textures leading to a high CA and low CAH.

Synthesizing omniphobic materials that repel water and oils is a greater challenge than synthesizing
superhydrophobic materials. The challenge is due to a low surface energy and the nonpolar character of
oil molecules. Wong et al. reported a novel approach of synthesizing biomimetic omniphobic surfaces
which they named “slippery liquid-infused porous surfaces” (SLIPS) inspired by Nepenthes pitcher
plants [87]. In the case of Nepenthes pitcher plants, impinging liquids are locked in on the surface.
This intermediary liquid combined with microtextural roughness of the surface forms a slippery, inert,
and continuous interface which provides omniphobic properties to pitcher plants. Mimicking this
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unique characteristic of pitcher plants, a continuous film of a lubricating oil is reported to be locked in
place by a substrate having a micro-/nanoporous structure.

The lotus-effect-based superhydrophobicity is a popular type of biomimetic superhydrophobic
surface, but the lotus leaves are not the only inspiration for synthesizing liquid repellent materials.

4. Friction in Fluid-Lubricated Contacts

For the contact of fluid-lubricated surfaces, different lubrication regimes define the frictional
behavior. The Stribeck curve for fluid-lubricated contacts is shown in Figure 6. The Stribeck
curve presents the change in the COF of two fluid-lubricated surfaces against a dimensionless
lubrication parameter, the Hersey number [88]. The dimensionless Hersey number is defined by the
following equation:

Hersey number =
ηV
P

(6)

where η is the dynamic viscosity of the fluid, V is the sliding velocity, and P is the unit normal load at
the contact. From the Stribeck curve, it is seen that, for a fixed normal load and fluid viscosity, the COF
between two fluid-lubricated surfaces depends on the sliding velocity.
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Figure 6. The Stribeck curve for fluid-lubricated contacts.

Three distinct lubrication regimes are identified from the Stribeck curve. The first regime is
known as the boundary lubrication. The boundary lubrication regime is characterized by a high COF,
as surface asperities mainly support the load and the two surfaces have a direct contact. In the mixed
lubrication regime, both surface asperities and the lubricant support the load. In the hydrodynamic
lubrication regime, a negligible asperity contact is observed, the load is supported by the hydrodynamic
pressure of the lubricant, and the COF is low.

5. Correlation between Friction and Wetting

Studying the relationship between friction and wetting is important for different theoretical and
practical applications. However, due to the complexity involved to characterize wetting and friction,
it is difficult to correlate them properly. There are only a few studies of an interrelation between friction
and wetting available in literature. In this section, we will review some research works that intend to
correlate friction and wetting.

Borruto and coworkers studied the effect of surface wettability on friction. In their tribological
study, they used different combinations of hydrophilic (steel and pyrex glass) and hydrophobic
materials (carbon fiber and PTFE) for sliding contact [89]. For the tribological characterization,
a tribometer was used, and for the wetting characterization, CA measurements were done.
The tribological tests were performed in three environments (dry, water lubrication, and oil lubrication).
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For hydrophilic–hydrophilic contacts, the COF was high in dry friction. In the presence of water,
a very thin layer of water formed between the two wettable surfaces, which reduced the COF. With a
lubricant, the COF was further reduced. For hydrophobic–hydrophobic contacts in the presence of
water, the hydrophobic surfaces did not allow the formation of a water film between them. Therefore,
the presence of water during tribological tests did not affect the COF while it was high in dry friction
and very low with oil. For sliding surfaces with different wettability (hydrophobic–hydrophilic),
in the presence of water, a continuous layer of water was formed between the two surfaces. As a
result, the COF was reduced significantly. It was found that, for a hydrophilic–hydrophobic contact,
water provided a better lubrication effect than oil to reduce the COF.

Pawlak et al. studied the relationship between friction and wettability for the hydrodynamic
lubrication regime [90]. Two different aqueous environments were prepared for the tribological
tests. Water was used as a lubricant in one aqueous environment, and an aqueous two-phase
lubricant (water and additives) was used in the other. A pin-on-disc tribotester was used for
the tribological characterization. The tribopair sets (pin and disc) were classified into three
groups: hydrophilic–hydrophilic (e.g., steel–steel), hydrophobic–hydrophobic (e.g., PTFE–PTFE),
and hydrophobic-hydrophilic (e.g., PTFE–steel) according to their wetting properties. It was found
that the delta wettability, ∆θ, is the most important wetting parameter to understand the effect of
wetting on the COF of sliding surfaces. Delta wettability is the difference of the CA of the two mating
surfaces (CA of the tribotester disc—CA of the tribotester pin). For hydrophilic–hydrophilic tribopairs,
in the presence of water, the COF is high and increases slightly with ∆θ. A thin adhesive layer of water
between the two hydrophilic surfaces is responsible for the high COF. For hydrophobic–hydrophobic
tribopairs, water cannot stick at the interface. Therefore, the COF does not change notably with
increasing ∆θ. For hydrophilic–hydrophobic tribopairs, the COF decreases with increasing ∆θ. In this
case, the adhesive layer of water at the interface is weaker than that of hydrophilic–hydrophilic
tribopairs. Therefore, the COF is also lower. Also, the presence of a continuous layer of water at the
interface causes liquid slip at the hydrophobic surface. It produces a good lubrication effect, and the
COF is reduced.

