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A B S T R A C T

Background: Antiretroviral therapy (ART) effectively reduces opportunistic infections and mortality in people 
living with HIV (PLWH); however, some patients exhibit poor immune recovery. This study explores the con-
nections among immune responses, metabolites, and the gut microbiota in PLWH with differing reactions to ART.
Methods: We analyzed the gut microbiota composition, metabolites, and immune markers in 38 PLWH who 
showed an immunological response (IR) and 32 who did not (INR), as classified according to CD4+ T-cell levels 
after 24 months of ART. Additionally, in vitro assays using cell counting kit 8, flow cytometry, and quantitative 
real-time reverse transcription PCR were employed to assess the effects of the metabolites on cell viability, 
immune marker expression, and cytokine levels.
Results: Gut microbiota and metabolic profiles differed significantly between the IR and INR groups. Enterococcus 
was more abundant in the INR group, whereas [Ruminococcus]_gnavus_group levels were reduced. Significant 
metabolic pathway alterations included decreased folate biosynthesis and biotin metabolism. We observed 
negative associations of Parabacteroides with activation markers on CD4+ T-cells, and positive correlations with 
CD4/CD8 ratios. Enterococcus showed inverse relationships with these markers. Indole-3-acetyl-beta-1-D- 
glucoside (area under the curve value = 0.8931), had the best discriminatory ability. Further experiments 
showed that Indole-3-acetyl-beta-1-D-glucoside significantly decreased the proportions of CD4+CD57+, effector 
CD4+, CD4+PD1+, CD8+CD57+, effector CD8+, and CD8+HLA-DR+ T cells. Moreover, mRNA expression 
analysis showed that Indole-3-acetyl-beta-1-D-glucoside treatment led to a suppression of pro-inflammatory 
cytokines.
Conclusion: The multi-omics approach highlighted potential biomarkers for immune recovery in HIV, suggesting 
avenues for further research into treatment strategies.

Introduction

Plasma human immunodeficiency virus (HIV) RNA levels are effec-
tively suppressed to undetectable levels by antiretroviral therapy (ART), 
thereby facilitating immune system recovery. This crucial intervention 

significantly diminishes the risk of opportunistic infections and in-
creases the survival rate in people living with HIV (PLWH) (Davenport 
et al., 2019; Sun et al., 2017). However, in contrast to immunological 
responders (IRs), certain PLWH cannot achieve CD4+ T-cell count 
normalization even after continued virological suppression, and are thus 
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termed immunological non-responders (INRs), who have a heightened 
risk of fast disease progression and increased mortality (Xie et al., 2021).

In the human body, the biggest microbial community is the gut 
microbiota (Lloyd-Price et al., 2017; de Vos et al., 2022). The gut 
microbiota exerts an important function by regulating host processes, 
including dietary fiber fermentation, metabolism, and immune matu-
ration (Simpson and Campbell, 2015; Nogal et al., 2021; Zheng et al., 
2020). Xie et al. investigated the relationships between the microbiota 
and different immune responses to ART in PLWH (Xie et al., 2021; Xie 
et al., 2021). However, such genomic level analysis reveals only the 
microbial make-up and potential of the gut microbiota, but not their 
activities. Moreover, the interrelationships among the host, diet, and the 
gut microbiota cannot be determined by genomics alone.

Metabolomics is a powerful tool to explore disease mechanisms. Host 
and gut microbiota-produced metabolites support the physiology and 
stability of the gut microenvironment. Metabolites associated with the 
gut microbiota (such as tryptophan metabolites, bile acids, or short- 
chain fatty acids [SCFAs]) affect the immunoregulation and metabolic 
homeostasis of the host (Bunnett, 2014; Jeong et al., 2023). Qian et al. 
investigated the association between plasma metabolite profiles and 
immune recovery in IRs and INRs following ART (Qian et al., 2021). 
Nevertheless, limited information is available regarding the in-
terrelationships among immune markers, gut metabolites, and the gut 
microbiota in IRs and INRs.

Herein, we integrated 16S rRNA gene sequencing and liquid 
chromatography-mass spectrometry (LC-MS) untargeted metabolomics, 
aiming to determine the associations among the immune response, 
metabolites, and the gut microbiota. This information might lead an 
increased comprehension of the communication between the host and 
the gut microbiota and the development novel strategies for treatment 
and intervention.

