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Abstract

The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that

controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake

of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within

lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment

that is altered in tumor cells. The present study aimed at investigating the impact of different

lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by mem-

brane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free

transcription/translation system. In the absence of detergents or lipids, we observed PCFT

quantitatively as precipitate in this system. We then explored the ability of LPNs to support

solubilized PCFT expression when present during in-vitro translation. LPNs consisted of

either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine

(POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble

PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs,

the latter in a concentration dependent manner. The results obtained through this study pro-

vide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT

will enable further studies with diverse biophysical approaches to enhance the understand-

ing of the structure and molecular mechanism of folate transport through PCFT.

Introduction

Folate, also known as vitamin B9, is needed to synthesize purine, thymidylate, and methionine,

which are essential in cell growth and division. In mammals, there is no de novo folate synthe-

sis due to the absence of the folate synthase enzymes [1]. Instead, folate is obtained from die-

tary sources. Folate cannot permeate membranes directly due to its hydrophilic nature, and

multiple membrane transport proteins, such as the folate receptor alpha (FRα) [2, 3], reduced

folate carrier (RFC) [4], and proton-coupled folate transporter (PCFT) [5–7], transport this

molecule into mammalian cells. PCFT is the primary transporter for dietary folate uptake in
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the gut and has a high expression level in the proximal small intestine [5, 8], i.e., in the duode-

num [9] and the jejunum [10]. It is also found to be expressed in epithelial cells of the choroid

plexus, where it aids the FRα-mediated transport of folate into the epithelial cytosol [11, 12].

Folate is then further transported to the cerebrospinal fluid by RFC. Loss-of-function muta-

tions in PCFT, the mediator of the intestinal absorption and delivery of folate to the central

nervous system [5, 7, 13], cause hereditary folate malabsorption [5, 14–19] with clinical and

biochemical features such as diarrhea, anemia, leukopenia, cognitive and motor impairment,

pneumonia, and undetectable folate levels in cerebrospinal fluid [14, 20, 21]. Cerebral folate

deficiency is also connected to Alzheimer’s disease[22–26] and inferred to cause epilepsy,

autism spectrum disorders, and other neurological disorders in young children [27, 28]. Treat-

ment of cerebral folate deficiency with folinic acid [19, 27, 29, 30] and its S-enantiomer levofo-

linic acid [21] results in clinical improvement in most patients who receive the treatment

before the age of six. Folinic acid is a reduced folic acid derivative, the 5-formyl tetrahydrofolic

acid, with complete vitamin activity. However, for some patients with early treatment and oth-

ers with a treatment delayed beyond six years of age, incomplete neurological recovery or con-

tinuous neurological deficits have been reported [21, 27]. Therefore, toward the future

development of more effective therapies for neurological disorders involving PCFT mutations,

it is essential to understand the molecular mechanism of folate translocation via PCFT.

PCFT functions optimally at an acidic milieu [5, 8, 31], approximating the microenviron-

ment of the proximal intestine and also solid tumors. Recent findings reveal the upregulation

of PCFT with the highest levels in the cells derived from colorectal adenocarcinoma, ovarian

carcinoma, hepatoma, and small cell lung cancer cell lines [32]. Unlike RFC, PCFT exhibits

high affinity for both folic acid and 5-methyltetrahydrofolate at acidic pH (Km* 0.5–1 µM),

and it is thus likely that PCFT is the main route by which folate enters into cancer cells. These

distinctions render PCFT as an ideal candidate for targeting solid tumors.

After PCFT’s initial discovery in 2006, detailed studies using mutagenesis and the substi-

tuted cysteine accessibility method predicted and confirmed a PCFT structure with 12 α-heli-

cal transmembrane segments. They also revealed amino acid residues participating in the

substrate pathway and transport events [5, 10, 33–40]. These studies were complemented by

structure activity studies using folate analogues including clinically used and novel synthetic

antifolates[9, 41–44]. The recent cryo-EM structures obtained of chicken PCFT at 3.2–3.3Å
resolution confirmed many of these results and provided detailed molecular insights into apo

and pemetrexed-bound PCFT structures in [45]. Both structures are in an outward-open con-

formation. However, PCFT structures in different functional states and a detailed molecular

understanding of PCFT’s interactions with folate and antifolate compounds are lacking. To

completely appreciate the dynamic cycle of folate and antifolate translocation through PCFT,

detailed insights into conformational transitions are needed.