Kalin and Polajnar found that the wetting properties at the solid–liquid interface affect the friction
in oil-lubricated contacts [46]. They measured the COF of steel/steel, steel/diamond-like carbon coating
(DLC), and DLC/DLC contacts at an intermediate sliding velocity of 1.2 m/s. For the CA measurements
of each combination of oil and selected surface, a CA goniometer was used. The sessile droplet
technique was used to determine the surface free energy of the selected surfaces. Using the surface free
energy data, the SP was determined. It was observed that, for analyzing the effect of wetting on the
COF of sliding surfaces, the SP is more effective than the CA. A small value of the SP corresponds to a
low surface free energy. A low surface free energy causes low adhesion between the mating surfaces.
As a result, the smaller the value of the SP, the smaller the COF.

Frictional behavior in the presence of lubrication or a cutting fluid is an important topic for
different industries. Also, laser texturing technology is becoming popular for synthesizing surfaces
with desired optical, mechanical, and chemical properties. Pang et al. studied the effect of wettability on
the friction of laser-textured cemented carbide surfaces in dilute cutting fluid [91]. Four different types
of cemented carbide samples of different surface textures (e.g., concave and concave) were analyzed.
Emulsified oil and water at a volume ratio of 1:40 were used as the cutting fluid. For tribological
characterization, the COF of cemented carbide samples were slid against a steel counterface of a
pin-on-disc reciprocating tribometer. For characterizing wettability, the CA and delta wettability, ∆θ,
were measured. For both the CA and the ∆θ, an excellent correlation with the COF was observed.
For all cemented carbide samples, with a decreasing CA of the cutting fluid with the cemented carbide
surface, the COF decreased. The decreasing CA improved the fluid spreading on the surface and helped
the creation of a thin fluid film at the contact interface. As a result, the COF was decreased. On the other
hand, with a decreasing ∆θ, the COF increased. Due to the decrease in ∆θ, the absorption of the polar
molecules of the cutting fluid on the hydrophilic cemented carbide surface was observed. Consequently,
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a high viscosity layer was formed at the contact region of the sliding surfaces. The formation of the
high viscosity layer increased the COF between the sliding surfaces.

Lanka et al. studied the tribological and wetting properties of TiO2-based hydrophobic coatings [71].
To replicate a system for tire–concrete friction in the laboratory setup, nitrile rubber and ceramic tiles
were used. For the tribological characterization, the COF between the moving ceramic tile samples and
the static rubber pin was measured using a tribometer under dry friction conditions. The wetting was
characterized by the CA measured with a goniometer. The roughness parameters of the tile surfaces
were quantified from 3D confocal microscopic images.

Different compositions of P25 titanium dioxide (TiO2), phosphoric acid (H3PO4), and water
solution were used to synthesize the hydrophilic TiO2–phosphate-based coatings for the tile samples.
Depending upon water/acid ratio, TiO2/acid ratio, and heat treatment duration of the coatings,
the hydrophilic samples were named as R2, R5, R7, R9, and O2. To synthesize the hydrophobic
coatings, the polymethyl hydrogen siloxane (PMHS) emulsion was applied on the top of the hydrophilic
TiO2–phosphate layer of the tile samples.

The effect of surface roughness on the CA of the hydrophobic samples is presented in Figure 7a.
From the plot, it is seen that, with the increase in roughness, the CA also increases. Again, an increase
in the CA indicates the reduction of the surface free energy. It was found that the surface roughness is
inversely related to the surface free energy. However, the relationship between these two parameters
can be extremely complex and may depend on different other factors.
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for hydrophilic and hydrophobic samples (reproduced from Reference [71] with permission).

The effect of surface roughness on the COF of hydrophilic and hydrophobic samples are presented
in Figure 7b. For the hydrophilic coatings, the observed COF values were large and they increased
with the increase of surface roughness. TiO2 particles sitting on the top of a TiO2–phosphate binder of
the hydrophilic coatings contributed to the nano- and microroughness. As a result, a notable increase
in the COF was observed. For hydrophobic coatings, the COF values were lower compared to the
hydrophilic coatings and exhibited an increasing trend with the surface roughness. The thin layer of
the PMHS hydrophobic coating smoothens the roughness of the TiO2–phosphate layer. In this process,
the overall roughness for hydrophobic tile samples was reduced. As a result, the COF values for the
hydrophobic samples were decreased.