Materials and methods

Study participants

Seventy PLWH (38 IRs and 32 INRs), diagnosed at the Disease 
Control and Prevention Center of Zhejiang Province, were recruited 
from the HIV clinic of the First Affiliated Hospital of Zhejiang University 
(Zhejiang, China) from November 2020 to December 2022. All patients 
had received ART from the beginning of the chronic phase of HIV 
infection. Herein, we defined IRs and INRs as patients with an average of 
the last two CD4+ T-cell counts/µL ≥ 500 (IRs) or < 200 (INRs) after 24 
months of receiving ART. All patients had achieved undetectable viral 
loads, defined as < 20 copies/mL, after 24 months of ART, confirming 
successful viral suppression in all participants. Subjects were provided 
individually with information about the study, especially the risks and 
benefits. The participants provided written informed consent. We 
excluded those who received probiotics, antibiotics, or both within 4 
weeks before enrollment. This study was approved by the Institutional 
Review Committee of the First Affiliated Hospital of Zhejiang University 
(ethical number 2020-IIT54). Written informed consent was obtained 
from all participants. All methods adhered to the relevant guidelines set 
by the institutional ethics committee.

Collection of blood collection and analysis of cytokines

Samples of plasma were collected into 10 mL vacutainers. The blood 
samples were mixed well and subjected to centrifugation at 3000 × g for 
10 minutes to collect the plasma (supernatant), which was placed at -80 
◦C. Cytokine levels were determined using a Meso Scale Discovery 
(MSD, Rockville, MD, USA) electrochemiluminescence V-PLEX assay, 
including interferon (IFN)-γ, tumor necrosis factor alpha (TNF-α), 
interleukin (IL)-22, IL-21, IL-17F, IL-17A, IL-13, IL-12p70, IL-10, IL-9, 
IL-8, IL-6, IL-5, IL-4, IL-2, and IL-1β (pg/mL). Two-fold diluted plasma 
samples were determined in duplicate. The cytokine concentrations 

were determined using attached electrochemiluminescent labels on 
plates in the MSD apparatus (MESO QuickPlex SQ 120). Variations be-
tween plates were determined by including high and low level controls, 
giving an inter-assay coefficient of variation of <10 %. MSD Discovery 
Workbench analysis software was used to analyze the results.

Cell counting kit-8 (CCK-8) assay

The experiment included a blank group, a control group, and several 
groups treated with different concentrations of metabolites. Peripheral 
blood mononuclear cells (PBMCs) were seeded in a 96-well plate at a 
density of 5 × 10³ cells per well and cultured for 24 hours. Each group 
was set up with three replicate wells. The CCK-8 solution (Catalog No. 
HY-K0301, MCE, Monmouth Junction, NJ, USA) was mixed with mini-
mal essential medium (MEM) culture medium containing metabolites at 
a ratio of 1:9. The samples were then incubated at 37◦C in the dark for 2 
hours. The optical density at 450 nm (OD450) was measured using a 
microplate reader (Molecular Devices, San Diego, CA, USA). The 
average values were calculated, and a survival rate curve was plotted.

Quantitative real-time reverse transcription PCR (RT-qPCR) analysis

Total RNA was extracted using a Super FastPure Cell RNA Isolation 
Kit (Catalog No. RC102, Vazyme, Nanjing, China) according to the 
manufacturer’s instructions. Reverse transcription was performed using 
a ReverTra Ace qPCR RT Kit (Catalog No. FSQ-301, TOYOBO, Tokyo, 
Japan) to synthesize complementary DNA (cDNA). The qPCR reaction 
was carried out using a THUNDERBIRD® Next qPCR Mix (Catalog No. 
QPX-201, TOYOBO) on a Bio-Rad CFX96 Real-Time PCR System (Bio- 
Rad, Hercules, CA, USA)with the following conditions: 95◦C for 30 
seconds, followed by 40 cycles of 95◦C for 5 seconds and 60◦C for 30 
seconds. Relative gene expression levels were calculated using the 
2–ΔΔCt method (Livak and Schmittgen, 2001), with ACTB (encoding 
β-actin) serving as the reference gene. The primers used in this study are 
listed in Table S1.

