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Abstract: The metabolomic and proteomic basis of mild cognitive impairment (MCI) and Alzheimer’s
disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism
and AD/MCI pathogenesis is unclear. This study compared the metabolomic and proteomic signature
of plasma from cognitively normal (CN) and dementia patients diagnosed with MCI or AD, to iden-
tify specific cellular pathways and new biomarkers altered with the progression of the disease. We
analysed 80 plasma samples from individuals with MCI or AD, as well as age- and gender-matched
CN individuals, by utilising mass spectrometry methods and data analyses that included combined
pathway analysis and model predictions. Several proteins clearly identified AD from the MCI and
CN groups and included plasma actins, mannan-binding lectin serine protease 1, serum amyloid A2,
fibronectin and extracellular matrix protein 1 and Keratin 9. The integrated pathway analysis showed
various metabolic pathways were affected in AD, such as the arginine, alanine, aspartate, glutamate
and pyruvate metabolism pathways. Therefore, our multi-omics approach identified novel plasma
biomarkers for the MCI and AD groups, identified changes in metabolic processes, and may form the
basis of a biomarker panel for stratifying dementia participants in future clinical trials.

Keywords: Alzheimer’s disease; biomarkers; proteomics; metabolomics; systems biology

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease and the main form of de-
mentia, exhibiting clinical characteristics such as the decline of cognition and gradual loss
of memory combined with multiple behavioural changes [1,2]. Due to the growing ageing
population worldwide, the incidence of AD is expected to accelerate over the next thirty
years, especially in developing countries [3]. Therefore, the impact of this disease at the
societal and economic level has become a global concern [4–7]. The earlier stages of the
disease, often characterised by mild cognitive impairment (MCI), is the time to intervene to
modify the risk factors that can lead to cognitive decline and dementia. Approximately
14–18% of people over 70 years living with MCI develop AD annually [8,9]. Identifying
individuals who are at an increased risk of developing AD would allow timely preventa-
tive intervention [10]. Unfortunately, detecting AD in the early stages has emerged as a
major challenge, so the identification of innovative and reliable biomarkers is critical for
disease diagnosis. Current approaches in the diagnosis of AD are inadequate and can leave
patients in an unnecessarily extended state of suffering. Methods for the investigation of
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AD are often invasive, expensive, and cannot adequately identify biomarkers [11–13]. A
minimally invasive approach is needed to identify individuals with symptoms reflective of
the early stages of AD. Many studies looking at peripheral blood biomarkers have shown
the usefulness of this approach for the diagnosis of AD [14,15]. Blood biomarkers that
could identify individuals at an increased risk of developing AD and early in the stage
of the disease would be useful, as this would allow early strategies to be put in place to
prevent or reduce the risk of developing clinical symptoms.

Even though several hypotheses have been proposed to explain the exact mechanisms
behind the cause of AD, the progression of the disease and its initial changes remain
unclear and difficult to verify. Understanding biochemical changes and new biomarkers
for MCI may provide a better route to target dementias, including AD, at an early phase
of disease progression. Recent developments in proteomics and metabolomics methods
in disease models of AD have provided valuable insights into the molecular basis of
AD [16]. Targeted metabolomics in blood and saliva have also revealed new biomarkers
for AD [17,18]. Furthermore, integrated metabolomic and proteomic analysis of saliva
has revealed several metabolic pathways impacted by the disease and may contribute to
the clinical presentation of MCI and AD [19]. Therefore, this study aimed to investigate
the proteomic and metabolomic (including lipidomic) plasma signatures of cognitively
normal (CN) people and people living with MCI and AD to identify specific biomarkers
and metabolic pathways altered by the progression of the disease.

2. Materials and Methods
2.1. Patient Samples

This study was approved by the local Human Research Ethics Committees, CSIRO
HREC 09/11), Ramsay Healthcare Ethics Committee and South Australian Health HREC.
All methods were carried out in accordance with the approved guidelines, and all par-
ticipants provided written informed consent before participating in the study. Diagno-
sis of MCI or AD was conducted by clinicians (Hecker, Faunt, Johns, and Maddison)
based on the criteria outlined by the National Institute of Neurological and Commu-
nicative Disorders and the Stroke-Alzheimer’s Disease and Related Disorders Associa-
tion (NINCDS-AD&DA) [20] and by using recommendations from the National Institute
on Aging-Alzheimer’s Association (NI-AAA) workgroups on diagnostic guidelines for
MCI [21] using clinical criteria. The diagnosis of dementia due to AD was made in the
clinical setting and was consistent with “probable AD” criteria described in the guidelines
paper from the NI-AAA [22].

Data reported in this study are from a total of 80 participants from the South Australian
Neurodegenerative Disease (SAND) cohort [19,23], including: (1) the cognitively normal
(CN) group (n = 40), which consisted of healthy age- and gender-matched participants;
(2) the MCI group (n = 20), clinically diagnosed with MCI; and (3) the AD group (n = 20),
clinically diagnosed with AD. Patients with significant cognitive comorbidities including
head trauma, alcoholism, learning disability or Parkinson’s disease, were excluded from
the study. Other exclusion criteria for all groups were as follows; patients who were under-
going chemotherapy/radiotherapy treatment for cancer, and those taking micronutrient
supplements (folate, vitamin B12) above recommended intakes.

