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Identification of novel genes and 
pathways in carotid atheroma using 
integrated bioinformatic methods
Wenqing Nai1,*, Diane Threapleton3,*, Jingbo Lu2,*, Kewei Zhang5, Hongyuan Wu1, You Fu1, 
Yuanyuan Wang1, Zejin Ou1, Lanlan Shan1, Yan Ding1, Yanlin Yu4 & Meng Dai1

Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently 
needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) 
sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses 
were used to identify altered genes and pathways. Our work showed 816 genes were differentially 
expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-
regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) 
indicated that genes related to the “immune response” and “muscle contraction” were altered in ATHs. 
KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in 
the “FcεRI-mediated signaling pathway”, while down-regulated genes were significantly enriched 
in the “transforming growth factor-β signaling pathway”. Protein-protein interaction network and 
module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. 
Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were 
markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new 
insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic 
and therapeutic biomarkers for advanced atheroma.

Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, and atherosclerosis is known 
to be the primary underlying factor responsible for the development of these diseases1. Despite extensive research, 
the detailed molecular mechanisms underlying the development of atherosclerosis and causing plaque rupture still 
remain unclear and new findings are urgently needed to complement the current knowledge and to identify new 
drug targets2. Rapid advances in biological technology, including DNA microarrays, able to detect the expression 
levels of tens of thousands of genes simultaneously, might help to provide comprehensive insights into the patho-
genesis of atherosclerosis.

Gene-expression profiling of atherosclerosis has recently been used to identify genes and pathways relevant to 
vascular pathophysiology. It has previously been used to analyze altered gene expression in normal and diseased 
arteries3, establish crucial players in atherosclerotic plaque progression4,5, identify differentially expressed genes 
(DEGs) by comparing plaques with or without cerebrovascular symptoms6, discover candidate pathways and genes 
related to atherosclerosis7, and find gene expression changes of atherosclerotic plaques in different vascular beds8. 
However, some drawbacks are associated with those previous studies. In microarray studies comparing atheroma 
with normal tissues3,7, differences in the cellular compositions and morphologies of atherosclerotic plaques and 
normal arteries may result in differential gene expression profiles that simply reflect this variation9. In addition, 
irregular sample-collection methods existed in some studies3,8 , for example, samples from different sites or sources 
or small sample sizes, may affect the reliability of studies10. Furthermore, in animal model experiments4,5, a high 
degree of variability in plaque composition and gene expression between humans and animal models may limit the 

1Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China. 
2Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, 
China. 3Division of Epidemiology, School of Public Health and Primary Care, The Chinese University of Hong Kong, 
Hong Kong. 4Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, 
37 Convent Drive, Bethesda, MD 20892, USA. 5Department of Vascular Surgery, People’s hospital of Henan 
province, Zhengzhou university, Zhengzhou 450003, Henan, China. *These authors contributed equally to this work. 
Correspondence and requests for materials should be addressed to Y.-L.Y. (email: yuy@mail.nih.gov) or M.D. (email: 
dm42298@126.com)

received: 08 April 2015

Accepted: 26 November 2015

Published: 08 January 2016

OPEN

mailto:yuy@mail.nih.gov
mailto:dm42298@126.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:18764 | DOI: 10.1038/srep18764

extension of cDNA array studies on animal material to clinical use11. Features of unstable plaques, such as surface 
ulceration, rupture, intraplaque hemorrhage and thrombus, may also occur in both asymptomatic and sympto-
matic patients, which may also confound studies6 that classify samples according to patient symptomatology12. 
Additionally, the relative lack of systematic bioinformatic analysis of cDNA microarrays in current studies limits 
the effective exploitation of gene-expression data sets10. Therefore, an integrated bioinformatic analysis based on 
cDNA microarray studies of human tissues may help to clarify the mechanisms underlying the development and 
progression of atherosclerosis.

