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The implementation of synaptic plasticity in neural simulation or neuromorphic hardware
is usually very resource-intensive, often requiring a compromise between efficiency and
flexibility. A versatile, but computationally-expensive plasticity mechanism is provided
by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building
upon Bayesian statistics, and having clear links to biological plasticity processes, the
BCPNN learning rule has been applied in many fields, ranging from data classification,
associative memory, reward-based learning, probabilistic inference to cortical attractor
memory networks. In the spike-based version of this learning rule the pre-, postsynaptic
and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight
state variables, whose dynamics are typically simulated with the fixed step size Euler
method. We derive analytic solutions allowing an efficient event-driven implementation of
this learning rule. Further speedup is achieved by first rewriting the model which reduces
the number of basic arithmetic operations per update to one half, and second by using
look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use
case, the simulation using our approach is more than one order of magnitude faster than
with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN
synapse, we also evaluate the use of fixed-point numbers for the state variables, and
assess the number of bits required to achieve same or better accuracy than with the
conventional explicit Euler method. All of this will allow a real-time simulation of a reduced
cortex model based on BCPNN in high performance computing. More important, with the
analytic solution at hand and due to the reduced memory bandwidth, the learning rule can
be efficiently implemented in dedicated or existing digital neuromorphic hardware.

Keywords: Bayesian confidence propagation neural network (BCPNN), Hebbian learning, synaptic plasticity,

event-driven simulation, spiking neural networks, look-up tables, fixed-point accuracy, digital neuromorphic

hardware

1. INTRODUCTION
Bayesian Confidence Propagation Neural Networks (BCPNNs)
realize Bayesian statistics with spiking or non-spiking neural
networks. They can be used to build powerful associative mem-
ories (Sandberg et al., 2000; Meli and Lansner, 2013) and data
classifiers, with applications ranging from data mining (Bate
et al., 1998; Lindquist et al., 2000) to olfaction modeling (Kaplan
and Lansner, 2014). The underlying Bayesian learning rule has
clear links to biological synaptic plasticity processes (Tully et al.,
2014), cortical associative memory (Lansner, 2009), reinforce-
ment learning (Johansson et al., 2003), and action selection
(Berthet et al., 2012). Furthermore, BCPNNs have been used
to model phenomena like synaptic working memory (Sandberg
et al., 2003), word-list learning in humans (Lansner et al., 2013)
and memory consolidation (Fiebig and Lansner, 2014), mak-
ing it a promising paradigm for information processing in the
brain, while retaining a level of abstraction suitable for efficient
technical implementation. Models using more detailed spiking

attractor networks with the same structure have provided non-
trivial explanations for memory retrieval and other basic cogni-
tive phenomena like e.g., attentional blink (Lundqvist et al., 2010,
2011; Silverstein and Lansner, 2011; Lundqvist et al., 2013).

The performance of BCPNNs, for example in memory tasks,
scales well with network size, making them extraordinarily pow-
erful for large networks (Johansson et al., 2001). Therefore,
massively parallel simulations of these networks (29 million spik-
ing units, 295 billion plastic connections) have been realized
on supercomputers (Benjaminsson and Lansner, 2011). These
showed that BCPNN implementations are bounded by compu-
tation (Johansson and Lansner, 2007). To alleviate this limit,
conceptual work on implementations in neuromorphic hardware
has been performed (Johansson and Lansner, 2004; Farahini et al.,
2014; Lansner et al., 2014).

In this paper, we pave the way for an efficient implementation
of BCPNN in digital neuromorphic hardware by reducing both its
computational and memory footprint. Existing software models
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apply fixed step size numerical integration methods for solving
the BCPNN dynamics. Although easy to implement, this clock-
driven simulation approach has two major drawbacks: First, there
is a relatively high base cost for calculating the updates of all state
variables at every time step, irrespective of the spiking activity in
the network. Second, the states have to be read from and writ-
ten back to memory at every simulation step, which is especially
expensive for custom hardware implementations where the states
are stored in an external memory. As suggested in recent work
(Lansner et al., 2014), we tackle these issues by moving to an
event-driven simulation scheme, which we systematically opti-
mize for minimal number of calculations to achieve a reduction of
the computational load by an order of magnitude. This efficiency
gain of the event-driven paradigm is mainly due to the sparse
activity in BCPNNs, which is retained irrespective of network
size. Employing pre-calculated look-up tables for the frequent
calculation of the exponential function, we further minimize the
computational cost per event-driven update. By using an analyt-
ical solution of the model equations, the numerical accuracy of
the simulation is increased compared to conventional simulation
techniques with fixed step size (Henker et al., 2012). We show how
this accuracy overhead could be utilized for significantly reduc-
ing the required memory and memory bandwidth in a potential
hardware implementation by using fixed point operands with
fewer bits than in a floating point representation.

While we performed our equation optimizations specifically
for the BCPNN model, they are not restricted to it. As BCPNNs
rely on dynamic equations that are common in neuroscientific
modeling, our approach can be easily adopted to other models.
It shows how to efficiently calculate single neuronal traces and
correlation measures for synaptic plasticity, increasing the energy
efficiency of digital implementations, either on standard comput-
ers or on specialized hardware, on an algorithmic level, comple-
menting analog approaches for increasing the energy efficiency of
neuromorphic computation (Hasler and Marr, 2013).

2. MATERIALS AND METHODS
2.1. BAYESIAN CONFIDENCE PROPAGATION NEURAL NETWORKS
In BCPNNs (Lansner and Ekeberg, 1989; Lansner and Holst,
1996) the synaptic weights between network units are calculated
in a Hebbian fashion by applying Bayes’ rule on the past activ-
ity of the units giving a measure of the co-activation of the units.
In a similar manner each unit’s bias is calculated from its past
activity, representing its a priori probability to be active. Often,
the activity of the units is represented by stochastic spike events,
which are generated according to each unit’s recent input and own
activity. Typically, in a training phase these correlation and activa-
tion statistics are collected, which are then used in the subsequent
test phase to perform inference, i.e., to determine the a posteriori
activity of some units as a response to other units’ recent activ-
ity. While the concept of BCPNN was originally developed for
series of discrete samples, a time-continuous spike-based version
has been developed recently, which we describe in Section 2.1.1
and whose efficient simulation is the main subject of this arti-
cle. In Section 2.1.2, we present an application of this spike-based
BCPNN learning rule in a modular network that constitutes a
reduced full-scale model of the cortex.

2.1.1. Spike-based BCPNN
Spike-based BCPNN (Wahlgren and Lansner, 2001; Tully et al.,
2014) is implemented by a set of local synaptic state variables that
keep track of presynaptic, postsynaptic, and synaptic (i.e., corre-
lated) activity over three different time scales, by passing spiking
activity over three low pass filters, see Figure 1. Here and through-
out this paper the three sites (pre-, postsynaptic and synaptic) are
denoted by indices i, j, and ij, respectively. In the first process-
ing stage, the pre- and postsynaptic spiking activity represented
by spike trains Si (resp. Sj) is low pass filtered into the Zi and Zj

traces (Figure 1B), with time constants τzi and τzj in a range of
5 ms to 100 ms, which corresponds to typical synaptic decay time
constants for various receptor types.

In the second stage, the Z traces are passed on to the E or eli-
gibility traces and low pass filtered with time constant τe. Here,
a separate trace Eij is introduced to filter the coincident activity
of the Z-traces, see Figure 1C. The E traces typically have slower
dynamics than the Z traces (τe ≈ 20 − 1000 ms), and can be
motivated to provide a mechanism for delayed reward learning
(cf. Tully et al., 2014).

The E traces in turn are low pass filtered into the P traces
(Figure 1D). These tertiary traces have the slowest dynamics with
time constant τp ranging from 1 s to several 100 s, even higher
values are possible. The P traces correspond to the probabilities
of the units being active or co-active in the original non-spiking
BCPNN formulation (Lansner and Holst, 1996). In a final step the
P traces are used to compute the synaptic weight wij and the post-
synaptic bias βj (Figure 1E). The formulas for wij and βj contain
the parameter ε, which originates from a minimum spiking activ-
ity assumed for the pre- and postsynaptic units (cf. Tully et al.,
2014), and which has the side effect to avoid division by zero in
the weight formula.