Flow cytometry and immunophenotype

Supplementary Table S2 lists the reagents used. According to the 
manufacturer’s instructions (BD Biosciences, San Jose, CA, USA), 
PBMCs were isolated from whole blood using Ficoll density gradient 
centrifugation. Viable cells were identified using a live/dead stain 
(Fixable Viability Stain 510, 1:1000, BD Biosciences). After washing 
with fluorescence activated cell sorting (FACS) buffer (Stain buffer, BD 
Biosciences), staining was carried out at 4 ◦C for 30 min employing 
fluorescently labeled antibodies at 1:100 dilution: anti-human CD3, 
anti-human CD4, anti-human CD8, and anti-human T cell receptor 
(TCR) γδ, anti-human CD25, anti-human CD127, anti-human CD45RA, 
anti-human CD62L, anti-human leukocyte antigen-DR isotype (HLA- 
DR), anti-human CD28, anti-human CD57, and anti-human CD279 (all 
purchased from BD Biosciences). Thereafter, the cells were washed 
again, followed by suspension in 200 µL of FACS buffer. The cells in the 
samples were determined on a CytoFLEX LX flow cytometer (Beckman 
Coulter, Inc., Brea, CA, USA), with data analysis carried out using 
FlowJo software version 10.10.0 (Treestar Inc., Ashland, OR, USA).

High-throughput sequencing of 16S rRNA

An Omega Mag-Bind Stool DNA kit (Omega Bio-Tek, Norcross, GA, 
USA) was employed to isolate total DNA from collected fecal samples. 
Polymerase chain reaction (PCR) was carried out to obtain the V3-V4 
variable region of the 16S rRNA gene from the bacterial genomes 
using the forward primer 5′-ACTCCTACGGGAGGCAGCA-3′ and reverse 
primer 5′-GGACTACHVGGGTWTCTAAT-3′. An Illumina TruSeq Nano 
DNA LT library prep kit (Illumina, San Diego, CA, USA) was employed to 
construct the sequencing library, which was sequenced on the Illumina 
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platform. The obtained sequences were optimized using dada2 in the 
Quantitative Insights into Microbial Ecology2 (QIIME2) software 
(v2019.4) (Caporaso et al., 2010). QIIME2 was also used to allocate the 
taxonomy of representative sequences by querying the Greengenes 
database (http://greengenes.secondgenome.com/) with default set-
tings. Species annotation was carried out using the pretrained naive 
Bayes classifier (https://github.com/QIIME2/q2-feature-classifier) 
(DeSantis et al., 2006; Bokulich et al., 2018).

Liquid chromatography-mass spectrometry

We extracted metabolites from pretreated fecal samples. A Vanquish 
ultrahigh performance liquid chromatography (UHPLC) System 
(Thermo Fisher Scientific, Waltham, MA, USA) was employed for LC 
analysis.

An ACQUITY UPLC HSS T3 column (150 × 2.1 mm, 1.8 µm; Waters, 
Milford, MA, USA) was employed for chromatography. The temperature 
of the chromatographic column remained at 40 ◦C in the mobile phase, 
maintaining a flow rate of 0.25 mL/min. The mass spectrum condition 
was electrospray ionization (ESI), acquiring signals in positive and 
negative ion scanning modes. In positive ion mode, the mobile phase 
comprised (C) 0.1% formic acid in acetonitrile (v/v) and (D) 0.1% for-
mic acid in water (v/v), while in negative ion mode, the mobile phase 
was (A) acetonitrile and (B) ammonium formate (5 mM). The scanning 
range comprised 100− 1000 m/z (Zelena et al., 2009).

Statistical and bioinformatic analyses

Central tendency (a single value summary statistic describing a 
dataset, reflecting the center of its distribution) was measured according 
to geometric mean (GM) values. The differences between the INR and IR 
groups were assessed employing the Mann–Whitney test incorporating 
Holm’s correction for multiple comparisons. Categorical variables were 
assessed employing Fisher’s exact test. Significantly differentially 
abundant microbiota and differentially abundant microbiome members 
were screened and analyzed employing linear discriminant analysis 
(LDA) effect size (LEfSe), with selection according to an LDA-value > 4. 
Phylogenetic Investigation of Communities by Reconstruction of Un-
observed States 2 (PICRUSt2) from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database was employed to carry out KEGG Orthology 
(KO) analysis and predict the functions of microbes. Differences between 
the two groups were assessed using Orthogonal partial least-squares 
discriminant analysis (OPLS-DA). Associations between differentially 
abundant bacteria and the relative levels of the top 50 differentially 
abundant fecal metabolites were assessed using Spearman correlation 
analysis. All statistical determinations were carried out in R (version 
4.2.1) (Team., 2020).A P value < 0.05 was considered statistically sig-
nificant. To assess the discriminatory accuracy of the differentially 
abundant genera and metabolites, we constructed a receiver operating 
characteristic curve (ROC) to determine the area under the curve (AUC).