To our knowledge, the variations between different individuals or blood vessels may affect the reliability of 
studies and it is very difficult to obtain healthy and diseased tissue from the same blood vessel of the same individ-
ual in human studies. To overcome the difficulty, we used a gene expression dataset from a previously published 
study13, comparing atheroma and its surrounding tissues from the same individual to track gene changes with 
disease progression and validated our findings with similar tissues. Besides, to interpret the biological relevance of 
these changes in gene expression, the microarray data were analyzed by integrated bioinformatic analysis expand-
ing on traditional microarray analysis methods, namely gene-ontology and pathway analysis, thereby allowing 
the construction of interaction networks, that might identify novel prognostic markers and therapeutic targets.

Results
Identification of differentially expressed genes. Through our microarray analysis, a total of 816 dif-
ferentially-expressed genes (DEGs) were identified between atheroma plaque (ATH) and macroscopically-intact 
tissue (MIT), including that 443 genes were up-regulated and 373 genes were down-regulated (Fig. 1A,B). The 
greatest fold differential expressions were a six-fold up-regulation of the FABP4 gene (fatty acid-binding protein 4)  
and a 3.3-fold down-regulation of the CNTN1 gene (contactin 1) in ATH compared with MIT.

Gene ontology and pathway analyses. Two hundred-ninety and 26 GO terms were significantly 
enriched among the up-regulated and down-regulated genes, respectively. Table 1 shows the ten most overrepre-
sented GO terms for the up-regulated and down-regulated DEGs, including immune-related biological process, 
such as “cell activation” and “cytokine production”, and “muscle system process”. Meanwhile, the KEGG pathway 
analysis identified 77 and 26 significantly enriched pathways for up-regulated and down-regulated genes, respec-
tively. The ten most overrepresented KEGG pathways for up-regulated and down-regulated DEGs are shown 
in Table 2, with “B cell receptor signaling pathway” and “TGF-beta signaling pathway” being most significantly 
enriched.

Protein–protein interaction (PPI) network analysis. We constructed a PPI network to identify more 
important proteins and biological modules that may play crucial roles in the development of atherosclerosis. To 
confine the interactions only to those close to the DEGs, only first level interactions between DEGs and their 
neighbors were selected. There were 3,990 PPI pairs and 2,491 nodes in our constructed PPI network. The degree 
represents the number of neighboring nodes in the network and changes in the proteins/genes with higher 
degrees have more effects than changes in those with smaller degrees. SMAD9, LYN, PTPN6, ZBTB16, SYK, 
PRKCB, SVIL, VAV1, BMPR1B and BTK were located in the more important positions of network with higher 
degrees of 108, 102, 95, 81, 74, 66, 63, 62, 60 and 56, respectively, indicating those proteins play irreplaceable and 
critical roles in the maintaining the whole protein interactions in the network (Fig. 2A).

CFinder software was used to identify the disease-relevant modules in the PPI network. Figure 2B shows the 
module containing the most nodes with parameter k =  5. This module contained eight DEGs, including CSF2RB, 

Figure 1. Differentially expressed genes were identified between ATH and MIT. (A) The overlapping gene 
set dually identified by the SAM and FC method. (B) Volcano plots for all differentially expressed genes in 
comparison. The dots indicate that up-(red) and down-regulated (blue) DEGs were significant both at  
false-discovery rate < 0.05 and Fold-change > 1.5 or < 0.667.
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Term Name Count P-value
Adjusted 
p-value