2.2. Blood Collection, Biochemical Measurements, and Statistics

Blood was collected and processed within 3 h of collection. All the samples were stored
at −80 ◦C until analysis. Plasma vitamin B12, folate, and vitamin D were measured by the
commercial clinical laboratory service, SA Pathology (Adelaide, South Australia, Australia).
C-reactive protein (CRP) was measured using commercial enzymatic kits (Beckman Coulter
Inc., Brea, CA, USA) on a Beckman AU480 clinical analyser (Beckman Coulter Inc., Brea,
CA, USA), with CV = 2.36%.
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2.3. Apolipoprotein E Genotyping

APOE genotyping for alleles APOEε2, ε3, ε4 was based on allele-specific PCR method-
ology adapted to real-time PCR monitored by TaqMan probe [19,24].

2.4. Chemicals

All chemicals used were MS grade or higher, and purchased from Sigma-Aldrich
(Castle Hill, NSW, Australia) unless specified otherwise. Acrylamide and Bradford assay
reagents were purchased from BioRad Laboratories (Gladesville, NSW, Australia). Liquid
chromatography (LC) Proteomics FlexMix Calibration Solution and Retention Time Cali-
bration Mixture were purchased from Thermo Scientific (Woolloongabba, QLD, Australia).
Gas chromatography (GC) retention time calibration standard and isotopically labelled
standards were purchased from Cambridge Isotope Laboratories (Tewksbury, MA, USA).

2.5. Untargeted Metabolomics

Plasma samples were prepared following a previously described method [25,26].
Briefly, two aliquots of plasma (100 µL) were processed for complimentary metabolomics
and lipidomics analyses. The first aliquot was prepared for untargeted metabolomics
by gas chromatography-mass spectrometry (GC-MS) using three labelled internal stan-
dards (Myristic acid-D27 and D-Glucose 13C6 and L-Glutamine-amide-15N) [26]. The
second aliquot was prepared for targeted metabolomics and untargeted lipidomics using
liquid chromatography-mass spectrometry (LC-MS) using two internal standards (13C
L-Phenylalanine, and 13C Succinic acid) [25].

Untargeted polar metabolite acquisition was performed on an Agilent 6890B gas
chromatograph (GC) oven coupled to a 5977B mass spectrometer (MS) detector (Agilent
Technologies, Mulgrave, VIC, Australia) fitted with an MPS autosampler. Qualitative
identification of the compounds was performed according to the Metabolomics Standard
Initiative (MSI) chemical analysis workgroup using the Qualitative Analysis software (Ver-
sion B.010.00, Agilent Technologies, Mulgrave, VIC, Australia) of MassHunter workstation
with standard GC-MS reference metabolite libraries (Fiehn Metabolomics RTL Library,
G166766A, Agilent Technologies) and with the use of Kovats retention indices based on a
reference n-alkane standard (C8-C40 Alkanes Calibration Standard, Cat. No. 40147-U). Data
were processed with Mass Profiler Professional (v14.9, Agilent Technologies, Mulgrave,
VIC, Australia).

Central carbon metabolism (CCM) metabolites were analysed using the Agilent
Metabolomics dMRM Database and Method [27]. Acquired CCM data were processed
using MassHunter Quantitative Analysis (for QQQ) software (Version 10.0, Agilent Tech-
nologies, Santa Clara, CA, USA).

Untargeted nonpolar lipids were analysed using an Agilent 6546 liquid chromatogra-
phy time-of-flight mass spectrometer (LC-QToF) with an Agilent Jet Stream source coupled
to an Agilent Infinity II UHPLC system (Agilent Technologies, Santa Clara, CA, USA), as
previously published [25,28]. Auto MSMS data on polled PBQC samples were obtained
at collisions of 20 eV and 35 eV. The acquired MSMS lipid data were analysed using the
Agilent Lipid Annotator tool (V1.0; Santa Clara, CA, USA) which assigned isometric struc-
tures based on MSMS fragmentation patterns. Annotated lipids were then curated into
a PCDL, which was used to identify lipids within the remaining analysed samples with
retention time thresholds (±0.15 min), MSMS spectra, and a library threshold score of more
than 80%.

All metabolite and lipid sample sequences were randomly prepared and normalized
to the internal standards or reference ions in preparation for downstream data analyses.
A series of method blanks, non-sample matric QAQC standards and pooled biological
samples were prepared and analysed randomly within each sequence batch. The residual
standard deviation (RSD) of the labelled internal standards and QAQC samples was
within 10%.
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2.6. Untargeted Proteomics

Plasma samples were prepared following a modification of a previous method [19].
Plasma protein was precipitated by 4 volumes of cold acetone then air-dried before being
re-dissolved into 8 M urea. Protein concentration was estimated by using Bradford assay
(Quick Start™ Bradford Protein Assay Kit 2, BioRad). An aliquot of protein (5 µg) was
reduced and alkylated. Proteins were then digested with trypsin and incubated at 37 ◦C
overnight. The digestion was stopped with 1 µL of 10% (v/v) formic acid and filtered
with a 0.22 µm filter. For each sample, 167 ng of the tryptic-digested peptides were
injected onto the liquid chromatography-mass spectrometer (LC-MS) for analysis. Tryptic
peptides (167 ng) were desalted and concentrated with a trap column (PepMap100 C18
5 mm × 300 µm, 5 µm, Thermo Scientific, Waltham, MA, USA) and separated on a nano
column (PepMap100 C18 150 mm × 75 µm, 2 µm, Thermo Scientific) using an UltimateTM
3000 RSLC nano-LC system (Thermo Scientific). The eluted peptides were ionised with a
Nanospray Flex Ion Source (Thermo Scientific). The spray voltage was set to 2.3 kV and the
temperature of the heated capillary was set at 300 ◦C. After ionisation, mass spectra (MS1)
and tandem mass spectra (MS/MS) analysis was performed using an Orbitrap Fusion MS
(Thermo Scientific). MS survey scans of peptide precursors were performed in the Orbitrap
detector, and the scan range was 400 to 1500 m/z at a resolution of 120 K (at 200 m/z). The
target value of automatic gain control (AGC) was set as 4 × 105. The maximum injection
time for the MS was 50 ms. MS/MS was performed on the most abundant precursors
of charge states 2+ to 7+ with intensity greater than 1 × 105, and they were isolated by
the quadrupole with a window of 1.6 m/z. Fragmentation was achieved by high-energy
collisional dissociation (HCD) with collision energy of 28%. Fragments were detected in the
ion trap detector in rapid scan rate mode. The AGC target was 4 × 103, maximum injection
time was 300 ms and the dynamic exclusion was 15 s. The instrument was set to run in top
speed mode with a three-second cycle for both the MS and MS/MS scans.