Results

Participant characteristics

The was a cross-sectional study that included 38 IR and 32 INR 
PLWH. The two groups were relatively matched for sex, smoking status, 
age, and ongoing ART regimen (Table 1). As expected, the IR group had 
a significantly higher nadir and current CD4+ T cell counts and CD4/ 
CD8 ratios than the INR group (P < 0.001). All patients had undetect-
able (< 20 copies/mL) HIV RNA viral loads. The proportion of CD4+
CD28+, regulatory T cells (Treg) cells, CD8+ CD25+, and effector CD8+
T-cells were similar in the IR and INR groups (Table S3). Of the 16 
markers studied, the groups showed no differences in the levels of IFN-γ, 
IL-13, IL-1β, IL-4, IL-5, IL-9, IL-17F, and IL-21, while the levels of 
remaining 8 markers (IL-10, IL-12p70, IL-2, IL-6, IL-8, TNF-α, IL-17A, 

and IL-22) were significantly different between the two groups 
(Table S3).

Gut microbiota analysis in the immunological responder and 
immunological non-responder groups

Venn diagram analysis showed that the IR and the INR groups shared 
2081 amplicon sequence variants (ASVs), whereas the IR group had 
13,217 unique ASVs and the INR group had 10,051 unique ASVs 
(Fig. 1A). At the level of phyla, Firmicutes, Proteobacteria, Actinobacteria, 
and Bacteroidetes represented the major members of the gut microbiota 
(Fig. 1B). At the level of genera, Escherichia-Shigella was the most com-
mon member in the two groups. The INR group had a higher proportion 
of Enterococcus than the IR group, but a lower proportion of [Rumino-
coccus]_gnavus_group (Fig. 1C).

The IR group had a higher species alpha diversity than the INR group 
(P = 0.025); however, the species richness between groups was not 
significantly different (P = 0.16) (Fig. 1D). Principal-coordinate analysis 
(PCoA) indicated a large difference in beta diversity between the IR and 
INR groups (P = 0.007), indicating that the groups had differences in 
their microbiota composition (Fig. 1E). The LDA threshold was set to 4 
for LEfSe analysis to examine the significant differences in microbial 
species between the groups. This analysis identified 23 enriched species 
(Fig. 1F). As shown in the chart, Bifidobacteriaceae and Bacteroides were 
relatively highly abundant in the IR group, while Enterococcus was 
relatively highly abundant in the INR group.

Prediction of the potential functions of the altered microbiome

PICRUSt2 was employed to determine KEGG Orthology (KO) level 3 
pathways for the functional analysis of the two groups. Glycer-
ophospholipid metabolism and synthesis, and degradation of ketone 
bodies were significantly increased in the INR group compared with 
those in the IR group, while folate biosynthesis; biotin metabolism; 
histidine metabolism; arginine and proline metabolism; and phenylal-
anine, tyrosine, and tryptophan biosynthesis were increased signifi-
cantly increased in the IR group compared with those in the INR group 
(Fig. 2A).

Table 1 
Clinical characteristics of the study cohort.

Characteristics HIV(+) Cases P value

Immune 
Responders (IRs)

Immune Non- 
responders (INRs)

Number of patients 38 32 
Gender Male/female 38/0 31/1 0.4571
Age, median (IQR) 42 (34, 45) 44.5 (31, 58.25) 0.1156
Smokers (number) 0 1 0.4571
Nadir CD4 + T cell count, 

median (IQR)
312 (219, 347) 123.5 (84, 162.3) <0.0001

Current CD4 + T cell 
count, median (IQR)

521.5 (421, 754) 102 (60, 174.5) <0.0001

Current CD4 + /CD8 + T- 
cell ratio

0.97 (0.80, 1.24) 0.26 (0.14, 0.40) <0.0001

HIV RNA ND ND 
Transmission type 

(number)
  

Heterosexual / 
Homosexual

7/31 6/26 >0.9999

Ongoing ART regimen, N 
(%)

  