Up-regulated DEGs

GO:0001775 cell activation 83 0 0

GO:0001816 cytokine production 46 0 0

GO:0002250 adaptive immune response 33 0 0

GO:0002252 immune effector process 56 0 0

GO:0002253 activation of immune response 42 0 0

GO:0002376 immune system process 175 0 0

GO:0002443 leukocyte mediated immunity 33 0 0

GO:0002682 regulation of immune system process 104 0 0

GO:0002684 positive regulation of immune system process 76 0 0

GO:0002694 regulation of leukocyte activation 44 0 0

Down-regulated DEGs

GO:0003012 muscle system process 32 3.33E-16 3.77E-11

GO:0006936 muscle contraction 28 6.35E-14 3.59E-09

GO:0003008 system process 73 1.08E-11 4.06E-07

GO:0032501 multicellular organismal process 157 2.01E-09 5.70E-05

GO:0007155 cell adhesion 46 8.28E-09 0.000167

GO:0022610 biological adhesion 46 8.87E-09 0.000167

GO:0048731 system development 106 1.95E-08 0.000314

GO:0044057 regulation of system process 28 2.64E-08 0.000373

GO:0007507 heart development 25 3.82E-08 0.000481

GO:0007399 nervous system development 64 1.30E-07 0.00147

Table 1. Top 10 most overrepresented GO terms for the DEGs. Count: the number of differentially expressed 
genes; P-value was obtained by hypergeometric test; P-value was adjusted by Benjamini-Hochberg method. If 
the p-value is less than 2.2E-16 in R tool, it will be automatically changed to 0, and FDR should also be 0.

Pathway id Pathway name Count P-value
Adjusted 
p-value

Up-regulated DEGs

path:04662 B cell receptor signaling pathway 14 0 0

path:04650 Natural killer cell mediated cytotoxicity 14 8.88178E-16 6.94556E-13

path:04664 Fc epsilon RI signaling pathway 11 2.87992E-13 9.65184E-11

path:04062 Chemokine signaling pathway 18 1.55209E-12 3.64121E-10

path:04380 Osteoclast differentiation 12 2.35412E-12 4.6023E-10

path:04666 Fc gamma R-mediated phagocytosis 10 5.50975E-11 8.07867E-09

path:04810 Regulation of actin cytoskeleton 12 1.0021E-09 1.17546E-07

path:05144 Malaria 6 1.90164E-08 1.71586E-06

path:04670 Leukocyte transendothelial migration 7 2.39578E-08 2.00732E-06

path:04610 Complement and coagulation cascades 8 7.67467E-08 5.00133E-06

Down-regulated DEGs

path:04350 TGF-beta signaling pathway 4 0.0000639 0.075854499

path:04713 Circadian entrainment 5 0.000112157 0.075854499

path:04728 Dopaminergic synapse 6 0.000272488 0.109483429

path:04020 Calcium signaling pathway 8 0.000326677 0.109483429

path:04724 Glutamatergic synapse 6 0.00056299 0.146752804

path:04540 Gap junction 4 0.000822902 0.154822692

path:04723 Retrograde endocannabinoid signaling 3 0.000923945 0.154822692

path:04270 Vascular smooth muscle contraction 4 0.000934306 0.154822692

path:04730 Long-term depression 4 0.001055909 0.154822692

path:00380 Tryptophan metabolism 3 0.001142806 0.154862355

Table 2. Top 10 most overrepresented KEGG pathways for the DEGs. Count: the number of differentially 
expressed genes; P-value was obtained by hypergeometric test; P-value was adjusted by Benjamini-Hochberg 
method. If the p-value is less than 2.2E-16 in R tool, it will be automatically changed to 0, and FDR should also 
be 0.
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LCP2, LYN, PLCG2, PTPN6, PTPRC, SYK and VAV1. Jointly using topology of network and module analysis to 
select candidates would identify genes that have higher significance in the PPI network. Finally, we focused on 
four genes (SYK, LYN, PTPN6 and VAV1) that were overlapped between the top 10 nodes ranked by degrees and 
the disease-relevant modules in the PPI network (Table 3).

Verification of differentially expression genes in clinical samples. To confirm and validate the 
expression of four candidates determined from microarray data analysis in clinical samples, eight fresh sets of 
ATH and MIT samples were collected from surgery. The mRNA expression of four candidates (VAV1, SYK, LYN 
and PTPN6) were examined by qRT-PCR in eight sets of atherosclerotic sample (8 ATH and 8 MIT, n =  16). 
The results from qRT-PCR showed that mRNA level of VAV1 (12.6 ±  5.0), LYN (3.7 ±  1.1), SYK (13.1 ±  4.4) 
and PTPN6 (11.2 ±  4.9) increased by 12.6, 3.7, 13.1 and 11.2 folds respectively in ATH compared with in MIT 
(Fig. 3A). The results are consistent with data from microarray analysis although the differences in mRNA level 
were even higher than the differences determined in the microarray analysis. Moreover, the whole lysates from 
four sets of atherosclerotic samples (4 ATH and 4 MIT, n =  8) were analyzed by western blot. As Fig. 3B shows, 
the protein level of LYN (2.2 ±  0.4), SYK (27.3 ±  8.3) and PTPN6 (2.0 ±  0.5) significantly increased by degree of 
2.2, 27.3 and 2.0 folds respectively in all ATH samples compared with MIT samples. We noticed that VAV1 was 
not detected in the atherosclerotic samples at the protein level by current antibody.