2.7. Protein Data Analysis

Protein Discoverer 2.2 (Thermo Scientific) and Sequest HT search engine were used to
identify peptides/proteins and quantify the relative abundance of proteins. The spectrum
data was searched against the UniProt Homo-sapiens database (Proteome ID: UP000005640,
20,311 sequences). Peptide spectral matches were validated using the Percolar algorithm,
based on q-Values and 1% false discovery rate (FDR). Relative abundance was calculated
from precursor abundance intensity and normalised from the total peptide amount.

2.8. Chemometric Analysis, Plasma Metabolome and Proteome Integration

The metabolomics and proteomics data, after a batch-effect adjustment and log trans-
formation, were analysed using multivariate data analysis software SIMCA (version 16,
Sartorius Stedim Biotech, Umeå, Sweden) and MetaboAnalyst 4.0 [29]. The Gene Ontology
Resource and Enrichr were used for Enrichment analysis. The cut-off level for significant
metabolites was a signal-to-noise (S/N) ratio of 10, while for proteins, it was a relative
abundance of 1 × 105. For statistical analysis of both metabolome and proteome, a fold
change of ≤0.5 (downregulation) or ≥2.0 (upregulation), and a Benjamini–Hochberg ad-
justed p-value of ≤0.05 was used. Metabolomic and proteomic outputs were integrated
using the ‘Joint-pathway analysis tool’ of Metaboanalyst 4.0 and Paintomics 3 [30], and the
false discovery rate (FDR) was used to report adjusted p-values.

2.9. Statistics

Lipid enrichment analysis was performed using MetaboAnalyst 4.0 [29] and relevant
pathways were identified by lipid pathway enrichment analysis using LIPEA [31], a free
web tool based on the database source Kyoto Encyclopedia of Genes and Genomes (KEGG).
LIPEA offers an automatic tool that emulates the ability of an expert to detect meaning-
ful associations between lipid signatures and molecular mechanism. Assessment of the
marginal means for each of the biomarkers (both proteomics & metabolomics) was assessed
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using generalised linear models (GLM) both unadjusted and adjusted for age, gender and
APOE ε4 allele status. Receiver operating characteristic analyses (ROC) was performed on
both each individual marker and on GLMs fitted with each biomarker of age, gender and
APOE ε4 allele status. Multivariate selection to identify a short candidate list of biomark-
ers to separate CN from MCI and CN from AD was performed using the least absolute
shrinkage and selection operator (LASSO). Optimal biomarker sets were then derived by
minimizing the AIC and assessing multi-collinearity. Fitted values from the final models
were then used in ROC analyses for each of the comparisons (CN vs. MCI & CN vs. AD)
to derive a multivariate prediction for disease outcome. For many model choices, a high
level of multi-collinearity meant that only one or two biomarkers could be kept along with
age, gender and APOE ε4 allele status, otherwise the model became unstable, with beta
and associated error estimates trending towards very large numbers. Where the addition
of one biomarker with age, gender and APOE ε4 allele status created instability in the
model, estimates of the biomarker alone were used for the ROC predictions. All analyses
were performed in the R statistical environment, version 4.0. p-Values from individual
biomarkers were not considered here, other than to rank the biomarkers for their largest
differences between groups. Rather more importance was put on using the top biomarker
set as derived from the LASSO, before fitting the final model to the ROC and deriving
estimates to infer the researchers’ capability to separate CN from MCI/AD groups.

3. Results
3.1. Cohort

The demographic information of our participants, including the gender, age, mini-
mental state examination (MMSE) and APOE ε4 allele status, is shown in Table 1. Partici-
pants with either MCI or AD were more likely to have an APOE ε4 allele compared with
those who were CN. (p < 0.004). APOE ε4 allele status is the main genetic determinant of
AD. Presence of APOE ε4 is associated with an increased risk of cognitive decline and AD
and is an important measurement to build predictive models. Furthermore, MMSE scores
showed a significant decrease with disease progression (One-Way ANOVA), whilst age
and gender distribution were not significantly different across the groups.

Table 1. Age and gender, MMSE scores and various blood measurements between groups.