The global parameter κ in the dynamics of P traces can
take any non-negative value and controls the learning, i.e., it
determines how strong recent correlations are stored. When the
learning rate κ equals zero, there is no learning, as the P traces do
not change at all, and thus neither do the synaptic weight wij and
the postsynaptic bias βj. We assume that κ only undergoes dis-
crete and seldom changes, mostly when learning is switched on
or off. Hence, while κ is constant and non-zero, the dynamics of
the P traces can be expressed with a modified time constant τ ∗

p :

τ ∗
p

dP

dt
= E − P, τ ∗

p = τp

κ
(1)

We refer to Tully et al. (2014) for establishing the link between
the spike-based and the probabilistic BCPNN learning rule, as
well as for details on the biological equivalents of the processing
stages. Also, note that in some cases the second low pass filter is
not actually used, so that the Z traces are directly passed to the P
traces.

2.1.2. Reduced modular model of the cortex
As an application of the spike-based BCPNN we consider a
modular abstract network model, motivated by the columnar
structure of the cortex, that was already presented in Lansner
et al. (2014). One assumption is that the smallest functional units
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FIGURE 1 | Equations and sample traces of the spike-based BCPNN

learning rule. (A) Presynaptic (red) Si and postsynaptic (blue) Sj spike trains
serve as input to a BCPNN synapse. (B) The input spike trains are low pass
filtered into the Z traces with time constants τzi ,τzj . (C) E traces compute the
low-pass filter of Z traces with τe. The Eij variable (black) tracks coincident

pre- and postsynaptic activity. (D) E traces are passed on to the P traces and
low-pass filtered with τp . (E) The P traces are used to compute the
postsynaptic bias βj and the synaptic weight wij , which can vary between
positive and negative values. Usually, the dynamics get slower from B to D:

τzi , τzj ≤ τe ≤ τp. Figure redrawn from Tully et al. (2014).

in the mammalian cortex are not single neurons but so-called
minicolumns. A minicolumn is formed by a local population
of some hundred neurons with enhanced recurrent connectivity
and similar receptive fields, so that these neurons are assumed to
have quite correlated output. An example would be a minicol-
umn encoding a certain orientation during processing in primary
visual cortex.

In the order of 100 minicolumns are aggregated in a larger
columnar structure, the cortical hypercolumn, which contains in
the order of 10,000 neurons. Within a hypercolumn the minin-
columns compete in a soft winner-take all (soft-WTA) fashion
through feedback inhibition, so that most of the time only one
minicolumn shows high firing activity while the others are mostly
silent. Minicolumns can be viewed to encode a discrete value of an
attribute specific to each hypercolumn.

In our reduced, abstract model, each minicolumn is repre-
sented by one stochastically spiking minicolumn unit (MCU).
Only connections outside a hypercolumn are implemented: The
internal connections between neurons of a minicolumn are hid-
den within the MCU, while the competitive feedback inhibition
of the 100 MCUs within a hypercolumn unit (HCU) is hardwired
by means of a normalization of activity per HCU (cf. Equation
5 below). In turn, for the implementation of the incoming long-
range synaptic connections, which on the neuron level typically
make up half of the between 103 and 104 incoming connections
in total, we assume that each MCU propagates its spikes to 10,000
other MCUs, and has appropriately as many incoming connec-
tions. These connections are patchy in the sense that each MCU
projects onto 100 hypercolumns and delivers spikes to all 100
MCUs of each target HCU. The connection scheme is motivated
as follows: Long-range connections are provided by large layer

5 pyramidal cells, which make up around 10% of a minicol-
umn. Each of those cells forms synaptic connections to clusters
of far away neurons in horizontal direction. The diameter of these
clusters approximately corresponds to the dimension of a hyper-
column. In real cortex, each of the large pyramidal cells generates
around 10 of these patches (Houzel et al., 1994; Binzegger et al.,
2007), which motivates the 100 target HCUs per MCU, assuming
that one MCU comprises one hundred neurons. All of these con-
nections between MCUs are subject to the spike-based BCPNN
learning equations of Figure 1.

At a higher level, HCUs represent independent network mod-
ules between which spikes are transmitted. Each HCU consists of
100 MCUs and 1 million plastic synapses organized in an array
with 104 inputs and 100 outputs, as illustrated in Figure 2. The
pre- and postsynaptic states of the BCPNN model can therefore
be implemented at the margin of the array, while the synaptic
traces Eij,Pij, and wij form the array, thus representing the largest
amount of state variables. The minicolumn units integrate the
incoming spiking activity, which is then turned into a spiking
probability of each unit. In particular, presynaptic input leads to a
synaptic current ssyn,j (Equation 2), which together with the bias
βj and a specific external input Ij sums up to the support value sj

for each minicolum unit j in Equation (3):

τzi

dssyn,j(t)

dt
=
∑

i

wij(t)Si(t) − ssyn,j(t) (2)

sj(t) = βj(t) + ssyn,j(t) + Ij(t) . (3)

The low-pass filtered version of Equation (3) gives the
“membrane potential” mj of each MCU:
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FIGURE 2 | Structure of one hypercolumn unit (HCU) of the reduced

cortex model. Each HCU contains 100 stochastic minicolumn units (MCUs)
that compete in a winner-take-all fashion. Input spikes from 10,000 MCUs
of other HCUs connect via 1 million BCPNN synapses to all 100 MCUs of
the HCU. Each MCU sends its output spikes to 100 other HCUs. In order to
store all Z ,E,P traces and synaptic weights of the HCU, more than 12 MB
memory is required when using floating point numbers with
single-precision.

τm
dmj(t)

dt
= sj(t) − mj(t) , (4)

where τm is the membrane time constant in the order of 10 ms. In
other words, the MCUs are leaky-integrators (Equation 4) with
three different input currents (Equation 3): The bias βj(t) repre-
sents the prior contribution to the unit’s activation irrespective of
the current synaptic input, determined by the past spiking activity
of the unit itself via the postsynaptic traces (Zj, Ej, Pj, cf. Figure 1).
The synaptic input is implemented as an exponentially decaying
synaptic current ssyn,j(t) (Equation 2), which - at a presynaptic
spike of input i - is increased by synaptic weight wij(t) learned
according to the Equations in Figure 1. Last, the external input
Ij(t) allows a specific stimulation of single units.

All M MCUs of a hypercolumn unit are organized as a
probabilistic soft-WTA circuit. The activation oj of each unit is
computed as:

oj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eγmmj∑M
k = 1 eγmmk

, if
∑m

k = 1 eγmmk > 1

eγmmj otherwise

, (5)

The gain factor γm controls the strength of the soft-WTA filter-
ing process, the higher γm the higher the activation-ratio between
the winning unit and the remaining units. The normalization in

Equation (5) ensures that on average not more than 1 MCU is
active at the same time.

The activation oj then translates into the instantaneous
Poisson firing rate rj for each unit:

rj(t) = oj(t) · rmax,HCU (6)

where rmax,HCU is the maximum firing rate per HCU. The average
spiking frequency in mammalian cortex is quite sparse, with an
average spike rate on the order of 0.1 Hz (Lennie, 2003). In our
full scale HCU with 100 MCUs the average activity level would
be around 1 Hz (thus rmax,HCU = 100 HZ), and the difference is
explained by the fact that one MCU represents around 10 layer 5
pyramidal cells.

2.2. SIMULATION STRATEGIES
2.2.1. Fixed step size simulation
The typical approach for the simulation of spiking neural net-
works is simulation with fixed step size, where all states are
synchronously updated at every tick of a clock (Brette et al., 2007;
Henker et al., 2012). Usually, in such time-driven simulation, one
uses numerical integration methods like Euler or Runge-Kutta to
advance the state by one time step dt.

For our reference fixed step size simulation we follow Lansner
et al. (2014) and use the explicit Euler method for the numeri-
cal integration with a rather long time step of dt =1 ms. As the
MCUs are stochastic, the instantaneous firing rate rj (Equation 6)
is transformed into a firing probability per time step, which is
then compared to a uniform random number between 0 and 1 to
generate spikes. The 1 ms time step is also used in state-of-the-
art real-time digital neuromorphic systems like the SpiNNaker
(Furber et al., 2014) and the Synapse hardware (Merolla et al.,
2014). For completeness, we also present results with 0.1 ms step
size, which is commonly used for the simulation of spiking neural
networks.

2.2.2. Event-driven simulation
In Sections 2.3.1 and 2.3.3 we provide analytical solutions for the
spike-based BCPNN model. For those simulations we mix the
time-driven and event-driven approach: We restrict spike times
to multiples of the simulation time step dt. The stochastic MCUs
(Equations 2–6) are evaluated as for the time-driven approach,
which requires that also the βj is computed at every time step. In
contrast, the states of the BCPNN synapses (Figure 1) are only
updated at the occurrence of a pre- or postsynaptic event.