Discussion
Microarray studies have great potential to provide novel insights into the pathogenesis of complex diseases. In the 
present study, we systematically applied integrated bioinformatic methods to mine new candidate players in the 
process of atherosclerosis and validated our findings in an independent set of samples at both mRNA and protein 
levels. In our study, we identified a total of 816 genes differentially expressed in ATH compared with MIT, includ-
ing 443 up-regulated and 373 down-regulated DEGs. GO functional-enrichment analysis of these DEGs showed 
that genes mainly related to inflammation and immune responses were altered with disease progression. “Cell 
adhesion”, “proliferation”, “differentiation”, “motility”, “cell death”, “lipid metabolism” and “immune response” have 

Figure 2. PPI interactions network of DEGs and the disease-relevant module found in the network. Nodes 
and links represent human proteins and protein interactions; Nodes represent the encoding genes of proteins; 
Red color indicates up-regulated genes annotated in the PPI network; Blue color indicates the down-regulated 
genes annotated in the PPI network; Pink nodes represent the non-DEGs which have an interaction with DEGs 
(A,B). The disease-relevant module contains the most nodes in CFinder software (B).

symbol entreze FC P-value Ajusted P-value

SYK 6850 1.696016958 5.02E-07 5.38E-06

PTPN6 5777 1.694628747 5.02E-07 5.38E-06

LYN 4067 1.635340328 0* 0*

VAV1 7409 1.616980858 5.02E-07 5.38E-06

Table 3. The candidate genes selected by our analysis. *If the p-value is less than 2.2E-16 in R tool, it will be 
automatically changed to 0, and FDR should also be 0.
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Figure 3. Validation of four candidate genes expression determined from microarray data analysis 
in clinical samples. (A) VAV1, LYN, SYK and PTPN6 expression was analyzed by qRT- PCR in 8 sets of 
atherosclerotic sample (8 ATH and 8 MIT, n =  16). *p <  0.05; **p <  0.01. The data is a representative of three 
independent experiments. (B) whole lysate from atherosclerotic samples (4 ATH and 4 MIT, n =  8) were 
analyzed by western blot. Top panel, the representative images of three independent experiments; Bottom panel, 
the quantitative data of the images in western blot by ImageJ software. The  
full-length blots are presented in Supplementary materials.
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all been reportedly associated with atherosclerosis14, and these processes were also identified in our enrichment 
results. Interestingly, although we identified similar numbers of up-regulated and down-regulated genes in ATHs, 
we observed an excess of significant GO categories for up-regulated genes, suggesting that the up-regulated genes 
are functionally more important in atherosclerosis progression.

Pathway-enrichment results showed an overabundance of immune and inflammatory signals, represented by 
the “chemokine-signaling pathway”, “natural killer cell-mediated cytotoxicity”, and “Fcε RI-signaling pathway” 
in atherosclerosis. Our finding indicates that innate and adaptive immune cells might contribute to the develop-
ment and progression of atherosclerosis, especially in the advanced stages. Hypercholesterolemia was initially 
considered to be the major risk factor for atherosclerosis, but recent advances have proven that chronic inflam-
mation and autoimmunity play major roles in the initiation and progression of the disease15, as supported by our 
pathway-enrichment results. In addition, the “TGF-β  signaling”, “calcium signaling”, and “osteoclast differentiation” 
were all significantly enriched among DEGs.