Parameters CN MCI AD 1 p-Value CN vs. MCI 1 p-Value CN vs. AD

Sample number 40 20 20
Sex (F/M) 19/21 11/9 8/12 ns ns

Age 75.3 77.8 78 ns ns
MMSE 28.6 26.6 21.1 0.018 <0.0001

APOE ε4 allele positive
(%)

Homozygous ε4/ε4%

7/40
(17.5%)

0%

11/20
(55%)

0%

10/20
(50%)
20%

Vitamin B12 (pmol/L) 303.8 ± 14.5 402.5 ± 42.6 395.6 ± 27.6 0.02 0.03
Folate (nmol/L) 30.1 ± 1.5 34.5 ± 2.2 33.9 ± 2.9 ns ns

Homocysteine (µmol/L) 14.1 ± 0.6 14.1 ± 0.9 15.6 ± 1.2 ns ns
Vitamin D3 (nmol/L) 69.1 ± 3.6 89.2 ± 5.8 70.7 ± 4.3 0.006 ns

CRP (mg/L) 2.33 ± 0.39 1.76 ± 0.39 1.41 ± 0.32 ns ns
1 Bonferroni post hoc test. Abbreviations: CRP, C-reactive protein; F, Female; M, Male; MMSE, Mini-mental state
examination; ns, not significant.

3.2. Untargeted Omics

The metabolomics and proteomics analysis yielded 489 metabolites, including 251 lipids,
and 168 common proteins across the three plasma sample groups collected [age-matched
cognitively normal; CN (n = 40); mild cognitive impairment; MCI (n = 20), and Alzheimer’s
disease, AD (n = 20)]. To explore variations between the groups, the metabolomic, proteomic
and lipidomic data were first log-transformed, normalised and analysed by multivariate
statistics. Figure 1 illustrates the partial least-squares data analysis (PLS-DA) score scat-
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ter plots for each of the data sets analysed, i.e., proteomics (Figure 1A), metabolomics
(Figure 1B), and lipidomics (Figure 1C). PLS-DA scores show how the dataset can discrimi-
nate the CN, MCI and AD groups by trends based on two components. The proteomics
dataset was observed to discriminate the three groups from each other. The metabolomic
dataset showed some discrimination of the disease groups from the CN group. Finally, the
lipidomic dataset showed some discrimination between the groups, albeit with overlap.

3.2.1. Untargeted Proteomics

A total of 317 proteins have been identified, and their relative abundance levels mea-
sured in plasma. Untargeted proteomics analysis of plasma identified several proteins
that showed significant differences between MCI/AD and the CN groups (at the nominal
significance level only). Supplementary Table S1 lists the top 9 proteins, ranked by adjusted
p-value, separating the MCI and the AD from the CN group. When comparing MCI and
CN, Mannan-binding lectin serine protease 1 (p = 0.0007), haemoglobin subunit epsilon
(p = 0.0012) and Complement C4 A (p = 0.0016) proteins showed the most significant differ-
ences with respect to the CN individuals. Furthermore, from the AD and CN comparison,
the top 9 proteins that were most changed were extracellular matrix protein 1 (p = 0.0009),
followed by selenoprotein P (p = 0.0015) and complement C4 A (p = 0.0017), as well as
others shown in Supplementary Table S1.

In order to classify the top plasma proteins that could be considered as AD biomarkers,
proteins were ranked based on their area under the curve (AUC). AUC is a value generated
from an ROC curve analysis and is an indicator of the diagnostic power of a biomarker.
Following this analysis, the top 9 proteins were summarised in Table 2.

Table 2. Top protein biomarkers for clinical classification of MCI and AD adjusted for cofounders.

MCI Protein Biomarkers

Protein AUC (95% CI) Sensitivity (%) Specificity (%)

Skeletal/aortic smooth/cardiac actin 1 (1–1) 100 100
ATP synthase subunit beta 1 (1–1) 100 100

Keratin type II cytoskeletal 6A 1 (1–1) 100 100
EGF containing fibulin like extracellular

matrix protein 1 0.98 (0.91–1) 95 95

Mannan-binding lectin serine protease 1 0.91 (0.84–0.99 95 82.5
Hemoglobin subunit gamma 1 0.90 (0.82–0.99) 92.5 84.2

Inter alpha trypsin inhibitor heavy chain H1 0.89 (0.81–0.97) 95 72.5
Complement C4A 0.88 (0.78–0.98) 85 82.5

Hemoglobin subunit epsilon 0.82 (0.8–0.97) 80 85

AD Protein Biomarkers

Protein AUC (95% CI) Sensitivity (%) Specificity (%)

Skeletal/aortic smooth/cardiac actin 1 (1–1) 100 100
Keratin type I cytoskeletal 9 1 (1–1) 100 100

Keratin type II cytoskeletal 2 epidermal 1 (1–1) 100 100
Serum amyloid A2 protein 1 (1–1) 100 100

Fibronectin 0.92 (0.86) 80 90
Extracellular matrix protein 1 0.92 (0.85–0.99) 90 85
Keratin type I cytoskeletal 16 0.91 (0.85–0.99) 100 70

Selenoprotein P 0.89 (0.82–0.97) 100 67.5
Apolipoprotein A 0.86 (0.78–0.96) 95 70
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Figure 1. Partial least squares-data analysis (PLS-DA) score scatter plots for the proteomics (A), 
metabolomics (B) and the lipidomics (C), discriminating the three groups. A legend for the colour 
is provided in each plot. Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; MCI, 
mild cognitive impairment. 