2.3. ANALYTICAL SOLUTIONS OF SPIKE-BASED BCPNN
The simulation of spike-based BCPNN with a fixed step size
method is cost-intensive and requires very frequent read and
write of the state variables from and to memory. Therefore, we
first provide the rather straightforward analytical solution of the
BCPNN equations in Section 2.3.1, allowing an exact event-
driven simulation scheme. As intermediate step, we rewrite the
BCPNN dynamics as a spike response model in Section 2.3.2,
which then provides the basis for a second analytical solution
with reduced number of operations (Section 2.3.3). Although not

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 9 | Article 2 | 4

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Vogginger et al. Reduced computational footprint for BCPNN

employed in the experiments in this article, discrete changes of
the learning rate κ must be considered for the completeness of
the two analytical solutions, which is done in Appendix A3 .

2.3.1. BCPNN solution: analytical I
For the event-driven simulation of BCPNN, the update of the
state variables is only triggered by events (usually pre- or postsy-
naptic spikes). For each state variable one requires the time of its
last update tlast, in contrast to the time-driven simulation, where
all states correspond to the same global time. Event-driven sim-
ulations are especially efficient if the update of the states from
tlast to the current time t can be solved analytically. Without fur-
ther derivation, we give the analytic solution to advance the Z, E
and P traces by �t = t − tlast from time tlast to t, provided that
there is no spike between tlast and t. For the presynaptic traces the
solutions are

Zi(t) = Zi(tlast) · e
− �t

τzi + Si(t) (7)

Ei(t) = Ei(tlast) · e− �t
τe + Zi(tlast)ai

(
e
− �t

τzi − e− �t
τe

)
(8)

Pi(t) = Pi(tlast) · e
− �t

τ∗
p + aibi

(
e
− �t

τzi − e
− �t

τ∗
p

)
Zi(tlast)

+
(

Ei(tlast) − aiZi(tlast)
)

c

(
e− �t

τe − e
− �t

τ∗
p

)
, (9)

with the following coefficients used for brevity:

ai = τzi

τzi − τe
, bi = τzi

τzi − τ ∗
p

, c = τe

τe − τ ∗
p

. (10)

In Equation (7) Si describes the presynaptic spike train taking

value 1 at the spike time t
f

i and value 0 otherwise, formally

Si(t) = ∑
t

f
i

δ(t − t
f

i ) , (11)

where δ(·) denotes a Dirac pulse. We note that Equation (8) is
only valid when τzi �= τe, Equation (9) furthermore requires that
τ ∗

p is different from both τzi and τe. For the sake of simplicity we
restrict ourselves within this article to time constants fulfilling this
condition, but give the solution for the other cases in Appendix A.

The update formulas for the postsynaptic traces Zj, Ej, and
Pj can be obtained by replacing indices i by j in the presynaptic
update formulas.

Accordingly, the update of the synaptic traces Eij and Pij is
given by:

Eij(t) = Eij(tlast)·e− �t
τe + Zi(tlast)Zj(tlast)aij

(
e
− �t

τzij − e− �t
τe

)
(12)

Pij(t) = Pij(tlast) · e
− �t

τ∗
p + aijbij

(
e
− �t

τzij − e
− �t

τ∗
p

)
Zi(tlast)Zj(tlast)

+
(

Eij(tlast) − aijZi(tlast)Zj(tlast)
)

c

(
e− �t

τe − e
− �t

τ∗
p

)
, (13)

with shortcuts

τzij =
(

1

τzi

+ 1

τzj

)−1

, aij = τzij

τzij − τe
, bij = τzij

τzij − τ ∗
p

.

(14)

Note that, on purpose, Equations (9, 13) were not further sim-
plified to ease the comparison with the spike response model
formulation of the BCPNN model in the next section. Again, we
restrict ourselves to parameter sets where none of the involved
time constants (τzij , τe and τ ∗

p ) are equal. Note, however, that τzi

and τzj may be equal.
The analytical solution of the BCPNN equations derived in this

section is henceforth denoted as analytical I method.

2.3.2. Spike response model formulation of the BCPNN model
As starting point for a second event-driven analytical solution
with less operations, we make use of the linearity of the BCPNN
differential equations and formulate the dynamics as a spike
response model, in accordance with the work of Gerstner and
Kistler (2002). The presynaptic traces can be written as a response

to spike times t
f

i :

Zi(t) =
∑

t
f

i

ζi(t − t
f

i ), ζi(t) = e
− t

τzi 
(t) (15)

Ei(t) =
∑

t
f

i

αi(t − t
f

i ), αi(t)=ai

(
e
− t

τzi − e− t
τe

)

(t)(16)

Pi(t) =
∑

t
f

i

πi(t − t
f

i ), πi(t) = ai

[
bi

(
e
− t

τzi − e
− t

τ∗
p

)

+ c

(
e
− t

τ∗
p − e− t

τe

)]

(t). (17)

Here 
(·) denotes the Heaviside step function. ζi, αi, and πi are
the spike response kernels for the Zi, Ei and Pi traces. One can
obtain Equations (15–17) from the analytical solution by setting
Zi(tlast) = 1, Ei(tlast) = 0, Pi(tlast) = 0 in Equations (7–9).
The spike response kernels ζi, αi, and πi are shown in the left
panel of Figure 3 as dashed lines. The postsynaptic traces can
be analogously formulated, by replacing i with j in Equations
(15–17).

For the synaptic trace variables Eij and Pij the spike response
formulation becomes more sophisticated: Therefore, we con-
sider the product ZiZj, which after inserting the spike response
formulation of Zi and Zj is given by:

ZiZj =
∑

t
f

i

ζi(t − t
f

i ) ·
∑

t
f

j

ζj(t − t
f

j ) (18)

=
∑

t
f

i

∑
t

f
j

e
− t − t

f
i

τzi e
− t − t

f
j

τzj 
(t − t
f

i )
(t − t
f

j ) (19)
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FIGURE 3 | BCPNN dynamics in two different representations for an

example spike train. (A) Presynaptic traces according to the original
model formulation (Zi , Ei , Pi ), as expressed in Equations (7–9). (C)

“Exponential” traces Z∗
i , E∗

i , P∗
i used for the analytical II solution with

minimal number of calculations, according to Equations (32–34). Dashed
lines in A and C denote spike response kernels, i.e., responses to a single
spike. (B) Transformation between the two different representations
(Equations 29, 30, 46).

=
∑

t
f

i

Zj(t
f

i )e
−(t − t

f
i )( 1

τzi
+ 1

τzj
)

(t − t

f
i )

+
∑

t
f

j

Zi(t
f

j )e
−(t − t

f
j )( 1

τzi
+ 1

τzj
)

(t − t

f
j ) . (20)

For Equation (20) we employed the fact that for the spike response

of a presynaptic spike at time t
f

i , we can neglect the contribution

of future postsynaptic spikes with t
f

j > t
f

i , and vice versa. Hence,
similar to the Zi and Zj, the product ZiZj can be written by means
of the spike kernels ζij:

ZiZj =
∑

t
f

i

Zj(t
f

i )ζij(t − t
f

i ) +
∑

t
f

j

Zi(t
f

j )ζij(t − t
f

j ),

ζij(t) = e
− t

τzij 
(t). (21)

In contrast to Zi and Zj, where all spikes have equal strength, for

ZiZj the spike response of each presynaptic spike t
f

i is scaled by the

current value of the postsynaptic Zj trace, respectively by Zi(t
f

j )

for each postsynaptic spike t
f

j .
As the Eij trace is just a low-pass filtered version of the prod-

uct ZiZj, we can analogously write the Eij and Pij traces as spike
response models:

Eij(t) = ∑
t

f
i

Zj(t
f

i )αij(t − t
f

i ) +∑
t

f
j

Zi(t
f

j )αij(t − t
f

j ) (22)

Pij(t) = ∑
t

f
i

Zj(t
f

i )πij(t − t
f

i ) +∑
t

f
j

Zi(t
f

j )πij(t − t
f

j ), (23)

with spike response kernels:

αij(t) = aij

(
e
− t

τzij − e− t
τe

)

(t) (24)

πij(t) = aij

[
bij

(
e
− t

τzij − e
− t

τ∗
p

)
+ c

(
e
− t

τ∗
p − e− t

τe

)]

(t) .(25)

We remark that Equations (20, 22, 23) are ambiguous for the

limit case of simultaneous pre- and postsynaptic spikes (t
f

i = t
f

j ),
as it is unclear whether the sampled Zi and Zj correspond to
the values directly before or after the spikes. This is resolved in
Section 2.3.3.