Mast cells are frequently in an activated state and participate in the process of atherosclerosis16. “Fcε RI-mediated 
signaling” in mast cells is initiated by the interaction of an antigen with IgE bound to the extracellular domain of the 
α -chain of Fcε RI. The mast cells activated by crosslinking of the Fcε RI via IgE-antigen complexes could release and 
secrete biogenic amines, cytokines, lipid mediators and proteoglycans, which contribute to inflammatory responses. 
IgE and Fcε RI have been implicated in several aspects of autoimmunity and chronic inflammatory diseases17. LYN, 
SYK and VAV1, the key modulators in our PPI network and module, are also implicated in this pathway (Figure S1).  
Our results indicated that this pathway might play a crucial role in the process of atherosclerosis; however, there 
is currently no proof of a relationship between “Fcε RI-mediated signaling” and atherosclerosis. And it is worth 
noting that calcium signaling is associated with Fcε RI -mediataed signaling. “Calcium signaling”18, “TGF-β  sig-
naling”19 and “osteoclast differentiation”20 have all been shown to be involved in the process of atherosclerosis. 
Our pathway-enrichment analysis supported the involvement of some pathways known to be associated with 
atherosclerosis initiation and progression, and also highlighted the Fcε RI-mediated signaling pathway, which, to 
the best of our knowledge, has not previously been reported in association with carotid atheroma.

Our PPI network and further module analysis showed that VAV1, SYK, LYN and PTPN6 overlapped between 
the top 10 nodes and the disease-relevant module, suggesting that these genes play more crucial roles in the 
pathogenesis of carotid atheroma. Several studies have indicated important related functions for SYK and VAV1, 
suggesting that they play significant roles in atherosclerosis. SYK has been reported to be involved in the patho-
genesis of atherosclerosis by activating monocyte chemotactic protein-1 expression21. Choi et al.22 found that 
TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis. 
Furthermore, the SYK inhibitor fostamatinib attenuated atherogenesis in mice, suggesting that SYK is a potential 
anti-inflammatory therapeutic target in atherosclerosis23. The validation study also indicated SYK was up-regulated 
both at the level of mRNA and protein which strengthens the assertion that it might play an important role in 
atherosclerosis development.

VAV1, a member of the VAV gene family, is expressed exclusively in hematopoietic cells. It is a signal trans-
duction molecule that acts as guanine nucleotide exchange factor for Rac1 and Rho GTPases, and also functions 
as an adaptor platform24. VAV1 impacts on processes that are highly relevant to atherogenesis, such as NADPH 
oxidase-mediated generation of reactive oxygen species, cell death, and leukocyte activation. An in vivo carotid 
artery thrombosis model showed that genetic deletion of Vav1 and Vav3 together may prevent the development 
of occlusive thrombi in mice fed a high-fat diet25. Deletion of Vav1 alone led to modest inhibition of oxidized 
low-density lipoprotein uptake and foam-cell formation, while deletion of both Vav1 and Vav3 led to nearly 
complete inhibition of oxidized low-density lipoprotein uptake and foam-cell formation, suggesting that Vavs act 
as a critical regulator in the process of atherogenesis, and thus represents a novel therapeutic target26. In our vali-
dation study, VAV1 was not detected in the atherosclerotic samples at the protein level by current antibody, which 
worked well in the experiment of positive control tissues. Another VAV1 antibody was also applied, which still 
could not dectect the expression of this gene. Though we found similar expression patterns for upregulated VAV1 
in both the qPCR and microarray analyses of ATH samples, VAV1 may not play a major role in the progression of 
atherosclerosis because its expression may be blocked at the translation phase.

LYN encodes a tyrosine protein kinase that is involved in the regulation of mast-cell degranulation. Lyn is the 
major Src-family kinase regulating glycoprotein VI signaling, and its absence caused a delay in activation and a 
marked reduction in platelet aggregation on collagen in a laser-injury model27. However, an apparently contra-
dictory study showed that Lyn inhibited platelet activation, and that Lyn was increasingly inactivated as platelet 
aggregation progressed28. Miki et al.29 suggested that Lyn plays an important role in the metabolism of serum 
lipids, and could induce the expression of monocyte chemotactic protein-1, which is related to atherosclerosis, 
during the development of atherosclerotic lesions on high-fat diets. Previous studies reflect the complex roles of 
LYN and our validation experiments showed that LYN was up-regulated in the atheroma at the levels of mRNA 
and proteins, which might promote the progression of this disease.