To establish a correlation between the friction and wetting of the hydrophobic samples, the COF
was plotted against the CA in Figure 8. From the graph, an overall linear relationship between the
COF and the CA for the sliding of hydrophobic (TiO2–phosphate + PMHS coating) tile samples
against a nitrile rubber counterface was observed. With an increase in the CA, the COF values were
increased. This relationship of the CA and COF can be explained using the concept of surface roughness.
Besides PMHS, the presence of the TiO2 nanoparticles on the top of TiO2–phosphate binder of the
coatings contributed to nano- and microroughness. With increasing nano- and microscale roughness
profiles of the hydrophobic tile samples, both the COF and CA were increased.
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Figure 8. COF vs. CA for hydrophobic tile samples.

An important question is whether a hydrophobic coating makes a substrate slippery. The COF of
the uncoated tile samples was measured as 0.45. For the hydrophilic samples (TiO2–phosphate coated),
the measured COF fluctuated between 0.59 to 0.67. For the hydrophobic samples (TiO2–phosphate
+ PMHS coated), the COF fluctuated between 0.31 to 0.46. For the optimal composition of the
hydrophobic coating (R2), even a slightly higher COF (0.46) than the uncoated sample was observed.
The finding shows that the water-repellent hydrophobic coatings studied in this experiment do not
reduce the COF notably and make the surface slippery.

Bhushan and Jung studied the wetting, adhesion, and friction of superhydrophobic and hydrophilic
leaves and fabricated micro-/nanopatterned surfaces [92]. They suggested that, during the contact of
two hydrophilic bodies, liquid present at the interface forms menisci. The formation of each meniscus
depends upon the CA and increases the adhesion and friction.

Sliding of frictional droplets on superhydrophobic surfaces is another important area where
interesting observations have been made, for example, that air around droplets rather than the viscosity
and pinning can play a major role in frictional dissipation [93] and that droplet friction may have
different regimes depending on the viscosity [94] and pinning [95].

From this section, we conclude that numerous attempts have been made to correlate friction with
different wetting parameters. However, the scope of the studies was insufficient to find a universal
interrelation. The surface roughness and the surface free energy can provide links between friction and
wetting; however, the relationship is quite complicated. Extended research is still required to clearly
understand the correlations between friction and wetting.

6. Conclusions

We discussed how friction is related to wetting, which is important for the development of
novel functional surfaces, such as the biomimetic superhydrophobic surfaces. First, we reviewed
different basic concepts of friction available in literature. The traditional methods of quantifying
friction including the COF, surface free energy, and surface roughness are widely used but have
certain limitations. We analyzed the relationship between the surface free energy and friction and
discussed mechanisms of friction for different materials. We introduced the basic concepts of wetting
and analyzed how the adhesion is related to superhydrophobicity. We also discussed how CAH is
related to friction. We reviewed different literature works that correlate friction and wetting. After a
detailed study, we concluded the following points.
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1. The surface roughness and the surface free energy both contribute to friction and wetting.
However, the relationship between these two phenomena may depend on various factors, such as
surface chemical heterogeneity, and on various ad hoc parameters.

2. The adhesion and friction between sliding surfaces greatly depends on the surface free energy.
A large value of the surface free energy corresponds to strong adhesion, which, in turn, causes high
friction between the two surfaces.

3. Surface free energy is not the single parameter that influences the friction between two sliding
surfaces. The effect of surface roughness on friction becomes dominant for many materials and
tribological systems. With increasing nano- and microscale roughness, both the friction and
wetting properties can change.

4. Due to these complex interrelations between different factors, hydrophobic coatings do not
necessarily make the surface slippery. For example, if a hydrophobic coating composition
incorporates micro- and nanoparticles, surface roughness is induced on the surface. Consequently,
the coated surface can be hydrophobic and it can have high friction at the same time.

Author Contributions: Original concept, supervision, introduction, and editing by M.N.; figures and writing of
most of the manuscript by M.S.H. All authors have read and agreed to the published version of the manuscript.

Funding: University of Wisconsin-Milwaukee Research Growth Initiative grant No. 101X376 is acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

CA Contact angle
CAH Contact angle hysteresis
COF Coefficient of friction
PDMS Polydimethylsiloxane
PTFE Polytetrafluoroethylene
PMMA Polymethylmethacrylate
RMS Root mean square
AH Adhesion hysteresis
CL Contact line
SLIPS Slippery liquid-infused porous surface
DLC Diamond-like carbon
SP Spreading parameter
PMHS Polymethyl hydrogen siloxane
PC Polycarbonate
VAMAS Versailles Project on Advanced Materials and Standards
Rt Maximum height of the profile
Rsk The skewness parameter
Rku Kurtosis
Rq Root mean square roughness
Ra Average roughness
Rp The highest profile peak
Rv The lowest profile valley
Sm Mean spacing between peaks
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