2.3.3. BCPNN solution with reduced operations: analytical II
For the analytical update of the Z, E and P traces derived in
Section 2.3.1, we observe that especially the update of P traces
is expensive in terms of number of operations. In the presented
BCPNN architecture, each MCU has approximately 10,000 inputs
and correspondingly as many outputs. It would therefore be of
great benefit to reduce the computational cost of the update of
the synaptic traces. We achieve this by transforming the BCPNN
variables to a new set of state variables that all decay exponen-
tially over time and are only increased when a spike occurs. This
is motivated by the spike response model formulation (Section
2.3.2), where the Zi, Ei, Pi traces are superpositions of the spike
response kernels ζi, αi, and πi, which in turn are linear com-

binations of the exponential functions e
− t

τzi , e− t
τe , and e

− t
τ∗
p .

Due to the linearity of the system we can choose these expo-
nentials as new state variables to equally describe the BCPNN
dynamics.

This second analytic solution of the BCPNN model is hence-
forth called analytical II in this paper.

2.3.3.1. Presynaptic traces. For the presynaptic side, we intro-
duce the new state variables Z∗

i , E∗
i , and P∗

i :
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Z∗
i (t) =

∑
t

f
i

e
− t − t

f
i

τzi 
(t − t
f

i ) (26)

E∗
i (t) =

∑
t

f
i

e− t − t
f
i

τe 
(t − t
f

i ) (27)

P∗
i (t) =

∑
t

f
i

e
− t − t

f
i

τ∗
p 
(t − t

f
i ) , (28)

which can be used to express Zi, Ei, and Pi:

Zi(t) = Z∗
i (t) (29)

Ei(t) = ai
(
Z∗

i (t) − E∗
i (t)

)
(30)

Pi(t) = ai
[
bi
(
Z∗

i (t) − P∗
i (t)

)+ c
(
P∗

i (t) − E∗
i (t)

)]
. (31)

The time course of the new state variables as a response to an
example spike train is shown in Figure 3C. Note that we have
introduced Z∗

i although it is identical to Zi in order to empha-
size the concept of the new representation with exponentially
decaying state variables.

Instead of performing an event-based update of the original
state variables Zi, Ei, and Pi, we can update Z∗

i , E∗
i , and P∗

i : Given

that there is no spike between tlast and t, the state evolves from
tlast to t, with �t = t − tlast, as:

Z∗
i (t) = Z∗

i (tlast) · e
− �t

τzi + Si(t) (32)

E∗
i (t) = E∗

i (tlast) · e− �t
τe + Si(t) (33)

P∗
i (t) = P∗

i (tlast) · e
− �t

τ∗
p + Si(t) (34)

Thus, between any two times we only have to calculate the expo-
nential decay with τzi , τe, and τ ∗

p . At a new spike, we add 1 to all
of the new state variables, compared to the classical lazy model,
where only Zi is increased (cf. Figure 3). Of course, equivalent
new state variables and the same updating scheme can be used for
the postsynapic side.

2.3.3.2. Synaptic traces. For updating the synaptic variables,
an analogy can be made to the presynaptic traces. Again, we
introduce new state variables E∗

ij and P∗
ij :

E∗
ij(t) =

∑
t

f
i

Zj(t
f

i )e− t − t
f
i

τe 
(t−t
f

i )+
∑

t
f

j

Zi(t
f

j )e− t − t
f
j

τe 
(t−t
f

j ) (35)

P∗
ij(t) =

∑
t

f
i

Zj(t
f

i )e
− t − t

f
i

τ∗
p 
(t−t

f
i )+

∑
t

f
j

Zi(t
f

j )e
− t − t

f
j

τ∗
p 
(t−t

f
j ) (36)

These, together with Z∗
i and Z∗

j , can be used to express Eij and Pij:

Eij(t) = aij

(
Z∗

i (t)Z∗
j (t) − E∗

ij(t)
)

(37)

Pij(t) = aij

[
bij

(
Z∗

i (t)Z∗
j (t)−P∗

ij(t)
)
+ c

(
P∗

ij(t)−E∗
ij(t)

)]
(38)

We first consider the event-based update of the new synaptic state
variables E∗

ij and P∗
ij for a presynaptic spike only (which is equiv-

alent to a postsynaptic spike only). The case of simultaneous pre-
and postsynaptic spikes is treated separately afterwards. In order
to advance E∗

ij and P∗
ij from their last updated time tlast to t, with

�t = t − tlast and no spike within this interval, the update goes
as follow:

E∗
ij(t) = E∗

ij(tlast) · e− �t
τe + Si(t) · Zj(t) (39)

P∗
ij(t) = P∗

ij(tlast) · e
− �t

τ∗
p + Si(t) · Zj(t), (40)

i.e., E∗
ij and P∗

ij decay exponentially from their last states and, for

the case of a presynaptic spike t
f

i at time t, increase by the sampled
postsynaptic Zj(t) trace. Here lies the difference to the presynaptic
update, where each spike has the same effect, whereas the synaptic
E∗

ij and P∗
ij traces are increased depending on the current Zj value

of the postsynaptic side, as the synaptic traces keep track of the
overlap of pre- and postsynaptic activity.

The case of concurrent pre- and postsynaptic spikes is not
well defined in the formulas for E∗

ij and P∗
ij (Equations 35, 36)

and in the spike response model formulation (Equations 22, 23).
Therefore, we turn back to the product ZiZj, which at simultane-
ous pre- and postsynaptic spikes is increased by

�ij = Z+
i Z+

j − Z−
i Z−

j . (41)

Here Z−
i (Z−

j ) denotes the Z-trace before the evaluation of

a presynaptic (postsynaptic) spike, and Z+
i (Z+

j ) after the
evaluation:

Z+
i = Z−

i + Si , Z+
j = Z−

j + Sj , (42)

where Si (Sj) is only non-zero if there is a presynaptic (postsy-
naptic) spike at the current time. Inserting Equation (42) into
Equation (41) yields

�ij = (Z−
i + Si)(Z−

j + Sj) − Z−
i Z−

j (43)

= SiZ
−
j + SjZ

−
i + SiSj (44)

= SiZ
−
j + SjZ

+
i . (45)

The increment �ij not only describes the change of ZiZj, but also
applies to updates for the new synaptic traces E∗

ij and P∗
ij . Equation

(44) can be used when both spikes are evaluated synchronously,
Equation (45) when both spikes are evaluated consecutively, i.e.,
when first the presynaptic spike is processed (first summand),
and afterwards the postsynaptic spike (second summand). For the
event-based benchmark simulations (Sections 2.2.2 and 3.1.2),
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where all spikes are discretized to multiples of dt, the latter strat-
egy for �ij is used for the update in the synapse array: first all
presynaptic spikes are evaluated, then all postsynaptic spikes.

2.3.3.3. Initialization of exponential state variables. This sec-
tion explains how to set the initial values of the new state variables
(Z∗, E∗, P∗) from a given set of Z, E, P traces. Therefore, we first
shorten the transformation formula of Pi (Equation 31) with new
coefficients as:

Pi = λziZ
∗
i + λeiE

∗
i + λpiP

∗
i (46)

λzi = aibi , λei = −aic , λpi = ai (c − bi) . (47)

For brevity, we have left out the time dependence of the states.
The equivalent simplification can be applied for the postsynap-
tic traces. Similarly, the synaptic traces (Equations 37, 38) can be
written as

Eij = aij

(
Z∗

i Z∗
j − E∗

ij

)
(48)

Pij = λzijZ
∗
i Z∗

j + λeijE
∗
ij + λpijP

∗
ij , (49)

with coefficients

λzij = aijbij , λeij = −aijc , λpij = aij
(
c − bij

)
.(50)

To turn the set of Z, E, P variables into the new state variables
(Z∗, E∗, P∗), the following reverse transformation holds:

Z∗
i = Zi (51)

E∗
i = −Ei

ai
+ Z∗

i (52)

P∗
i = 1

λpi

(
Pi − λziZ

∗
i − λeiE

∗
i

)
(53)

Note that the transformation has to be performed in the above
order. The synaptic values are set as follows:

E∗
ij = −Eij

aij
+ Z∗

i Z∗
j (54)

P∗
ij = 1

λpij

(
Pij − λzijZ

∗
i Z∗

j − λeijE
∗
ij

)
(55)

2.4. BENCHMARKS
To validate our implementation of the BCPNN we used sev-
eral benchmarks, targeting either simulation run time or accu-
racy. As infrastructure for the simulations we used a cluster
with Intel®Xeon®CPU E5-2690 2.90 GHZ. All benchmarks were
implemented in C++ and compiled with GCC 4.7.1. All simula-
tions were single-threaded. The time constants and other BCPNN
parameters used for the benchmarks are listed in Table 1.