Figure 1. Partial least squares-data analysis (PLS-DA) score scatter plots for the proteomics (A),
metabolomics (B) and the lipidomics (C), discriminating the three groups. A legend for the colour is
provided in each plot. Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild
cognitive impairment.
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The proteomic expression indicated that some proteins are potential candidates for
being MCI and/or AD biomarkers. Interestingly, skeletal/aortic smooth/cardiac actin was
the strongest biomarker for both MCI and AD groups, whilst ATP synthase and serum
amyloid A2 protein were specific to the MCI and AD group, respectively. To visualise the
data, each of the top 6 proteins are plotted in a separate graph with the MCI group shown
in Figure 2 and the AD group in Figure 3. Each of these graphs show the differences in
abundance of the top proteins identified in our study between the CN, MCI and AD groups.
The top-left graphs in Figures 2 and 3, for instance, show the abundance level, plotted as
ion intensity (log-transformed data) of skeletal/aortic smooth/cardiac actin between the
three groups.
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were compared to the base model consisting of age, sex and APOE ε4 allele status 
variables. The base models resulted in AUC values of 0.79 and 0.72, for MCI and AD 

Figure 2. The top 6 protein biomarkers that separated the MCI group from the CN group in Table 2.
The CN group is shown in black while the MCI and AD groups are shown in blue and red, respectively.
Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; EFEMP1, epidermal growth factor
containing fibulin like extracellular matrix protein 1; MCI, mild cognitive impairment.

Age, sex and APOE genotype were incorporated into predictive proteomic models to
identify which biomarkers could best identify MCI or AD patients. Predictive models were
compared to the base model consisting of age, sex and APOE ε4 allele status variables. The
base models resulted in AUC values of 0.79 and 0.72, for MCI and AD groups, respectively.
The base model plus biomarker for prediction of MCI and AD diagnosis gave AUC values
of 1 and p-values of 1.754 × 10−10 and 3.026 × 10−10, respectively.

3.2.2. Untargeted Metabolomics

Similarly, as shown in Supplementary Table S2, we ranked the top 9 metabolites based
on their most significantly different p-values in the MCI (upper panel) and AD (lower
panel) groups compared to the CN individuals.

ROC curve analyses were performed on all metabolites measured in this dataset and
were ranked by descending AUC (Table 3), and the top 9 metabolite markers are shown for
both the MCI (upper panel) and AD (lower panel) groups. Some metabolites showed a level
of separation between the groups, with AUC above 0.85. N-Acetyl-alpha-D-glucosamine-
1-phosphate (AUC = 0.86) and D-Mannose (AUC = 0.85) resulted in separation between
CN and MCI. For the AD group, hypoxanthine gave the highest AUC (0.86) with 90%
sensitivity and 80% specificity.
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The CN group is shown in black while the MCI and AD groups are shown in blue and red, respectively.
Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment.

Table 3. Top metabolite biomarkers for clinical classification of MCI and AD adjusted for cofounders.

MCI Metabolite Biomarkers

Metabolite AUC (95% CI) Sensitivity (%) Specificity (%)

N-Acetyl-alpha-D-glucosamine-1-phosphate 0.86 (0.77–0.95) 90 70
D-Mannose 0.85 (0.76–0.94) 100 62.5
Maleic acid 0.84 (0.75–0.95) 95 70

L-Norleucine 0.84 (0.74–0.96) 85 77.5
Myo-inositol 0.84 (0.74–0.94) 90 72.5
L-Glutamine 0.84 (0.74–096) 80 80
Creatinine-1 0.84 (0.74–0.95) 95 72.5

Isopentyl acetate 0.84 (0.75–0.95) 70 90
Itaconic acid 0.84 (0.75–0.95) 70 90

AD Metabolite Biomarkers

Metabolite AUC (95% CI) Sensitivity (%) Specificity (%)

Hypoxanthine 0.86 (0.75–0.98) 90 80
L-Glutamic acid 0.83 (0.61–0.89) 80 75

Epinephrine 0.83 (0.73–0.93) 70 85
3-4-Dihydroxyphenylglycol 0.83 (0.73–0.94) 70 85

D-sedoheptulose-7-phosphate 0.83 (0.73–0.93) 100 57.5
N-acetyl-alpha-D-glucosamine-1-phosphate 0.82 (0.72–0.93) 85 72.5

Uridine 0.81 (0.71–0.93) 75 82.5
Methylmalonic acid 0.81 (0.71–0.93) 75 77.5

Erythrose-4-phosphate 0.81 (0.71–0.93) 87 72.5

Age, sex and APOE genotype were incorporated into predictive metabolomic models
to identify which biomarkers could best identify MCI or AD patients. The base models
resulted in AUC values of 0.79 and 0.72 for MCI and AD groups, respectively. The best
predictive metabolomic models for prediction of MCI and AD diagnosis displayed an AUC
of 0.95.
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3.2.3. Integrated Pathway Analysis
Lipidomics

Among the analysed lipids, 247 were identified, belonging to 8 classes. The lipids
measured were interrogated to identify biomarkers that could separate the groups (see
Supplementary Table S3). Although some differences could be seen, the ROC analysis
did not result in strong biomarker candidates compared to the plasma proteins and other
metabolites shown earlier. To understand how the changes observed in plasma would
translate at the metabolic pathway level, first a lipid enrichment analysis was carried out
using Metaboanalyst to view the main lipid classes that were detected in plasma regard-
less of the groups (Figure 4A). The most enriched lipids measured in the samples were
glycerophosphocholines, followed by sphingomyelins and glycerophosphoethanolamines.
Many glycerophosphoinositols, fatty acids and conjugates were also measured, albeit less
abundant. The dataset was further interrogated with a Lipid Pathway Enrichment analysis
using the lipids that were identified as being altered in the MCI and AD groups. Lipid
changes were linked to 19 pathways, with three of them being the most significantly associ-
ated with the changing lipids measured in our study (glycerophospholipid metabolism,
autophagy and glycosylphosphatidylinositol (GPI)-anchor biosynthesis, p < 0.05). Two of
the lipids measured in plasma samples were common to these three pathways, while three
additional lipids were mapped onto glycerophospholipid metabolism (Figure 4B).
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that were detected in plasma regardless of the groups and (B) the lipids changing in the MCI
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lipids that were measured in our sample and belonged to these pathways. Abbreviations: GPI,
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Pathways