NNRTI-based 36 (94.74%) 28 (87.50%) 0.4016
PI-based 2 (5.26%) 4 (12.50%) 0.4016

Abbreviations: HIV, human immunodeficiency virus; IQR, interquartile range; 
ND, not detected; MSW, men who have sex with women; MSM, men who have 
sex with men; NNRTI, non-nucleoside reverse transcriptase inhibitors; PI, pro-
tease inhibitor; IR, immunological responders; INR, immunological non- 
responders.
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IR and INR gut sample metabolomic signatures

To determine the impact of HIV infection on the fecal metabolites of 
IRs and INRs, we carried out LC-MS untargeted metabolomics. The IR 
and INR groups were effectively discriminated using OPLS-DA 
(Fig. S1A), revealing the presence of significant differentially abun-
dant metabolites between the two groups (Fig. S1B). We analyzed 829 
fecal metabolites, among which 256 were differentially abundant 
(Fig. 2B shows the top 50). Compared with those in the IR group, the top 
5 differentially abundant metabolites included significant decreases in 
Indole-3-acetyl-beta-1-D-glucoside, loperamide, Ergosta-5,7,22,24(28)- 
tetraen-3beta-ol, and luteolin, and significant increases in 2-Dehydro-
pantoate in the INR group (Fig. 2C).

Possible effects of the differentially abundant metabolites on host metabolic 
pathways

KEGG pathway mapper was then used to annotate the differentially 
abundant metabolites. Comparisons of the human metabolic profiles 
indicated significant alterations to central carbon metabolism, protein 
digestion and absorption, and amino acid pathways (Fig. S2).

Relationships among differentially abundant microbiota, distinct fecal 
metabolites, and immune markers

To understand the potential correlation among the gut microbiome, 
fecal metabolites, and immune markers, we performed Spearman cor-
relation analysis (Fig. 3A, B). The analysis revealed a negative correla-
tion between the abundance of Parabacteroides and the numbers of 
CD4+ HLA-DR+ T-cells and CD4+ programmed cell death 1 (PD-1)+ T- 
cells, but a positive correlation with IL-17A levels. Additionally, Lach-
noclostridium correlated positively with the numbers of CD8+CD28+ T- 
cells, Bacteroides correlated with IL-10 levels, and Enterococcus corre-
lated negatively with IL-22 levels. Remarkably, parameters such as the 
CD4/CD8 ratio, and nadir and current numbers of CD4+ T cells showed 
a positive association with Parabacteroides, but correlated negatively 
with Enterococcus, indicating complex interactions between the gut 

microbiota and immune responses (Fig. 3A).
The human KEGG pathway mapper annotated two of top 50 differ-

entially abundant fecal metabolites. We then tabulated the correlations 
among the differentially abundant fecal metabolites, altered bacteria, 
and human metabolic pathways (Table S4). The results indicated that 
two differentially abundant microbiota members and two differentially 
abundant fecal metabolites were closely related, which might influence 
particular human metabolic pathways.

Several metabolites showed significant correlations with immune 
markers. Notably, metabolites such as 2-Deoxy-scyllo-inosose, Indole-3- 
acetyl-beta-1-D-glucoside, Propafenone, N-Acetylleucine, N-Acetyl- 
beta-glucosaminylamine, and 8,9-DiHETrE, demonstrated notable cor-
relations with T-cell activation markers (e.g., HLA-DR, PD-1) and naive 
CD4, naive CD8, nadir CD4, and current CD4. Specifically, these me-
tabolites correlated negatively with CD4+ T-cell activation markers 
(HLA-DR, PD-1), and positively with naive CD4 and CD8 T-cell counts, 
as well as nadir CD4 and current CD4 levels (Fig. 3C).