To facilitate future structure-function studies of PCFT and describe a complete transloca-

tion mechanism of folate and antifolates, we develop an approach that uses a cell-free expres-

sion system to quickly express and explore the solubilization of PCFT in the presence of

preformed lipid-protein nanodiscs (LPNs). We found the highest level of soluble PCFT expres-

sion in LPNs containing DMPC lipid.

Materials and methods

Reagents

The pEXP5-NT/TOPO vector (Thermo Fisher) and the S30 T7 High-Yield Protein Expression

System (Promega) were used to express proton-coupled folate transporter (PCFT) in vitro.

POPC (Avanti Polar Lipids), DDM (Anatrace), Tween 20 (Fisher Scientific), Triton X-100
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(Sigma-Aldrich), and lipid-protein nanodiscs (MSP1D1-His-POPC, MSP1D1-His-DMPG,

MSP1D1-His-DMPC, Cube Biotech) were used to solubilize in-situ synthesized PCFT. A rab-

bit polyclonal 6X-His tag antibody conjugated to horseradish peroxidase (ab1187, Abcam) was

used to detect PCFT and MSP1D1.

Preparation of plasmid DNA

The open reading frame for full-length human proton-couple folate transporter (PCFT), Uni-

ProtKB accession number Q96NT5, was cloned into the pEXP5-NT/TOPO vector to obtain

PCFT-pEXP5-NT. The DNA sequence of the resulting PCFT construct contains an N-termi-

nal 6X-His tag followed by a Tobacco Etch Virus (TEV) protease recognition site. The

sequence was confirmed by DNA sequencing (Genewiz). Plasmid DNA was isolated with the

EndoFree Plasmid Maxi Kit (Qiagen) following the manufacturer’s protocol.

Cell-free expression of PCFT—protein synthesis reaction

The S30 T7 High-Yield Protein Expression System was used for cell-free PCFT protein expres-

sion in the presence and the absence of LPNs, lipids, and detergents. This expression system is

an Escherichia coli extract-based cell-free protein synthesis system, which consists of T7 RNA

polymerase for transcription and all necessary components for translation.

PCFT-pEXP5-NT was used as template, which contains a T7 promoter, a ribosome binding

site, and the DNA sequence encoding for full-length human PCFT protein (Fig 1). The typical

reaction volume was 5 μL using the template, T7 S30 Extract for circular templates, and S30

Premix Plus as recommended by the manufacturer (Fig 2). Reactions were incubated in a ther-

momixer at 1,200 rpm and 37˚C for 1 hour.

Pre-assembled LPNs and/or detergents were added to some reactions. PCFT was expressed

in the presence of pre-assembled LPNs consisting of the membrane scaffold protein

MSP1D1-His with a single phospholipid; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPG), or 1,2-dimyristoyl-sn-gly-

cero-3-phosphocholine (DMPC), MSP1D1-His-POPC, MSP1D1-His-DMPG, and

MSP1D1-His-DMPC, respectively. Three different LPN concentrations were used following

the LPN manufacturer’s manual, 20 μM, 40 μM, and 80 μM. The mixtures were incubated for

1 hour at 37˚C before the separation of soluble and insoluble PCFT.

After the expression, each sample was centrifuged at 22,000 g for 10 min at 4˚C to separate

insoluble PCFT in the pellet from soluble PCFT in the supernatant. Each pellet fraction was

resuspended in 50 μL of 1x Laemmli sample buffer containing 1% SDS, with or without 2.5%

of 2-mercaptoethanol. Each supernatant fraction was diluted using the same sample buffer in a

total volume of 50 μL.