To investigate which metabolic pathways were impacted by the disease, the combined
metabolome and proteome profiles of MCI and AD were integrated through the “Joint
pathway analysis” tool. Results indicated the presence of 19 metabolic pathways that were
significantly different (FDR p < 0.01) across both MCI and AD (Figure 5). Interestingly,
when looking at specific pathways unrelated to metabolic processes, two pathways were
found to be highly impacted by the disease (i.e., complement and coagulation cascades and
Staphylococcus aureus infection) and are displayed at the top of Figure 5.
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Figure 5. Significant pathways expressed in plasma from AD and MCI (compared with CN). The
number of components of each pathway is presented as “Total metabolites” (grey bars) and the
number of molecules matched to these pathways are presented as “Matched Metabolites” (blue bars).
The “Impact” value represents the extent to which these pathways are impacted with the disease.

Each of the mapped proteins and metabolites to the metabolic pathways have been
represented as a heatmap in Figure 6; (6A) arginine metabolism, (6B) alanine, aspartate and
glutamate metabolism, (6C) pyruvate metabolism, (6D) pyrimidine metabolism, and (6E)
purine metabolism. Only the heatmaps of each of the mapped proteins and metabolites
for the metabolic pathways that contained at least one of biomarkers listed in the top
predictive models for MCI or AD are shown (Figure 6). One of the prominent observations
was the accumulation of homocitric acid (Figure 6C) in the AD group (Log2Fold change
(FC) = +1.34), while the same metabolite was decreased in the MCI group (Log2Fold
change (FC) = −0.31). In contrast, pyruvic acid was decreased in AD (Log2Fold change
(FC) = −0.40), while it was increased in the MCI group (Log2Fold change (FC) = +055).
Metabolomic-proteomic integration indicated that such accumulation of the downstream
products of pyruvate metabolism was likely due to upregulated lactate dehydrogenase
A (LDHA; Figure 6C lower panel) activity in MCI and AD groups leading to a further
imbalance in the pathway. Opposing changes in metabolites between MCI and AD were
also observed in pyrimidine metabolism (Figure 6C). Oratic acid and uracil were both
observed to increase in MCI (Log2Fold change (FC) = +0.60 and +0.27, respectively) while
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decreasing in AD (Log2Fold change (FC) = −0.93 and −0.19, respectively). Another change
of note in pyrimidine metabolism was the large increase in 3-hydroxypropanoic in both the
MCI and AD groups (Log2Fold change (FC) = +1.42 and +2.33, respectively) compared to
the CN group. Furthermore, some of the top biomarkers discovered for classification of MCI
and AD from Table 3 (i.e., L-glutamic acid, L-glutamine, methylmalonic acid, hypoxanthine
and uridine) are linked to these impacted pathways as observed in the heatmaps (Figure 6).
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Figure 6. Heatmaps of metabolic pathways. Heatmaps showing metabolomic and proteomic expres-
sions during (A) arginine metabolism, (B) alanine, aspartate, and glutamate metabolism, (C) pyruvate
metabolism, (D) pyrimidine metabolism, and (E) purine metabolism in the plasma matrix of AD and
MCI patients compared with CN individuals. The metabolites and proteins used in the multi-omics
integration were selected based on the fold changes (Log2FC ≥ 1.00 or Log2FC ≤ −1.00) with sta-
tistically significant different false discovery rates (FDR ≤ 0.05)). The heatmaps were graphed by
manually inputting the fold changes into GraphPad Prism 9.

4. Discussion

There is an urgent need for accessible and cost-effective screening tools to identify
patients exhibiting early signs of neurodegeneration. Utilising current ultrasensitive mass
spectrometry methods allows for the discovery of novel biomarkers of neurodegeneration in
minimally invasive tissues, including plasma samples. Furthermore, advances in statistical
data processing methods that combine proteomic and metabolomic pathways allow for a
deeper dive into the biochemical cellular reactions impacted in MCI and AD. Our research
utilised these tools to carry out plasma proteomic and metabolomic analyses to identify
biomarkers for AD.

4.1. Lipidomics

Lipid pathway enrichment analysis was used to understand the biological pathways
linked to enriched lipids measured in our study. Using LIPEA [31], we found three
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significantly perturbed pathways in MCI and AD, namely glycerophospholipid metabolism,
autophagy, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. In the brain, a
large amount of the glycerophospholipid ethanolamine are plasmalogens, a unique class of
membrane glycerophospholipids and key structural phospholipids [32]. Several studies
have identified a link between brain plasmalogen levels and AD. For instance, a study
investigating the lipid concentration profile of post-mortem prefrontal cortex of AD brains
observed differences in individual phospholipids compared to controls [33]. A significant
decrease in plasmalogen choline [33] and ethanolamine [34] was observed in AD and the
changes observed in the brain could reflect AD pathology around synaptic loss associated
with neuroinflammation [33] or in the early stage of dementia [34]. The association between
plasmalogen and AD is also reflected in peripheral tissues [35] and it is believed that
age-related declines in circulating plasmalogens may increase the risk for AD [36,37].
Our results support the above, as our lipid pathway enrichment analyses highlighted
glycerophospholipid metabolism as significantly impacted by MCI and AD.