2.4.1. Simulation run time
To compare the computational cost of the different update strate-
gies, we simulated the synaptic dynamics of a full hypercolumn
with 10,000 inputs and 100 MCUs, see Figure 2. For both pre-

Table 1 | Parameters used in the execution time and accuracy

benchmarks.

Synapse model

Parameters τzi =10 ms presynaptic Z trace time constant

τzj =15 ms postsynaptic Z trace time constant

τe = 20 ms E trace time constant

τp = 1000 ms P trace time constant

κ = 1 learning rate

ε = 0.001 minimum activity

Note that the values represent only one possible parameter set. Plausible ranges

for the time constants are given in the text (Section 2.1.1). The execution time is

not affected by the choice of the parameters, but, of course, the accuracy results

may change when using different parameters.

and postsynaptic units we use independent Poisson spike trains,
which are pre-generated and then read from a file to the main pro-
gram, so that equal spike trains are used for the different update
strategies. The simulation runs for 10 s, the Poisson rate is swept
over a range of 0.01–100 Hz. For each rate and update strategy we
assess the execution time per simulated second as the average of 5
runs with different random seeds. Although independent Poisson
spike trains for the pre- and postsynaptic units will not be the case
in realistic BCPNN applications including learning and retrieval
of patterns, they sufficiently model the probabilistic nature of the
MCUs and are thus favorable compared to regular spike trains.
In order to measure only the computational cost of the synaptic
updates, the stochastic MCUs are not simulated in this bench-
mark. However, for a fair comparison of the update strategies,
we calculate the support value sj (Equation 3) for all postsynap-
tic units at each time step, so that all βj are calculated at every
time step, and the weights wij are computed whenever a spike of
presynaptic unit i arrives.

2.4.2. Accuracy comparison
As many published results are based on an explicit Euler method
(see e.g., Johansson and Lansner, 2007; Berthet et al., 2012;
Kaplan and Lansner, 2014), we compare this numerical method
to an exact analytical one in Section 3.2.2. Furthermore, we inves-
tigate the influence of using fixed-point operands with different
number of bits instead of floating point numbers with double
precision. For this purpose, we implemented a single BCPNN
synapse in C++ with templates allowing the comparison of dif-
ferent number formats, making use of an in-house developed
fixed-point library.

As stimuli for the BCPNN synapse we generated pre- and post-
synaptic spike trains according to a homogeneous Poisson process
with rate r. For the accuracy benchmarks not only the update
frequency is important but also that different dynamical ranges
of the BCPNN variables can be triggered, which requires differ-
ent levels of correlation. To achieve that, we follow Kuhn et al.
(2003) and create pre- and postsynaptic Poisson spike trains that
share a fraction of c correlated spike times. Therefore, we cre-
ate one correlated Poisson spike train with rate c · r, and two
independent Poisson spike trains with rate (1 − c) · r for the pre-
and postsynaptic side. The correlated spike times are then added
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to both independent spike trains. To avoid a systematic zero-lag
between pre- and postsynaptic spike times, the correlated spike
times of the postsynaptic side are jittered according to a Gaussian
distribution with standard deviation σ = 5 ms.

We run multiple simulations to investigate the effects of the
Euler method and fixed-point operands, respectively. For each
accuracy setting, stimuli are generated using 11 correlation fac-
tors c ranging from 0 to 1 in intervals of 0.1. For each of the
different correlation factors, 10 different seeds are used for the
Poisson processes, resulting in 110 simulations per accuracy set-
ting. The stimuli are generated with an average rate of 1 Hz and
the duration of each simulation is 1000 s. For the Euler method,
spike times are set to multiples of the time step to avoid time dis-
cretization errors (Henker et al., 2012). For fixed-point operands,
spike times are generated with a resolution of 0.01 ms.

To assess the accuracy of the different implementations, we
consider absolute errors eabs:

eabs = |x − x̂| , (56)

where x denotes the exact value (analytical solution with float-
ing point double precision) and x̂ is the approximation (either
the Euler solution or the analytical solution with fixed-point
operands). By point wise comparing each of the state variables
(e.g., wij, Pij . . . ), the accuracy can be assessed. The mean absolute
error eabs is the average of the single absolute errors determined
at each time of a pre- or postsynaptic spike over all simulation
runs. The normalized mean absolute error (NMAE) is the mean
absolute error divided by the range of observed values x:

NMAE = eabs

xmax − xmin
, (57)

which allows to compare the accuracy of several variables with
different scales.

3. RESULTS
The two analytic solutions for spike-based BCPNN derived in
Section 2.3 allow an efficient event-driven simulation of BCPNNs.
In Section 3.1 we investigate how this reduces the computational
footprint of BCPNN learning both formally and empirically.
Aiming also for a small memory footprint, we evaluate the use
of fixed-point numbers for the storage of BCPNN state variables,
and compare the introduced discretization errors with the errors
caused by the fixed step size simulation with the Euler method
(Section 3.2).

3.1. COMPARISON OF SIMULATION STRATEGIES
In this section we compare the computational efficiency of the
two analytical solutions of the BCPNN equations against each
other and to the commonly used fixed step size implementation
with the Euler method. We also investigate the benefit of using
look-up tables for exponential decays in the analytical II method.

3.1.1. Number of operations
We start with a formal comparison between the two analytical
update solutions by counting the steps of calculation required
for an event-based update in each representation. Therefore, we

categorize the operation into three classes: ADD combines both
additions and subtractions, MUL stands for multiplications and
divisions, EXP for calculations of the exponential function, and
LOG for the natural logarithm.

Table 2 lists the number of operations needed by the analyti-
cal I and analytical II methods for different tasks: For the update
of the presynaptic state variables (Zi, Ei, Pi resp. Z∗

i , E∗
i , P∗

i ) at an
incoming spike, most notably, the analytical II method requires
6 MUL and 3 ADD operations less than the analytical I method.
Instead, when the Pi value is retrieved, e.g., to calculate the synap-
tic weight wij, the analytical I method requires zero operations,
while the analytical II method requires 2 ADD and 3 MUL oper-
ations to calculate Pi from Z∗

i , E∗
i , and P∗

i . Here, the difference
between the two strategies manifests: while the analytical II is
more efficient when the states are updated, it requires additional
operations to determine the original states. Nevertheless, when
adding up the counts of both tasks (pre-update and retrieval
of Pi), e.g., when βj is updated after a postsynaptic spike, the
analytical II is still much more efficient than the analytical I
method.

Table 2 | Arithmetic operations per task for different analytical update

methods.

Task Operation Analytical I Analytical II

Pre-update Equations (7–9) Equations (32–34)

ADD 7 3

MUL 12 6

EXP 3 3

Retrieve Pi Equation (46)

ADD – 2

MUL – 3

Syn-update Equations (12, 13) Equations (39, 40)

ADD 6 2

MUL 13 5

EXP 3 2

Retrieve Pij Equation (49)

ADD – 2

MUL – 4

Update of wij

at pre-spike
ADD 22 14

MUL 39 29

EXP 9 8

LOG 1 1

Update of βj

at post-spike
ADD 8 6

MUL 12 9

EXP 3 3

LOG 1 1

ADD, additions and subtractions; MUL, multiplications and divisions; EXP, com-

putations of exponential function; LOG, natural logarithm. The operation counts

of the analytical I method correspond to optimized versions of the referenced

formulas using pre-calculated coefficients and intermediate steps. The different

tasks are further specified in the text.
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Similar results are found for the update of the synaptic state
variables (Eij, Pij resp. E∗

ij, P∗
ij), where the advantage of the ana-

lytical II over the analytical I is even larger, cf. Table 2. Again, the
analytical II strategy needs additional steps of computation for the
retrieval of Pij. For the typical case of a presynaptic spike, where all
traces and the weight are updated (task “update of wij after pre-
spike”) and which includes the retrieval of all P-traces, the ana-
lytical II requires considerably less operations than the analytical
I method. Note that the speedup of the analytical II is even higher
when processing a post-synaptic spike, as then the weight needs
not be calculated and thus the P traces need not be retrieved.

If we consider an array of BCPNN synapses, as in a hypercol-
umn unit of the reduced cortex model (Figure 2), where the pre-
and postsynaptic traces are handled at margins of the array, it is
the update and retrieval of the synaptic BCPNN state variables
that make up the majority of the calculations. Assuming equal
mean firing rates for the pre- and postsynaptic units, the Pij val-
ues need to be retrieved on average only at every second spike
event. In that case, the analytical II method requires roughly half
the number of basic arithmetic operations (ADD and MUL) of
the analytical I method, but only slightly less calculations of the
natural exponential function.