Immunoblot analysis

Samples from the pellet and supernatant fractions were heated at 70˚C for 10 minutes to

enhance protein denaturation. Ten microliters of each sample, which corresponds to 1 μL of

the initial reaction volume, were separated on Mini-PROTEAN TGX gels (BioRad) and trans-

ferred to PVDF membranes (BioRad) using the Bio-Rad trans-blot turbo system following the

manufacturer’s protocol. PVDF membranes were briefly immersed in methanol and then

equilibrated in western transfer buffer (20% of Bio-Rad 5x transfer buffer, 20% ethanol) for

3–5 minutes. Proteins were transferred at 2.5 Amperes and up 25 Volts for 3 minutes at room

temperature. Polyvinylidene fluoride (PVDF, Biorad) membranes were blocked under agita-

tion in 5% nonfat milk in tween-containing tris-buffered saline buffer (TTBS buffer: 0.1%

Tween-20, 100 mM Tris, 0.9% NaCl, pH 7.5) for one hour or overnight. Afterwards, the blot
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was incubated with 6X-His tag antibody conjugated with HRP in a dilution of 1:5000 for one

hour under gentle agitation. Subsequently, the blot was washed five times, each for 5 minutes

with 5 ml of TTBS buffer. After an additional wash with tris-buffered saline (100 mM Tris,

0.9% NaCl, pH 7.5), SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scien-

tific) was used for imaging with a digital imaging system (ImageQuantTM LAS 4000, GE

Healthcare).

Data analysis

PCFT quantification was performed to determine if PCFT solubility depends on the lipid com-

position and concentrations of LPNs. The soluble PCFT bands on western blot images were

selected, the band intensities were plotted as peaks, and the area under a peak was analyzed

using ImageJ software. The resulting values were normalized to the highest value obtained

from soluble PCFT expressed in LPNs. Statistical significance in PCFT solubility, depending

on lipid concentrations and compositions, was determined using one-way ANOVA with

Tukey’s multiple-comparisons test in Prism 6 Software (GraphPad Prism, La Jolla, CA).

Data charts were generated using Microsoft Excel and Prism 6 Software (GraphPad Prism,

La Jolla, CA). Figures were created using ApE plasmid editor, Adobe Illustrator 2020, and

Adobe Photoshop 2020.

Results and discussion

A detailed molecular understanding of proton-coupled folate transporter (PCFT) is desirable

and essential in the structure-based design of drugs and therapies effectively targeting folate-

related neurological disorders and cancer. Biochemical and biophysical techniques routinely

applied to study the structure and function of proteins frequently require soluble or solubilized

(membrane) proteins. For integral membrane proteins, a critical step in making protein

Fig 1. PCFT expression plasmid. The coding sequence of SLC46A1 gene, nucleotides from 99 to 1478, together with two recognition sites for BamHI and

EcoRI restriction enzymes, were cloned into pEXP5-NT/TOPO vector purchased from ThermoFisher Scientific. The correct DNA sequence of the PCFT

construct was confirmed by Genewiz.

https://doi.org/10.1371/journal.pone.0253184.g001
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Fig 2. Schematic for cell-free expression of PCFT in the presence of nanodiscs. T7 S30 Extract, Circular, and S30 Premix Plus are components of the S30 T7

High-Yield Protein Expression System purchased from Promega. The pEXP5-PCFT plasmid is the PCFT construct shown in Fig 1. Empty LPNs containing

POPC, DMPG, or DMPC were added to a cell-free reaction mixture. Soluble PCFT was observed when PCFT was cell-free expressed in the presence of the

nanodisc.

https://doi.org/10.1371/journal.pone.0253184.g002
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available for biophysical approaches such as for example cryo-electron microscopy, circular

dichroism, isothermal titration calorimetry, or X-ray crystallography is the solubilization of

the protein from the native lipid bilayer or the integration into a stable bilayer (mimetic) or

detergent micelle [46]. To produce soluble PCFT, a PCFT construct was designed as part of

this study, containing full-length human PCFT cloned into the pEXP5-NT/TOPO vector (Fig

1). The cell-free transcription and translation system was then used to examine the expression

and solubility of PCFT in the presence (Fig 2) or the absence of LPNs containing different

lipids.