Autophagy was another impacted function highlighted by our analysis which is
central to the clearance of the β-amyloid and tau proteins (hallmarks proteins of AD)
and displays AD-related changes before clinical hallmarks appear [38]. In fact, mouse
models with impaired autophagy display exacerbated AD pathology [39]. Dysfunction
of the autophagy-lysosomal system has been implicated in the pathogenesis of many
neurodegenerative diseases linked to the accumulation of amyloid protein deposits, such
as in AD [40].

4.2. Proteomics

Of 204 proteins measured, 12 were identified as biomarkers with a ROC AUChigher
than 0.9. Interestingly, 6 of these proteins have been linked to the development and
pathology of AD or to brain function and are discussed below.

4.2.1. Plasma Actin

The most impressive marker measured in our study was the skeletal/aortic smooth/cardiac
actin protein which was able to separate the three groups with 100% accuracy. Based on the
highly conserved nature of these actins, we were unable to distinguish between skeletal,
aortic smooth and cardiac muscle actins using our proteomic methods. Nevertheless, this
protein was linearly increased across the groups and separated the CN, MCI, and AD
groups from each other. A recent study demonstrated that vascular smooth muscle cells in
brains of AD patients (and animal models of the disease) are deficient in contractile mark-
ers [41]. The vascular smooth muscle cell markers were correlated with Tau accumulation
in brain arterioles and underwent substantial phenotypic changes in vitro under AD-like
conditions, associated with a pro-inflammatory phenotype. Another study proposed that
the elevated circulating concentrations of G-actin underly the post-injury reduction in
DNase activity [42]. Furthermore, the chronic nature of neurodegenerative disease may
initiate a compensatory Gc-globulin increase as a response to elevated levels of actin [43].
Therefore, such a biomarker that increases with the disease progression (as in the present
study) is of the highest value when it comes to a diagnostic, and it calls for the pursuit of a
validation study in a separate cohort.

4.2.2. Serum Amyloid A2

Serum Amyloid A2 (SAA2) protein is upregulated by inflammatory cytokines and is
another protein displaying a striking ability to separate the AD group, but not the MCI,
with 100% accuracy from the CN group, suggesting this may not be an early biomarker
of the AD process. Accumulation of SAA isoforms in the brain of AD patients has been
reported [44] and intense immunostaining of SAA could be observed in affected regions of
the AD brain compared to a healthy brain, particularly around myelin sheaths of axons [45].
SAA binds and transports cholesterol to aortic smooth muscle cells and thereof might have
a role in cholesterol metabolism following inflammation in AD. This is of great interest
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as our data revealed that aortic smooth muscle protein and SAA were strongly correlated
across the groups (r = 0.83, p < 0.0001), confirming a significant association of both proteins
in the diseased state. Other reports suggest that SAA can promote amyloid formation in
fibrinogen in blood [46], while induced expression of SAA in the brain could affect tau
hyperphosphorylation [47]. In CSF, levels of SAA have been reported to be 16 times higher
in AD than in a CN group [48]. It is therefore not surprising that we observed elevated
peripheral levels of SAA in AD.

4.2.3. Keratin 9

Keratin 9 has previously been identified as part of a protein biomarker panel of
AD [49]. In that study their panel of seven proteins offered a median accuracy of 84.5%
in the classification of AD cases from the CN group. A study from Richens et al. used a
targeted ELISA approach and found levels of Keratin 9 in CSF and plasma were elevated
in the AD group, albeit not significantly, but were significantly correlated with APOE4,
clusterin and Tau levels [50]. Within our study, Keratin 9 cytoskeletal protein 1 displayed
an AUC of 1 when separating the AD group from both MCI and the CN group but did
not successfully separate the MCI group from the CN group. Nonetheless, the ability to
segregate the AD group with 100% accuracy is impressive and highlights the diagnostic
value of keratin 9 cytoskeletal protein 1 as an individual biomarker.

4.2.4. Selenoprotein P

Selenoprotein P was significantly increased in both MCI (p < 0.004) and AD (p < 0.001)
compared to the CN group and could separate the AD group with an AUC of 0.85. Seleno-
protein P, the main transport protein of selenium, is believed to protect neuronal cells from
Aβ-induced toxicity and thus prevent neurodegeneration [51,52]. Selenoprotein P gene
expression was in fact found to be increased with age and, more importantly, exceeded
the normal ageing baseline in AD patients [53,54]. Selenoprotein P also colocalised with
Aβ plaques and neurofibrillary tangles and was reported to be increased approximately
3-fold in CSF of AD patients [55]. Our results support the case of selenoprotein P as a key
protein linked to the pathogenesis of AD and, since selenoprotein is involved in selenium
transport, there could be dietary implications for AD development.