3.1.2. Simulation run time
As a complement to the formal comparison, we measured the
simulation run time required to simulate the update of synapses
of one HCU with 10,000 inputs and 100 outputs for the different
update strategies. The results for a sweep over the Poisson firing
rates of the inputs and outputs, which is described in detail in
Section 2.4.1, are shown in Figure 4A. As expected, for the fixed
step size simulation with explicit Euler method and dt = 1 ms the
execution time depends only slightly on the spike frequency: It
takes ≈ 2.4 s to simulate 1 s of the network for firing rates up
to 10 Hz, only for higher rates the run time increases signifi-
cantly, which can be attributed to the more frequent calculation
of synaptic weights. In contrast, for the event-based methods the

execution time strongly depends on the firing activity: For very
low spike rates, there is a baseline computational cost that can be
attributed to the calculation of all postsynaptic biases βj and sup-
port values sj (Equation 3) at every time step (cf. Section 2.4.1).
For Poisson rates of 0.1 Hz and higher, the execution time scales
linearly with the firing rate. The update strategy with reduced
operations (analytical II, green curve) clearly outperforms the
conventional analytical update (analytical I, blue curve). For a
typical average firing rate of 1 Hz of MCUs in a HCU (cf. Lansner
et al., 2014) the analytical II strategy is more than 3 times faster
than the real-time dynamics of the model, while the analytical
I update runs approximately at real time. We remark that we
optimized the C++ code of the analytical II update as good as
possible, while the analytical I code is not optimized to the end.
Thus, the results of latter can not be taken as final and should
rather be interpreted as an intermediary result.

We compare the run time of the event-based methods directly
to the fixed step size simulation in Figure 4B. For low spiking
activity, the event-based methods are up to 100 times faster than
the fixed step size method. At 1 Hz the analytical II strategy
(green curve) runs more than 8 times faster than the simula-
tion with Euler. Only for firing rates higher than 20 Hz the fixed
step size approach is competitive with, respectively faster than the
analytical II method.

Additional results for a 0.1 ms time discretization are provided
in Appendix A4, showing a much higher speedup of event-driven
methods against the fixed step size method.

3.1.3. Look-up tables for exponential functions
In another simulation we investigated the benefit of using look-up
tables (LUTs) for the exponential functions instead of computing
the exponential at each event. This is motivated by the number
of exponential decays calculated per update (cf. Table 2), as well
as by a profiling of the implemented C++ program which shows
that a huge amount of simulation time is spent in the compu-
tation of the exponential function. Look-up tables are especially

FIGURE 4 | Speed comparison of different simulation strategies for

spike-based BCPNN: fixed step size simulation with explicit Euler
method with 1 ms time step (Euler, black curve), event-driven simulation
with analytical update (analytical I, cf. Section 2.3.1, blue) and analytical
update with exponential state variables (analytical II, cf. Section 2.3.3),
with and without using look-up tables (LUTs) for the exponential
function (red, resp. green). (A) Execution time for simulating a full

hypercolumn unit with 1 million BCPNN synapses for 1 s with different
Poisson firing rates applied to both pre- and postsynaptic units of the
HCU (cf. Figure 2). (B) Speedup of event-based simulation methods
with respect to the fixed step size simulation with Euler method in A.
Look-up tables were implemented for the exponential decay of type
exp ( − �t

τ
) for the time constants τzi , τzj , τe, τ ∗

p . Each LUT had 3000

entries in steps of 1 ms.
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beneficial in the used event-driven simulation (Section 2.2.2)
where spike times are restricted to multiples of the time step dt.
Calculations of the form

LUT(N, τ, dt) = e− N · dt
τ (58)

are performed very often, where N is the number of time steps
that have elapsed since the last update, and τ is one of the four
involved time constants τzi , τzj , τe, τ

∗
p . In a modified version of

the analytical II implementation, we create look-up tables of
Equation (58) for the four time constants, each with L entries for
N = 1 . . . L. Only if the number of elapsed time steps between
two updates is larger than L, the exponential function Equation
(58) is computed on demand.

The results for using look-up tables in the analytical II method
are included in Figure 4: The implementation with look-up tables
(red curve) speeds up the simulation for Poisson rates starting
from 0.1 Hz, and is up to 3 times faster than the version without
LUTs at 10 Hz spiking activity. Here, the size of the LUTs was cho-
sen as L = 3000, covering update intervals up to 3 s, so that for
a Poisson rate of 1 Hz on average 95 % of the inter spike inter-
vals are handled by the look-up table. For the typical case of 1 Hz
the LUT implementation is 1.9 times faster than the one without
LUTs, 6.6 times faster than real time, and 16 times faster than the
fixed step size simulation with explicit Euler method. For a wide
spectrum of tested firing rates the analytical II solution with look-
up tables is much more efficient than the fixed step size simulation
with Euler, only for a firing rate of 100 Hz the latter performs
slightly better (Figure 4B), so that in practical situations the fixed
step size method becomes dispensable for the simulation of the
abstract BCPNN cortex model.

3.2. FIXED-POINT NUMBERS FOR BCPNN TRACES AND THEIR
ACCURACY

To store all traces of the 1 million BCPNN synapses of a full
HCU, one requires more than 12 MB assuming a single precision
floating point number occupying 4 byte for each state vari-
able (Lansner et al., 2014). Targeting an implementation of the
BCPNN model on neuromorphic hardware, the use of fixed-point
numbers can reduce the number of computational and storage
resources, possibly at the price of loosing precision. Therefore,
we investigate the accuracy of using fixed-point operands to store
the state variables in the event-based simulation with analytical
II method, and compare it to the accuracy of the fixed step size
simulation with the Euler method.

3.2.1. Value range estimation
For a fixed-point implementation of the BCPNN model, it is
important to determine an upper bound of each state variable.
This bound can be used to normalize the variables, so that an
identical fixed-point representation can be used for all.

For a single exponential trace, be it the Zi and Zj traces in the
standard analytical solution or the state variables of the analyti-
cal II solution, an upper bound can be calculated using a regular
spike train with maximum rate rmax. The value of this rate may
be derived from the units’ refractoriness period or as a multiple
of the mean unit firing rate, accounting for short-term firing rate

FIGURE 5 | Value range estimation of the BCPNN states variables:

Traces of the Z , E, and P states for a regular spike train with
frequency of 50 HZ. (A) Presynaptic traces according to the standard
analytical solution (analytical I), as expressed in Equations (7–9). (B)

Exponential traces of the improved analytical solution analytical II,
Equations (32–34). Analytically calculated limits according to Equation
(59) are plotted as dashed lines. Time constants used here:
τzi = 20 ms,τe = 80 ms and τ ∗

p = 200 ms.

fluctuations. The upper bound can be calculated from the equilib-
rium state, where exponential decay and instantaneous increase at
a spike equalize:

Zi(tn)
!= Zi(tn+1) = Zi(tn) · e−1/(rmax·τzi ) + Si

⇒ Zi,max = Si

1 − e−1/(rmax·τzi )
(59)

The upper bounds of the presynaptic traces are illustrated in
Figure 5A. They very closely match the actual maximums of the
traces according to the employed regular spike train. For the traces
of Ei and Pi, the same maximum as for Zi can be used in good
approximation. This is motivated from the differential equations
of the model given in Figure 1: The worst-case assumption for
Zi from the maximum calculation would be a constant value of
Zi,max. Given this input, the trace of Ei would approach the same
value. The same argument in turn holds for Pi.

For the traces of the analytical II solution, Z∗
i , E∗

i , and P∗
i ,

Equation (59) can be used with according time constants. For
rmax · τ � 1, the maximum can be approximated as rmax · τ for
an increment of Si = 1. The highest absolute value is reached for
the longest time constant, which is τp = 1000 ms in our exam-
ple parameter set. Assuming a refractoriness period of 1 ms, the
worst-case upper bound would be P∗

i,max ≈ 1000. For a fixed-
point implementation, a width of 10 integer bits would be suf-
ficient to avoid any unwanted saturation or overflows. It can be
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expected that the actual maximum of P∗
i is significantly lower as

it is extremely unlikely that a neuron (resp. a MCU) fires every
1 ms for a multitude of spikes. Thus, for a specific benchmark, a
lower bound may be determined from simulation.

3.2.2. Accuracy comparison
We ran multiple simulations to investigate the effects of the Euler
method and fixed-point operands, respectively. For each accu-
racy setting, a single BCPNN synapse was stimulated by pre- and
postsynaptic Poisson spike trains of 1 Hz average rate. We applied
different levels of correlation between pre- and postsynaptic spike
trains in order to generate wide value ranges of the BCPNN vari-
ables, especially for wij. The simulation setup is described in detail
in Section 2.4.2.