PTPN6 is a member of the protein tyrosine phosphatase family of signaling molecules. It regulates a vari-
ety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation30. 
Kamata et al.31 suggested that PTPN6 acts as a negative regulator in the development of allergic responses such 
as allergic asthma. Dubois et al.32 concluded that PTPN6 played a crucial role in the negative modulation of insu-
lin action and clearance in the liver, thus regulating whole-body glucose homeostasis. However, here we found 
PTPN6 up-regulated in atheroma at both the mRNA and proteins level and for the first time linked PTPN6 to 
atherosclerosis.

Additionally, to ensure the robustness of our candidate DEGs, we confirmed the expression of our candidate 
genes in another dataset GSE28829 (Supplementary Figure S2). The analysis revealed that a similar representation 
of the gene expression patterns of our candidate DEGs was seen in the dataset GSE28829, suggesting that VAV1, 
SYK, LYN and PTPN6 genes may play an important role in progression of atherosclerosis.
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To our knowledge, this is the first integrated bioinformatic analysis comparing gene expression between carotid 
plaque and macroscopically intact arterial tissue. The large-scale gene expression profile analysis in our study is a 
significant strength in addition to the fact that paired tissue samples were obtained from the same individual. Our 
integrated methods are based on pre-specified specific algorithms, established topology information of networks 
and existing knowledge from databases and literature. The integrated methods have an advantage over traditional, 
single-analysis microarray approaches and other enrichment-analysis methods, such as DAVID33 and NetGestalt34 
and ensure the reliability and accuracy of the results. Key candidates were also validated in Chinese patients, 
indicating the generalization of molecular mechanisms among different ethnic groups. Meanwhile, our integrated 
bioinformatic analysis might reveal the relationship between DEGs at molecular interaction and pathway levels, 
which provided some clues for the deeper mechanism of our candidate DEGs.

The discrepancies of expression between the qRT-PCR and microarray results may have been caused by a sensi-
tivity bias between the two methods, difference in ethnicity, diet and lifestyle between French and Chinese people 
or by the use of different statistical methods in qRT-PCR and microarray. However, there are also some limitations 
in our study. First, the study population from the microarray analysis underwent carotid endarterectomy at the 
university hospital of Lyon, so the gene expression profile may be influenced by their ethnicity, diet and lifestyle. 
Secondly, the cohort consisted of older subjects that were predominantly male and the majority had hypertension. 
The generalization of our findings is unknown as the present results are limited to high risk populations with 
signs of atherosclerosis and severe symptoms. Finally, our work is a reanalysis of previously published dataset and 
although some previous work and our validation experiments support our gene expression analysis results, the 
work requires further study to identify the mechanism of action and to assess the relevance of our findings. This 
work serves as an excellent foundation and reference for further studies to expand on these findings in the future.

Conclusion
This study identified SYK, LYN, PTPN6 and the “Fcε RI-mediated signaling pathway” as potential candidate play-
ers involved in the pathogenesis of atherosclerosis. These findings enhance our understanding of the molecular 
mechanisms of this important disease. Further studies, such as gene functional studies, are needed to support the 
results of our study, with the aim of identifying candidate biomarkers with sufficient predictive power to act as 
prognostic and therapeutic biomarkers for advanced atheroma.

Methods
Source of data. An existing dataset GSE43292 within the Gene Expression Omnibus database was used for 
this work and obtained through approved access. The dataset was generated using the Affymetrix Human Gene 
1.0 ST Array13. Ethical approval, sample tissue collection and preparation methods and characteristics of study 
participants were described in a previous report13. In brief, the dataset included 32 from 34 consecutive patients 
admitted to the university hospital of Lyon in 2009 for carotid endarterectomy. Paired samples were taken from 
individuals meaning that 64 carotid artery samples were analyzed. The mean age of participants was 70 years 
(±10 years) and the majority were male and with hypertension, with elevated blood lipid levels and just over one 
third of the sample were diabetic (Supplementary Table S1)13. Tissue samples were removed during surgery and 
dissected into two fragments: atheroma plaque tissue (ATH, subsequently identified as mostly stage IV and/or 
V lesions according to the American Heart Association classification) and macroscopically intact tissue (MIT, 
almost exclusively composed of stage I and II lesions)13.