4.2.5. Fibronectin and Extracellular Matrix Protein 1

Relative abundance of fibronectin and extracellular matrix protein 1 (ECM1) displayed
a progressive decrease from CN to MCI and AD. Both these proteins reached an AUC of
0.92 when used as single biomarkers to separate AD from the CN group. Interestingly,
these two proteins are both protein components of the extracellular matrix. Although
ECM1 has not been previously associated with AD, fibronectin has been investigated
as a potential biomarker for AD. Expression levels of fibronectin in AD brains showed
increased expression (p < 0.05) in the grey matter of the frontal and temporal cortex
compared to healthy brains. The expression of fibronectin in the temporal cortex was
further correlated with amyloid deposition [56]. In a different study, fibronectin was
elevated in the plasma of MCI and AD patients compared to controls [57]. These results
of a gradual decrease of fibronectin across the disease groups, while clearly indicating
fibronectin as a potential biomarker of AD in blood, go in the opposite direction than
those reported here. However, the specificity of isoforms measured in the blood seem
to be a critical parameter in the measurements of fibronectin. High molecular forms of
fibronectin, for instance, appeared more frequently in plasma of AD, and their levels were
again increased compared to controls [58]. Our untargeted proteomics approach does not
detail the exact isoforms identified and it is plausible that specific lower molecular forms
of fibronectin are decreasing in plasma as opposed to other isoforms. A more targeted
immune approach investigating all isoforms of fibronectin is required to bring clarification.
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4.2.6. Mannan-Binding Lectin Serine Protease 1

Mannan-binding lectin serine protease 1 (MASP-1) is one of the plasma proteins we
identified as significantly decreased in the early stages of the disease, and which could be
used to identify the MCI group with an AUC of 0.91. MASP-1 is an enzyme indirectly linked
to AD pathology through its critical interaction with the mannan-binding lectin (MBL)
protein which permits the activation of the complement system. MBL is a serum lectin
and important soluble constituent of the innate immune system that forms a complex with
MASP-1 in the blood. MBL has previously been measured in CSF and serum in samples
from 19 AD patients and 15 controls [59]. The MBL serum levels did not differ between
the groups, in contrast to the CSF levels that significantly decreased in the AD group (154
± 35 pg/mL) compared to the control group (276 ± 50 pg/mL). Recently, MBL-binding
assays conducted with or without inhibitors showed a dose-dependent increased binding
of MBL to amyloid peptides (Aβ40 and Aβ42) [60]. The important role of MBL in the innate
immune response, its demonstrated association with blood vessels within the brain [59]
and its binding properties to amyloid, indicate a possible role in AD. However, there are
still only a few investigations conducted on this specific protein as a biomarker of AD and
more importantly, in the early stages of the disease in MCI.

4.3. Metabolomics

Untargeted metabolomics analysis of all plasma samples provided interesting insights
into changes in lipids and small molecule abundance. Metabolites were weaker biomarkers
compared to the protein biomarkers, based on differences between groups (p-Values), ROC
data and statistical modelling. In fact, the top 9 metabolites for both MCI and AD all
displayed ROC AUC between 0.80 and 0.87, which are not considered to be satisfactory
biomarkers alone. However, when metabolites are considered collectively through the
means of predictive models of the disease, biomarker panels identified MCI and AD with
95% accuracy (by ROC). This indicates that metabolite data could be used in the form of a
biomarker panel in targeted approaches for AD.

The integration of plasma metabolomic data with proteomic data allowed us to cap-
ture the overall changes in the biochemical pathways associated with disease progression.
We carried out a cross-check exercise between impacted pathways and the metabolites,
constituting our best predictive models. This allowed us to highlight the arginine, ala-
nine, aspartate, glutamate, pyruvate, pyrimidine and purine metabolism pathways, as not
only being impacted in MCI and AD, but also containing key metabolites of our panel
of biomarkers. Our previous study investigating omics changes in this same cohort us-
ing saliva samples found that the arginine, alanine, aspartate, glutamate and pyruvate
metabolisms were also significantly impacted in the MCI and AD groups [19]. Specific
changes such as the accumulation of pyruvic acid in the MCI group, contrasting to a
reduction in the AD group, could also be observed in plasma. A previous study exam-
ined metabolomic changes in serum of patients with AD and identified 11 metabolites as
biomarkers of the disease [61]. These metabolites were found to be linked to seven biolog-
ical pathways, those being arginine and proline metabolism, phenylalanine metabolism,
alanine metabolism, primary bile acid synthesis, glutathione metabolism, starch and su-
crose metabolism, and steroid hormone biosynthesis. Some of these were also found to
be significantly impacted in our integrated plasma data overall; our metabolomics results
(e.g., myo-inositol and L-glutamine) correspond well with recent studies and show that
untargeted omics is a powerful tool to identify new biomarkers [62–65].

5. Conclusions

Proteomics and metabolomics methods can provide a relatively simple approach to
identifying useful biomarkers for MCI and AD. This study provides valuable insights into
the molecular basis of MCI and AD and revealed new biomarkers with several metabolomic
and proteomic pathways impacted by the disease(s). Future studies should target and
quantify the biomarkers so that laboratories around the world can better compare the
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standardised data. As such, these practical aspects should help guide a targeted approach
to validating the biomarkers against other established methods including neuroimaging
(for Tau and Beta amyloid), as well as other recently identified plasma biomarkers such as
the various forms of p-tau, neurofilament light and GFAP, and beta amyloid (Aβ42), all
of which have been used in highly sensitive Simoa assays. This study provides further
support to the hypothesis that MCI and AD pathology is not only restricted to neuronal
cells but also involves substantial changes in metabolic processes in the periphery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12100949/s1, Table S1: Top proteins different between cogni-
tively normal, MCI and AD based on p-values. Abundance Data have been log transformed/normalised;
Table S2: Top metabolites different between cognitively normal, MCI and AD based on p-values;
Table S3: Top lipid biomarkers for clinical classification of MCI and AD.
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