The accuracy results for both Euler method and fixed-point
operands are shown in Figure 6. As accuracy measure, we assess
the normalized mean absolute error (NMAE) as described in
Section 2.4.2. To get an impression of the variable ranges in the
simulations, we give their average, minimum and maximum in
Table 3. Note that we only show the errors for wij and βj (and not
for the Z,E,P traces), as these are the only BCPNN variables that
affect the activation of the postsynaptic units. As expected, the
Euler method exhibits a linearly increasing accuracy with decreas-
ing step size (Figure 6A). The accuracy is worse for the synaptic
weight wij than for the bias βj, as the wij error is affected by the
errors of Pi,Pj, and Pij, while βj only depends on the accuracy of
Pj. For 1 ms step size, which we used for the execution time bench-
marks, the normalized mean absolute error of the synaptic weight
lies far below 1 %. A reason for this relatively small error might
be the exponentially decaying dynamics of the BCPNN variables,
which keeps the accumulation of errors low.

For fixed-point operands, we used calculation with floating
point precision, but quantized each intermediate result for a state
variable to a fixed number of fractional bits. For the time con-
stants and coefficients (Equations 47, 50) we used the highest

available fixed-point precision (32 fractional bits) to minimize
computational errors. This emulates the case that state variables
are stored with limited precision to reduce storage space, but
the arithmetic operations are designed such that they do not
introduce additional numerical errors. Quantization errors can
be modeled as a noise source with amplitude 2−b, where b is the
number of fractional bits. All errors scale according to this noise
source (compare dashed line in Figure 6B). Again, the accuracy
is higher for βj than for wij, but now the ratio between wij and βj

errors is larger than in the Euler simulation.
Comparing these results answers the question what fixed-point

operand resolution is required in our optimized analytical solu-
tion to achieve at least the same accuracy as state-of-the-art Euler
methods. This can be derived from curves with equal mean abso-
lute error, as shown in the lower diagram of Figure 6C. In terms
of scaling, Euler method and fixed-point operands compare as

eabs = AEuler · dt = Afixed · 2−b , (60)

where dt is the step size of the Euler method and AEuler, Afixed

are variable-specific constants. The corresponding line dt = 2−b

is drawn as dashed line in the diagram. As expected from the
previous results, the single errors follow this line, shifted by an
offset. For a time step of dt = 0.1 ms 16 fractional bits or less are

Table 3 | Measured ranges of BCPNN state variables in accuracy

simulations.

Variable Mean Min Max

Pi 0.010 0.001 0.066

Pj 0.015 0.001 0.097

Pij 0.0028 0.000 0.898

wij 1.57 −6.75 5.35

βj −4.38 −6.21 −2.32

FIGURE 6 | Accuracy of fixed step size simulation with Euler method and

event-driven analytic simulation using fixed point operands. The
accuracy of wij and βj is assessed by the normalized mean absolute error
taken over a large set of experiments with the exact analytical solution as
reference, see text for details. (A) Simulation with Euler, dependent on step
size. The dashed line shows the linear scaling: y (dt) = dt · s−1. (B) Analytical
solution with event-driven update (analytical II) using fixed-point
representation with different counts of fractional bits. The dashed line shows

the quantization noise amplitude: y (b) = 2−b . The error bars in A and B

denote the normalized maximum absolute error recorded within all
simulations per setup. (C) Comparison between the errors introduced by the
Euler method and the use of fixed-point numbers with limited number of
fractional bits: For wij and βj the location of equal mean absolute errors is
plotted, depending on the step size for the Euler method, respectively the
number of fractional bits of the fixed-point implementation. Dashed line:
estimated relationship according to Equation (60).
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required to achieve at least the same accuracy in all variables. A
number of integer bits is required in addition to represent values
greater than one. As shown in Section 3.2.1, a maximum of 10
integer bits is required in a worst-case scenario for the employed
parameter set.

For the simulation of the reduced modular model of the cor-
tex described in Section 2.1.2, for which a 1 ms time step seems
to provide sufficient results (Lansner et al., 2014), only 12 frac-
tional bits, and thus at maximum 22 bits in total, are needed
to ensure equal or better accuracy compared to using the Euler
method. Hereby, the required memory per state variable decreases
by almost one third compared to using single precision floating
point numbers.

Considering a 0.1 ms time step and a 64 bit floating point rep-
resentation, which is commonly used in state-of-the art neural
network simulations, fixed-point numbers with less than 32 bits
yield competitive accuracy, so that the memory footprint reduces
even by more than a half.

4. DISCUSSION
In this paper we derived two analytic solutions for the spike-based
BCPNN learning rule. They enable an efficient event-driven sim-
ulation of spiking neural networks employing this learning rule,
such as the reduced modular model of cortex (Lansner et al.,
2014). The advantages of using an analytic over a fixed step
size numeric solution are twofold: Firstly, it enables an event-
driven update of the variables, and thereby significantly speeds up
synaptic plasticity when interspike intervals are long compared to
simulation time resolution. Secondly, it increases the precision of
the calculations compared to fixed step size methods. Both aspects
can be utilized for allocating resources in an existing hardware
system efficiently or in conceiving a neuromorphic system based
on the BCPNN computational paradigm.

4.1. CLASSIFICATION AND LIMITATIONS OF OPTIMIZATION
In our simulations including 1 million BCPNN synapses with pre-
and postsynaptic activity at 1 Hz, we were able to reduce the exe-
cution time by a factor of 16 compared to the conventional fixed
step size simulation with explicit Euler. One hypercolumn unit of
the reduced cortex model was simulated more than 6 times faster
than real time on a single CPU. Several factors are responsible for
that speedup:

By employing the analytical I solution of the BCPNN model,
the event-driven simulation becomes feasible and clearly defeats
the time-driven simulation at the chosen working point of 1 Hz
firing rate. In general, the event-driven approach is mostly advan-
tageous over the time-driven approach when the firing rates are
low and connectivity is sparse (Brette et al., 2007). Hence, as
long as the inter-spike intervals are large compared to the simula-
tion step size, the analytic event-driven simulation can effectively
reduce the execution time of spiking neural networks, indepen-
dent whether the BCPNN synapses connect single neurons or
more abstract units like in the cortex model.

The analytical II solution requires on average only half of the
basic arithmetic operations of the conventional analytical I solu-
tion for an event-based update, and slightly less calculations of
the exponential function. Here, the computational cost is reduced

by representing the same BCPNN dynamics with a set of expo-
nentially decaying state variables, which is possible due to the
linearity of the system. A similar approach has been taken by
Brette (2006) for the exact simulation of leaky integrate-and-fire
neurons with synaptic conductances, albeit with the restriction
of equal excitatory and inhibitory synaptic time constants. Quite
the opposite, the only limitation for the BCPNN synapse model
is that the decay time constants of the three low pass filtering
stages must differ. Nevertheless, when a specific network model
requires equal time constants, one can still switch to the analyt-
ical I solution provided in Appendix A2, or try slightly different
parameters.

The usage of look-up tables for the frequent calculation of
exponential decays can further accelerate the simulation by a fac-
tor of 2 or 3. Precalculated look-up tables are a common tool in
event-driven neural network simulations to reduce the cost for the
calculation of complex functions (Brette, 2006; Ros et al., 2006).
For BCPNN, LUTs for the exponential decay are beneficial as long
as the time constants are homogeneous and do not vary from
synapse to synapse. In our hybrid simulation of a hypercolumn
unit, where spikes are discretized to multiples of the simulation
step size, look-up tables not only accelerate the simulation, but
also provide the same accuracy as the solution without LUTs.
For simulations with arbitrary update intervals, linear interpo-
lation can be used to achieve almost exact results (Brette, 2006).
Alternatively, for the case of the exponential function, the com-
putation can be split into two steps, e.g., by first retrieving the
EXP separately for the integer and fractional bits of the exponent,
and then multiplying the two obtained results. There remains the
question for the optimal size and resolution of the look-up tables,
which must be chosen depending on the used hardware plat-
form (available memory, cache size) and the inter spike interval
distributions of actual network models.

The optimizations presented in this paper focus on reducing
the computational footprint for the spike-based BCPNN learn-
ing rule: In our benchmarks we have considered either a single
synapse or an array of synapses, but not the dynamics of neurons
or the MCUs. The efficient simulation of large recurrent networks
with many HCUs entails many new issues, e.g., the distribution of
hypercolumns across compute nodes and memory, the commu-
nication of spikes between HCU or the buffering of spikes, and
gives rise to separate studies that are clearly out of scope of this
paper.