PCFT expression is observed in cell-free expression system

Transcription/translation reactions contained PCFT-pEXP5-NT as a template. After incuba-

tion reactions were separated by centrifugation into pellet and supernatant fractions. Since

PCFT is a transmembrane protein, in the absence of detergent or an otherwise solubilizing

milieu, the translated protein is expected to be in the pellet, whereas soluble PCFT would be in

the supernatant fraction (Fig 3). Proteins in both fractions were separated on SDS-PAGE and

detected using western blotting with an antibody directed against the N-terminal 6X-His tag

present in the PCFT construct.

In the absence of the plasmid PCFT-pEXP5-NT template, no band, and consequently no

PCFT protein, was detected in either the pellet or supernatant fractions (Fig 3A, lanes ‘Con-

trol’), whereas the presence of PCFT-pEXP5-NT template in the reaction yielded a band at

approximately 37 kDa (Fig 3A, pellet fractions). The 6X-His-tagged full-length human PCFT

construct in this work consists of 493 amino acids with a theoretical molecular weight of 52

kDa. When expressed in Spodoptera frugiperda (Sf9) insect cells [47], Chinese hamster ovary

cells [34], or Xenopus laevis oocytes [34] monomeric PCFT migrates in two bands between 35

and 55 kDa. The electrophoretic mobility of PCFT depends on the post-translational modifica-

tion of N-linked glycosylation [48]. Removing the glycosylation with PNGase F results in

PCFT that mainly migrates at ~35 kDa [48]. The migration of PCFT observed here (~37 kDa)

is consistent with non-glycosylated PCFT as expected in the cell-free expression system where

post-translational modifications do not occur.

This data indicates that the PCFT protein was expressed in the cell-free expression system

using PCFT-pEXP5-NT as a template. As would be expected in the absence of detergents or

bilayers, the expressed PCFT is exclusively insoluble, and PCFT protein is only found in the

pellet but not the supernatant fraction.

Cell-free expressed and soluble PCFT is detected in the presence of LPNs

Next, the cell-free expression of PCFT was examined in the presence of LPNs of differing lipid

compositions. LPNs were stabilized by the membrane scaffold protein MSP1D1 (genetically

modified apolipoprotein A1 with N-terminal globular region replaced by 6X-His and Tobacco

Etch Virus protease site). The ~10-nm size of MSP1D1 LPNs was used to be tailored to the

diameter of a transmembrane protein with 12 α-helical transmembrane segments. Fig 3B

shows PCFT translation using cell-free expression in the presence of MSP1D1 LPNs contain-

ing zwitterionic POPC with a saturated palmitoyl- and unsaturated oleoyl chain (16:0–18:1

PC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), zwitterionic saturated DMPC (14:0

PC; 1,2-dimyristoyl-sn-glycero-3-phosphocholine) or anionic saturated DMPG (14:0 PG;

1,2-dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol)) (Cube Biotech) with PCFT-

pEXP5-NT (6X-His-PCFT) as a DNA template. In the absence of LPNs, once again only insol-

uble PCFT was observed. In the presence of 20 or 40 μM LPNs, PCFT was found in both insol-

uble form in the pellet and soluble form in the supernatant (Fig 3B). More soluble PCFT was
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detected for reactions with LPNs containing the saturated lipids DMPG or DMPC as com-

pared to those containing unsaturated POPC.

DMPG and DMPC LPNs produce soluble PCFT

To further assess the impact of LPNs, their concentrations, and lipid compositions on the

PCFT solubility, the experiment in Fig 3B was repeated with higher concentrations of LPNs,

i.e., 80 µM LPNs, containing POPC, DMPG, and DMPC lipids (Fig 4A). ‘PCFT’ lanes

Fig 3. Cell-free expression of Proton-Coupled Folate Transporter (PCFT). The arrows indicate the position of monomeric PCFT (~37 kDa). A) Cell-free expression

of PCFT in the absence of LPNs. The “Control” lane reactions did not contain PCFT-pEXP5-NT plasmid. β-mercaptoethanol (BME) was added to some reactions as

indicated. B) Cell-free expression of PCFT in the presence of 20 μM or 40 μM LPNs containing POPC, DMPG, or DMPC lipids. The “PCFT” lane reactions did not

contain any LPNs.