Identification of differentially expressed genes. The raw gene dataset obtained from the previous 
work13 was converted into expression measures, and background correction and quantile data normalization were 
performed using the robust multiarray average algorithm from the Affy package to obtain the expression profile 
data35. After deleting duplicated probes and averaging the multiple probes values for the same Entrez Genes (the 
unique integers as identifiers for gene records)36, we finally obtained expression profiles for 19,924 genes in the 
64 samples.

Because the differentially expressed genes (DEGs) might have stronger relationship with the development of 
disease, the significance analysis of microarrays37 and fold-change methods were jointly used to identify DEGs 
between ATH and MIT.

Functional-enrichment analysis. We integrated GO annotation into the total DEGs by mining for 
enriched GO terms of proteins using the R-based GO function software packages, which extracts biologically 
relevant terms from statistically significant GO terms for a disease38,39.

The DEGs were chosen for further analysis of Kyoto Encyclopedia of Gene and Genome (KEGG) enrichment. 
The SubpathwayMiner is a pathway identification system40 and accurately assessed the pathway structure to locate 
disease-relevant KEGG pathways41 and subpathways in DEGs relative to the genomic background.

Protein–protein interaction network construction. In the study, we downloaded protein-protein 
interaction (PPI) data from human protein reference database (Release 9) on the website (http://www.hprd.
org/)42. These interactions were derived from literature of experimental validation, including physical interac-
tions and enzymatic reactions found in signal transduction pathways. The PPI data were preprocessed, including 
removing redundancy and self-loops, resulting in a connected network of 9,618 nodes (unique Entrez IDs) and 
39,240 documented interactions. PPI networks are visualized in Cytoscape43 with the nodes representing the 
proteins/genes and the edges representing interactions between any two proteins/genes.

We constructed the PPI network by mapping the DEGs to the PPI network using the following steps. First, we 
extracted the nodes and relationships between DEGs and their direct interacting neighbors to confine the interac-
tions only to those close to the DEGs using R software44, with each pair of interacting proteins in two lists of a text 
file. The DEGs (gene symbols) were listed in a NOA file with different node attribution annotations (down-regulated 
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genes, up-regulated genes) and mapped to the constructed PPI network by the menu of “File-Import-Node 
Attributes”. Second, the degrees of nodes in the PPI networks were calculated by Network Analysis plugin by the 
menu of “Plugins- Network Analysis-Analyze network”. In our network, the degree of a node was the number of 
neighboring nodes in the network and node size was proportional to the degree of the protein. Third, CFinder 
software45 was used to find disease-related modules based on the Clique Percolation Method46, which is a free 
software for finding and visualizing overlapping dense groups of nodes in networks. PPI data from a text file was 
imported using the menu of “File- Open new network-run” with default parameters. The results of CFinder are 
highly correlated to the value of the parameter k. Larger k values correspond to smaller subgraphs with a higher 
density of links within them.

Ethics statement and validation study sample collection. The collection of clinical samples was 
under approval by the Medical Ethics Committee of NanFang Hospital (Number: NFEC-2014-117) and informed 
consent was obtained from all subjects. The study was carried out in accordance with the standards set by the 
Declaration of Helsinki and Good Clinical Practice guidelines.

Human carotid atherosclerotic plaques were obtained from patients who underwent endarterectomy at the 
Vascular Surgery Department of Nanfang hospital of Southern medical university (Guangzhou, China). Patients 
(n =  8, mean age: 67.3 years, range: 53–80 years) with internal carotid artery stenosis > 70% were included. The 
carotid atheromas were separated as ATH and MIT according to macroscopic observation. Dissected vascular 
tissues were rapidly frozen in liquid nitrogen and stored at –80 °C. Sample characteristics used for each experiment 
are shown in supplementary information Table S2.