Furthermore, the AUC values of the differentially abundant genera 
and metabolites were determined (Spearman’s r-value > 0.5; Fig. 3D). 
The results showed that to distinguish the IRs and INRs, these genera and 
metabolites in combination had an AUC value of 0.8125, suggested that 
the interplay among them was important in the pathogenesis of the 
different immune responses to ART and are worthy of deeper investi-
gation. In addition, the AUC values of these five genera (Enterococcus, 
[Ruminococcus]_gnavus_group, Bacteroides, Ralstonia, and Sellimonas) and 
five metabolites (Indole - 3 - acetyl - beta-1-D-glucoside, Loperamide, 2 - 
Dehydropantoate, Ergosta-5,7,22,24(28)-tetraen-3beta-ol, and Luteo-
lin) were calculated to determine the key metabolites or genera. Most of 
the differentially abundant metabolites had better predictive functions 
than the differentially abundant genera (Tables S5, S6, and Fig. S2). In 
particular, Indole-3-acetyl-beta-1-D-glucoside (AUC-value = 0.8931), 
had the best discriminatory ability. Experiments were conducted to 
validate the functional effects of Indole-3-acetyl-beta-1-D-glucoside. 
Based on the results of the CCK-8 assay, Indole-3-acetyl-beta-1-D- 
glucoside at 2 μM was selected for further analysis (Fig. S4). Subse-
quent analyses revealed that treatment with Indole-3-acetyl-beta-1-D- 
glucoside significantly decreased the proportions of CD4+CD57+, 

Fig. 1. (A) Venn diagram of the IR group and INR group. (B) Histogram of the phylum level microbiota composition of the IR and INR groups. (C) Histogram of the 
genus level microbiota composition of the IR and INR groups. (D) Chao1 indices of species richness between the IR and INR groups. Shannon indices of species 
evenness between the IR and INR groups. (E) PCoA plot indicating the alterations in microbial composition of the feces between the IR and INR groups. (F) LDA score 
diagram and the significantly differentially abundant genera between the IR and INR groups. The groups are shown in different colors, and the histogram length 
indicates the LDA score. A higher score represents a more significant difference between the microbiomes of the IR and INR groups (LDA threshold of 4). IR, immune 
responder; INR, immune non-responder; PCoA, principal-coordinate analysis; LDA, linear discriminant analysis.
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effector CD4+, CD4+PD1+, CD8+CD57+, effector CD8+, and 
CD8+HLA-DR+ T cells (Table S7 and Fig.S5). Additionally, in terms of 
mRNA expression, treatment with Indole-3-acetyl-beta-1-D-glucoside 
led to reduced levels of IL-6, IL-17A, and IFN-γ (Fig. S6).

Together, our results indicated that being an INR could result in gut 
dysbiosis, with related effects on human metabolic pathways. The gut 
microbiota-host interactions resulting from INR status are illustrated 
diagrammatically in Fig. 4.

Discussion

The host and its microbiota interact dynamically as a critical 
component of human health (Dethlefsen et al., 2007). It is widely 
accepted that the gut microbiota functions in maintaining immune 
balance. Alterations in the composition and function of the gut micro-
biota have revealed a link between the intestinal bacterial ecosystem 
and immune responses in individuals with HIV undergoing treatment 
(Harper et al., 2020; Lujan et al., 2019). Herein, we conducted a 
comprehensive multi-omics investigation, integrating 16S rRNA tran-
scriptomics and LC-MS untargeted metabolomics, to explore the differ-
ences in the gut microbiota composition between IRs and INRs. The 
major findings included significant disparities in gut microbiota 
composition between the two groups, and metabolites play a crucial role 
in immune activation and inflammatory responses.

In agreement with published studies (Xie et al., 2021; Lu et al., 

2021), we showed that, compared with that in the IRs, the gut microbial 
composition in the INRs exhibited significant alterations. This finding 
adds to the evidence supporting the pivotal function of the gut micro-
biota in the immune system, particularly in the context of diseases 
requiring long-term management. The functional profile of the IR 
group’s microbiota was significantly higher than that of the INR group, 
whose gut microbiota revealed a decreasing trend of metabolic function 
over the course of the disease. The INR group showed significantly 
decreased predicted microbial functions, such as folate biosynthesis and 
biotin metabolism. Biotin and folate, as essential B vitamins, are derived 
from dietary intake through the small intestine and from gut microbiota 
biosynthesis, with subsequent absorption occurring via the distal gut. 
These B vitamins serve dual roles as beneficial nutrients and immu-
noregulators, influencing both bodily functions and the gut microbiota 
composition (Uebanso et al., 2020). Specifically, folate (vitamin B9) is 
synthesized by genera such as Lactococcus spp., Bifidobacterium, and 
Bacteroides, and crucially functions as a one-carbon unit carrier and 
donor for DNA synthesis and repair (Kok et al., 2020). Biotin (vitamin 
B7), produced by Bacteroides among others, is integral to various cellular 
metabolic processes and plays roles in immunological and inflammatory 
responses (Sirithanakorn and Cronan, 2021).