https://doi.org/10.1371/journal.pone.0253184.g003

Fig 4. Solubilization of PCFT in different lipid concentrations and compositions. A) Cell-free expression of PCFT in the presence of 20 μM, 40 μM, or

80 μM LPNs containing POPC, DMPG, or DMPC lipid. PCFT lane did not contain any LPNs. The PCFT arrow indicates PCFT protein bands, and the MSP

arrow indicates membrane scaffold protein (MSP) of LPNs. B) PCFT solubilization in 20 μM, 40 μM, or 80 μM LPNs containing POPC, DMPG, or DMPC

lipid. The PCFT band intensity was quantified in western blots of supernatant fractions and normalized to the PCFT band derived from 80 μM DMPC LPNs.

The data show the mean ± SEM from n = 3 independent experiments. The highest level of solubilized PCFT was found in LPNs containing DMPC lipid. LPNs

containing POPC lipid yielded minimal levels of solubilized PCFT. Statistical significance was determined using was determined using one-way ANOVA with

Tukey’s multiple-comparisons test in Prism 6 Software (GraphPad Prism). Significance is indicated vs “PCFT” sample without LPNs as �� p� 0.01, ���

p� 0.001, and p� ����0.0001). Nonsignificant p value is shown as ns.

https://doi.org/10.1371/journal.pone.0253184.g004

PLOS ONE Cell-free expression in the presence of nanodiscs

PLOS ONE | https://doi.org/10.1371/journal.pone.0253184 November 18, 2021 7 / 14

https://doi.org/10.1371/journal.pone.0253184.g003
https://doi.org/10.1371/journal.pone.0253184.g004
https://doi.org/10.1371/journal.pone.0253184


represent PCFT expressed in the absence of LPNs, and the lack of soluble PCFT again confirms

that without LPNs, only insoluble PCFT was obtained in the cell-free expression. In contrast,

depending on the specific lipid within LPNs, both insoluble and soluble PCFT were observed

when LPNs were present during transcription and translation in the expression reaction. No

or minimal PCFT was incorporated into POPC LPNs. For all three POPC LPN concentrations

used, 20, 40, and 80 μM, when the band intensity was assessed using one-way ANOVA with

Tukey’s multiple-comparisons test, the PCFT band intensities were not significantly different

from PCFT expressed in the absence of any solubilizing agent. At a concentration of 20 µM,

DMPG LPNs yielded approximately three times the soluble PCFT intensity as compared to

POPC LPNs. The soluble PCFT in DMPG reactions was significantly above the reactions with-

out LPNs (p� 0.001, p� 0.01, p� 0.01 for 20, 40, and 80 µM, respectively). However, the con-

centration of the DMPG LPNs itself did not impact the soluble PCFT in a concentration-

dependent manner.

Similar to 20 µM DMPG LPNs, the same concentration of 20 µM DMPC yielded a three-

fold increase in soluble PCFT as compared to POPC LPNs. Contrary to DMPG LPNs, DMPC

LPNs led to a concentration-dependent increase in soluble PCFT. The highest concentration

of DMPC LPNs of 80 µM, produced the highest amount of soluble PCFT, approximately two-

fold higher than all DMPC concentrations.

For downstream applications for which purified PCFT/nanodisc complexes are required,

PCFT would be expressed as described here with the N-terminal His-tag in the presence of

nanodiscs stabilized by MSP without His-tag. Metal affinity chromatography against the His-

tag of PCFT while using untagged MSP nanodiscs and/or a gel filtration would provide scal-

able pathways to purified PCFT-LPNs complexes for downstream assays. Some biophysical

measurements, for example single-molecule fluorescence resonance energy transfer (smFRET)

measurements using Cys pairs labeled with appropriate donor and acceptor fluorophores

within PCFT do not require purification [49–52].