4.2. ACCURACY
Fixed-point operands can reduce the memory footprint with the
drawback of loosing precision compared to a floating point rep-
resentation. To find the compromise between the two solutions,
we assessed the accuracy of using fixed-point operands for the
storage of the BCPNN state variables in an event-based simu-
lation with the analytical II method (Section 3.2). The accuracy
was compared to the errors introduced by the fixed step size sim-
ulation with explicit Euler method using 64 bit floating point
numbers, which is commonly used in neural simulation. We
found that fixed-point numbers with 22 bits assure equal or bet-
ter accuracy for all BCPNN variables than the Euler method with
1 ms time step, resp. 26 bits for 0.1 ms time step.
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The question remains about which accuracy is necessary in
a practical situation. A previous study (Johansson and Lansner,
2004) on using fixed-point arithmetic for BCPNNs showed that
an attractor network with 8 bit weights can offer the same stor-
age capacity as an implementation with 32 bit floating point
numbers. To achieve this, probabilistic fractional bits were used
and the computation of the moving averages (low-pass filters)
was performed in the logarithmic domain. Given these results,
we speculate that also spike-based BCPNN can be implemented
in fixed-point arithmetic with 16 or less bits without loosing
computational capabilities, so that the required memory and
memory bandwidth can be halved compared to 32 bit floating
point numbers used in Lansner et al. (2014).

4.3. NEUROMORPHIC HARDWARE
Our optimizations can be directly incorporated for designing
more efficient neuromorphic hardware systems. There are cur-
rently several diverse attempts for building large-scale hardware
platforms, aiming for a more efficient simulation of large-scale
neural models in terms of speed, power or scalability (Schemmel
et al., 2012; Hasler and Marr, 2013; Benjamin et al., 2014; Furber
et al., 2014; Merolla et al., 2014). As in our analysis, realiz-
ing synaptic plasticity is the most resource-demanding task, so
that a focus of neuromorphic designs is in efficiently emulating
plasticity mechanisms, most often implementing some variant
of spike-timing dependent plasticity (STDP, Bi and Poo, 1998;
Morrison et al., 2008) in analog or mixed-signal circuitry, see
Azghadi et al. (2014) for a review.

An implementation of the BCPNN learning rule requires
a stereotypical set of coupled low-pass filters, see Figure 1.
Implementation of the rule in analog neuromorphic hardware
is technically feasible, as there is large knowledge on building
leaky integrators (Indiveri et al., 2011), and even the issue of long
decay time constants in nanometer CMOS technologies can be
resolved, e.g., with switched capacitor techniques (Noack et al.,
2014). In this context, our optimized analytic solution offers an
interesting alternative to the direct implementation of the origi-
nal model equations: When using the analytical II solution, the
stereotypical low-pass filters are only charged at incoming spikes,
in contrast to the continuous coupling in a direct implementa-
tion. This alleviates the need for a continuous, variable-amplitude
charging mechanism for the E and P traces. On the other hand,
charging only at incoming spikes requires a more elaborate cal-
culation of the output values, as present in the analytical II
solution. However, this calculation needs to be performed only at
spikes as well, allowing e.g., for an efficient implementation with
switched-capacitor circuits.

The design of analog neuromorphic circuits is time-
consuming and the circuits are affected by parameter variations
due to device mismatch. Digital implementations are much less
affected by these problems. They may be less energy and area
efficient on the level of single elements and they do not allow
for direct ion-channel-to-transistor analogies as employed in tra-
ditional neuromorphic designs (Hasler et al., 2007). However,
they allow to fully utilize the energy efficiency and performance
advantages of neural algorithms and modeling approaches, while
offering better controllability and scalability.

Several purely digital neuromorphic systems support synap-
tic plasticity, implemented either on application-specific inte-
grated circuits (Seo et al., 2011), on field-programmable gate
arrays (FPGAs) (Cassidy et al., 2013) or a custom multiprocessor
system using a larger number of general purpose ARM cores
(SpiNNaker system, Furber et al., 2014). Recently Diehl and
Cook (2014) showed how general STDP rules can be effi-
ciently implemented on SpiNNaker, despite the system’s restric-
tion that synaptic weights can be modified only at the arrival
of a presynaptic spike. By adopting their implementation of
trace-based STDP, the event-driven spike-based BCPNN in vari-
ant analytical I or analytical II can be seamlessly integrated on
the SpiNNaker hardware. As we do, Diehl and Cook (2014)
use look-up tables for the exponential function; furthermore,
SpiNNaker uses fixed-point arithmetic, so that our insights
on the accuracy of fixed-point operands may find immediate
application.

The event-driven approach is also amenable to state-of-the-art
methods for reducing the energy of computation in digital sys-
tems. Recent multi-core hardware platforms support fine grained
per-core power management, as for example demonstrated on
the Tomahawk multiprocessor system-on-chip (MPSoC) archi-
tecture (Arnold et al., 2014; Noethen et al., 2014). By changing
both the clock frequency and the core supply voltages of each
processing element in a dynamic voltage and frequency scal-
ing scheme (Höppner et al., 2012), the hardware performance
can be adapted to the performance requirements to solve a par-
ticular part of the BCPNN in real time with reduced energy
consumption, e.g., by regarding the number of incoming spikes
per HCU per simulation step. In addition, within phases of
low activity complete processing elements can be shut off to
reduce leakage power consumption. Another candidate archi-
tecture for energy-efficient neural computation with BCPNNs
is the multi-core Adapteva-Epiphany chip (Gwennup, 2011),
which is optimized for power-efficient floating point calcula-
tions requiring only one fifth of the energy at equal flop rate
as the state-of-the-art (but general-purpose) ARM’s Cortex-A9
CPU.

Alternatively, spike-based BCPNN can be implemented on
novel systems rather than on existing digital systems: For exam-
ple, one may build dedicated digital hardware for the simulation
of the BCPNN cortex model. Such a system containing com-
pact supercomputer functionality can be prototyped in an FPGA
with special units for the learning rule or the stochastic mini-
column units, and has therefore only low risk compared to
mixed-signal implementations. Recently, Farahini et al. (2014)
provided a concept for a scalable simulation machine of the
abstract cortex-sized BCPNN model with an estimated power-
dissipation of 6 kW in the technology of 2018, which is three
orders of magnitudes smaller than for a full-cortex simulation
on a supercomputer in comparable technology with 20 billion
neurons and 10,000 times more synapses (see also Lansner et al.,
2014). They assume the analytical I method for the event-driven
updating of the BCPNN traces, and apply floating point units for
arithmetic operations. Our work can further promote their per-
formance: By using the analytical II method with look-up tables
the computational cost can be further reduced; by moving to
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fixed-point arithmetics the required memory and memory band-
width decreases, so that a low-power real-time simulation of the
cortex becomes possible.

4.4. OUTLOOK
Of course, our optimizations can also be used to boost the
simulation of spike-based BCPNN on conventional computing
systems. For example, already the supercomputer simulations of
the reduced cortex model by Benjaminsson and Lansner (2011)
showed weak scaling and achieved the real-time operation when
simulating one HCU per processor with the fixed step size Euler
method (dt = 1 ms) and spike-based BCPNN synapses without
E traces (the Z traces are directly passed to the P traces). Such
large-scale BCPNN simulations are mostly bounded by computa-
tion rather than by inter-process communication (Johansson and
Lansner, 2007; Lansner et al., 2014), as the firing activity is low
and the connectivity is sparse and patchy. Hence, we conjecture
that with our approach a speedup factor of 10 or more might be
achieved. At the same time, our results can accelerate the sim-
ulations of small or medium-scale neural networks employing
the spike-based BCPNN learning rule, with applications rang-
ing from olfaction modeling (Kaplan and Lansner, 2014), reward
learning (Berthet et al., 2012) to probabilistic inference (Tully
et al., 2014). Regardless of whether the BCPNN is implemented
in neuromorphic hardware, on a single PC or on supercomputers,
the presented optimization through event-driven simulation with
look-up tables can boost the success of the BCPNN paradigm as
a generic plasticity algorithm in neural computation.

Furthermore, the BCPNN abstraction constitutes an alterna-
tive approach to tackle the energy efficiency wall for brain-sized
simulations discussed in Hasler and Marr (2013): Instead of
simulating every single neuron and synapse, one can choose a
higher level of abstraction for the basic computational units in
the brain (e.g., a minicolumn), use a powerful learning rule (e.g.,
spike-based BCPNN), and implement such networks in a lazy
simulation scheme (e.g., on dedicated digital hardware), to finally
achieve a very energy-efficient simulation of the brain.
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