The differentially abundant metabolites and microbiota members 
were then subjected to Spearman correlation analysis to gain further 
details. The analysis showed close correlations between two differen-
tially abundant microbiota members and two differentially abundant 
fecal metabolites, suggesting their specific impacts on PLWH metabolic 
pathways. Moreover, our analysis revealed that several metabolites 
showed significant correlations with immune markers, demonstrating 
notable correlations with T-cell activation markers and naive CD4, naive 
CD8, nadir CD4, and current CD4. This suggests a possible role for these 
metabolites in modulating immune responses, particularly in immune 
activation and T-cell differentiation.

Our results showed that the differentially abundant genera and me-
tabolites identified herein have undergone significant modifications, 
suggesting their crucial involvement in the pathogenesis of diverse im-
mune responses to ART. These elements might serve as promising ave-
nues for further investigation into the mechanisms underlying immune 
recovery in PLWH. In particular, Indole-3-acetyl-beta-1-D-glucoside, 
Loperamide, and 2-Dehydropantoate, which exhibited AUC-values ≥
0.8, demonstrated the highest discriminatory ability, underscoring their 
potential as pivotal biomarkers. Moreover, the interplay of these 
microbiota and metabolites, with an AUC-value of 0.8125, was revealed 
as vitally important to the pathogenesis of different immune responses 
to ART, meriting further exploration.

Notably, Indole-3-acetyl-beta-1-D-glucoside demonstrated the high-
est AUC value (0.8931) among the metabolites analyzed, indicating its 
strong discriminatory ability between the IR and INR groups. This high 
AUC value suggests that Indole-3-acetyl-beta-1-D-glucoside could serve 
as a highly effective biomarker to identify immune recovery status in 
HIV-infected individuals. Further in vitro experiments revealed that 
Indole-3-acetyl-beta-1-D-glucoside significantly decreased the pro-
portions of CD4+CD57+, effector CD4+, CD4+PD1+, CD8+CD57+, 
effector CD8+, and CD8+HLA-DR+ T cells. These findings suggest that 
this metabolite might exert an inhibitory effect on the activation of both 
CD4+ and CD8+ T cell subsets, indicating its potential role in modu-
lating immune responses. Additionally, mRNA expression analysis 
showed that Indole-3-acetyl-beta-1-D-glucoside treatment led to a sup-
pression of pro-inflammatory cytokines, which might reflect an anti- 
inflammatory effect of the metabolite. These results imply that Indole- 
3-acetyl-beta-1-D-glucoside has the capacity to modulate the immune 
environment in ways that reduce inflammatory activation, potentially 
contributing to improved immune regulation in PLWH. This study laid 
the groundwork for potential clinical applications of Indole-3-acetyl- 
beta-1-D-glucoside as a biomarker to guide therapeutic strategies 
aimed at enhancing immune recovery in PLWH.

We identified two differentially abundant bacteria, [Ruminococcus] 

Fig. 2. (A) Predicted microbial functional analysis. Analysis using Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States 2 (PIC-
RUSt2) allowing the identification of Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) Orthology (KO) level 3 pathways between the IR and INR 
groups. (B) Heat map of the levels of the top 50 differentially abundant me-
tabolites that showed significant changes in the IR vs. INR comparison. (C) 
Scatter plots of signature metabolites in IRs and INRs. The Y-axis has been 
placed in a log10 scale. IR, immune responder; INR, immune non-responder.
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gnavus_group and Sellimonas, which have potential deleterious effects on 
PLWH. [Ruminococcus] gnavus_group, recognized for their mucin- 
degrading capabilities, are pivotal in early gut colonization, acting as 

endogenous nutrient sources. Their capacity to generate SCFAs, tryp-
tophan, and bile acid metabolites underscores their significant meta-
bolic and immunological roles in the gut ecosystem (Crost et al., 2023). 

Fig. 3. (A) Heat map of the correlation analysis between immune markers and the fecal microbiota. (B) The top 50 differentially abundant metabolites and bacteria 
in the IR vs. INR comparison. (C) Heatmap of the correlations between metabolites and immune markers. Correlations based on their relative abundances were 
analyzed using Spearman correlation analysis. (D) ROC curves of the differentially abundant genera and metabolites combinations that had a Spearman’s r-value >
0.5. IR, immune responder; INR, immune non-responder; ROC, receiver operating characteristic curve; AUC, area under the curve; IL, interleukin; HLA-DR, human 
leukocyte antigen-DR isotype; PD-1, programmed cell death 1; TNF-α, tumor necrosis factor alpha.