Overall, incorporation of PCFT into LPNs containing DMPG and DMPC (the more

ordered or condensed lipids compared to POPC [53]) was higher than compared to POPC

LPNs with an overall increase in solubility from POPC< DMPG < DMPC. PCFT has been

found in lipids rafts. Reduced levels in lipid rafts have been associated with folate malabsorp-

tion in chronic alcoholism [54]. Changes to the lipid raft composition in cancer have been

implicated in regulating cell proliferation, apoptosis, and cell migration [55]. Lipid rafts are

microdomains found in the plasma membrane that are enriched in sphingolipids and choles-

terol. High levels of cholesterol in membranes lead to directional organization of the lipid

bilayer due to the rigid sterol [56]. The packing of cholesterol in between lipid acyl chains con-

sequently results in a closer packing or compaction of the lipid bilayer, a state of the bilayer

also termed as “liquid-ordered”. Therefore, the preference of PCFT to integrate into LPNs con-

taining ordered lipids is comparable to its native localization within lipid raft microdomains.

Conclusion

PCFT was identified as the main pathway for dietary folate uptake in the proximal small intes-

tine in 2006 [5]. Detailed studies of human PCFT using PCFT constructs modified with amino

acids engineered at specific positions, including the use of the substituted cysteine accessibly

method (SCAM) [57] as well as recent cryo-EM structures of chicken PCFT have provided

insights into the topology and conformational transitions during substrate translocation [15,

17, 33–40, 45, 58–61]. However, much remains unknown about PCFT’s detailed molecular

structure, substrate translocation mechanism, and lipid dependence. Structures of chicken

PCFT were published in a substrate free state and in complex with the antifolate drug
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pemetrexed [45]. PCFT adopts the outward-facing conformation in both structures. The

PCFT cryo-EM structure obtained in the absence of substrate (PDB entry: 7BC6) in the out-

ward-open state is largely similar to our published human PCFT 3D homology model based

on the YajR experimental structure (PDB entry: 3WDO), with a root-mean-square deviation

(RMSD) of 4.0Å [33, 35]. The substrate binding site as well as positions involved in functional

aspects of PCFT are remarkably similar between our model and the experimental structure. In

particular, the engagement of motif A (Asp109-Arg113-Asp170) is observed in both the cryo-

EM structure and our 3WDO-based model, as would be expected in the outward-facing con-

formation. The cryo-EM structures were obtained using a nanobody that binds to the long

extracellular loop between TM1 and TM2. The high affinity (KD of 8 nM) of the nanobody

indicates its tight interactions with PCFT and at the same time provides the potential for struc-

tural disturbances based on the nanobody’s interactions with extracellular loops and its inser-

tion into the outward-facing substrate translocation pathway. These highly novel experimental

structures further support our models but lack information pertaining to structural and func-

tional changes occurring with disease causing mutations or conformational transitions caused

by interaction with different substrates (folates vs antifolates). In particular, dynamic insights

are lacking that could be obtained using smFRET experiments obtained with PCFT expressed

as described in the present study. In addition, detailed structural information about the

inward-open conformation, as well as occluded intermediate conformations in the transport

cycle are still lacking.

The structure and activity of integral membrane proteins heavily depends on lipid environ-

ments [62–69] as demonstrated by the following select MFS transporter examples. For purine

transporters, UapA and AzgA, it was shown that ergosterol, sphingolipids or phosphoinosi-

tides negatively affect biogenesis and stability of the transporters [70]. In the case of the sec-

ondary active transporter XylE, phosphatidylethanolamine has been demonstrated to disrupt

conserved charge networks leading to conformational changes between different states and to

favor an inward-facing state [71]. It was found that the transport activity of lysine transporter

Lyp1 depends on the concentration of phosphatidylserine and ergosterol, while the transport

rate of aspartate transporter relies on lipid composition [72, 73].

In this study, PCFT was produced in a soluble form using cell-free synthesis in the presence

of membrane-mimicking LPNs. Soluble PCFT was obtained with a continuous one-step reac-

tion and within one hour with an overall increase in solubility from POPC< DMPG <

DMPC. In preliminary experiments, detergent micelles alone or mixed detergent-lipid

micelles did not support soluble PCFT synthesis (S1 Fig). The described soluble PCFT expres-

sion directly into LPNs facilitates the expression of engineered constructs with site-specific

modifications. In addition, the lipid composition can be systematically modified further. The

expression level is amenable for diverse biophysical approaches to study PCFT’s structure and

function, such as applications using fluorescence (tryptophan fluorescence or smFRET), cryo-

EM, isothermal titration calorimetry or circular dichroism.
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