Fig. 4. Diagram showing an overview of the interactions between the host and the gut microbiota in IRs and INRs. Pink and upward arrows indicate upregulated 
genera, metabolites, and microbial functions in INRs, while blue and downward arrows indicate downregulated genera, metabolites, and microbial functions in INRs.
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The [Ruminococcus] gnavus_group restrains the secretion of TNF-α and 
might inhibit the metastasis of lung cancer. In addition, this genus 
showed a significant correlation with low Alzheimer’s disease risk (Ning 
et al., 2022). Thus, it was hypothesized that INRs are associated with 
decreased [Ruminococcus] gnavus_group levels. Sellimonas shows in-
flammatory associations and might be upregulated in 
inflammation-associated diseases, including cirrhosis, atherosclerosis, 
and ankylosing spondylitis, particularly following gut dysbiosis 
(Nayfach et al., 2019; Munoz et al., 2020). Sellimonas might have an 
important function in sustaining intestinal homeostasis via metabolic 
regulation (Munoz et al., 2020). Furthermore, Enterococcus might in-
fluence host mucosal integrity and immune responses via inflammation. 
Enterococcus, a member of the Firmicutes phylum, has been recognized as 
an opportunistic pathogen. IL-22, belonging to the IL-10 family, is a 
critical cytokine for mucosal immunity, playing a significant role in 
tissue regeneration and the regulation of host defenses at barrier sur-
faces, including the gut and skin (Ouyang and O’Garra, 2019; Kuma-
zawa et al., 2020). In this study, the negative correlation between 
Enterococcus and IL-22 highlights the potential pathogenic role of 
Enterococcus in undermining mucosal barriers and promoting inflam-
mation. Additionally, the observed negative correlations between 
Enterococcus and the CD4/CD8 ratio and nadir and current CD4+ T-cell 
numbers further illuminate its potential detrimental influence on im-
mune system dynamics, suggesting that Enterococcus might play a sig-
nificant role in immune dysfunction. Moreover, Parabacteroides could be 
a potential probiotic for PLWH. Parabacteroides, known as SCFA pro-
ducers, provide epithelial cells with energy and have a favorable impact 
on the intestinal barrier (Cui et al., 2022). Herein, the IR group showed 
higher levels of Parabacteroides than the INR group. Parabacteroides were 
negatively associated with activation markers on CD4+ T-cells, but 
correlated positively with the CD4/CD8 ratio, and nadir and current 
CD4+ T-cell numbers, suggesting that Parabacteroides might be associ-
ated with a favorable treatment outcome.

Herein, we revealed, for the first time, the differences in the in-
teractions between the gut microbiome and the host between IR and INR 
individuals using a combination of metabolomic and microbiota ana-
lyses. The health of INRs might benefit from reducing levels of potential 
pathobionts (e.g., Sellimonas and Enterococcus), augmenting the levels of 
potential probiotics (e.g., [Ruminococcus] gnavus_group and Para-
bacteroides), and reversing the decrease in metabolites (e.g., Indole-3- 
acetyl-beta-1-D-glucoside) by adjusting their diet or adding nutritional 
supplements. However, the present study has some limitations. It was an 
observational study; therefore; we could not determine the causal re-
lationships between HIV status and the gut microbiota. Moreover, we 
collected samples from already HIV-diagnosed individuals; therefore, 
the gut microbiota alterations might have contributed to, or were a 
consequence of, HIV infection. In addition, we did not analyze non- 
bacterial members of the gut microbiota. Thus, further research is 
required to verify these findings. This study primarily focused on the 
overall impact of the varying immune responses on the human metab-
olome and the gut microbiota, providing hints about the disorders of 
physiology occurring following different immune responses to ART, as 
reflected by alterations to the metabolome and gut microbiota.

Conclusion

In summary, integrating 16S rRNA data and LC-MS untargeted 
metabolomics permitted the interactions between the microbiome and 
host in individuals exhibiting varying immune responses to ART to be 
characterized. Our findings indicated that INR status not only disturbs 
the gut microbiome, but also altered metabolites may play a potential 
role in immune activation and inflammatory responses. These insights 
will advance our understanding of the immune recovery in patients with 
immunodeficiency from different perspectives and explore possible new 
preventative or treatment initiatives.
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