Quantitative real-time PCR (qRT-PCR). Total RNA from specimens (n =  16) was isolated using Trizol 
reagent (TaKaRa Bio Inc, Japan) according to the manufacturer’s instructions. Complementary DNA was syn-
thesized from 1000 ng of total RNA using the PrimeScriptTM RT reagent Kit with gDNA Eraser (TaKaRa Bio 
Inc, RR047Q) according to the manufacturer’s instruction, including the DNase step. Amplification was per-
formed using SYBR® Premix Ex TaqTM (TaKaRa Bio Inc, RR420A). Quantitative real-time polymerase chain 
reaction (q-PCR) analysis was performed on Lightcycler96 (Roche Applied Science) according to the manufac-
turer’s protocol. GAPDH was used as internal control to normalize mRNA levels. All experiments were repeated 
three times. Primer sequences are listed in Table 4. Analysis was performed by the comparative delta–delta–Ct 
method47.

Western blotting. Samples (n =  8) were taken from ultra-low temperature freezer and crushed in lysis buffer 
under liquid nitrogen. After detecting the concentration, proteins were separated on 7% SDS-polyacrylamide gel 
electrophoresis and transferred onto nitrocellulose membranes. Membranes were blocked with TBS-T(TBS/0.1% 
Tween-20) containing 5% non-fat dry milk for 1.5 hour at room temperature. Then, they were probed succes-
sively with mouse monoclonal anti-VAV1 (Cell Signaling Technology, Danvers, MA, USA), rabbit monoclonal 
anti-LYN (Abcam, Cambridge, MA, USA), rabbit monoclonal anti-PTPN6 (Abcam, Cambridge, MA, USA), and 
rabbit monoclonal anti-SYK (Abcam, Cambridge, MA, USA) antibodies at 4 °C overnight. Mouse monoclonal 
antibodies against GAPDH (Cell Signaling Technology, Danvers, MA, USA) were used as a loading control. 
Membranes were washed in TBS-T (TBS/0.1% Tween-20) three times for 5 min and probed with an anti-rabbit or 
-mouse HRP-conjugated secondary antibody in TBS-T with 5% of nonfat dry milk at room temperature for 1.5 h. 
Protein detection was performed using ECL reagents. Western blot bands were scanned using the ChemiDoc™  
XRS Imaging System (BioRad, USA). Western blot bands were quantified using ImageJ software by measuring 
the band intensity for each group and normalized by GAPDH. The final results are expressed as fold changes by 
normalizing the data to the control values.

Statistical analyses. Microarray analysis: DEGs for the microarray were identified using the fold-change 
and significance analysis of microarrays methods, with multiple testing corrections applied using the 
Benjamini-Hochberg method48. False-discovery rate < 0.05 and fold-change > 1.5 or < 0.667 were set as the cut-
off values of DEGs. For the functional enrichment analysis, significantly enriched GO terms in DEGs relative to 
the genomic background by GO function software packages were identified using the hypergeometric tests with 
an adjusted p-value < 0.01, calculated by the Benjamini-Hochberg method48. Pathway-enrichment analysis was 

Gene Primer sequences (5′ → 3′)

VAV1 Forward primer: CAACCTGCGTGAGGTCAAC 
Reverse primer: ACCTTGCCAAAATCCTGCACA

SYK Forward primer: TGCACTATCGCATCGACAAAG 
Reverse primer: CATTTCCCTGTGTGCCGATTT

LYN Forward primer: GCTTTTGGCACCAGGAAATAGC 
Reverse primer: TCATGTCGCTGATACAGGGAA

PTPN6 Forward primer: TGAACTGCTCCGATCCCACTA 
Reverse primer: CACGCACAAGAAACGTCCAG

GAPDH Forward primer: GATGACATCAAGAAGGTGGTGA 
Reverse primer: GTCTACATGGCAACTGTGAGGA

Table 4.  Primers for Real Time PCR.
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done using the R-based SubpathwayMiner software packages. Significantly enriched pathways were identified 
using hypergeometric tests and a p-value < 0.01 was applied as the cut-off value for statistical significance.

Validation study: The data in this study are shown as the mean ±  S.D. For the real time PCR, groups were 
compared using the Wilcoxon signed-rank test for continuous variables (SPSS 19.0, Chicago, IL) and a 2-sided  
p value < 0.05 was considered statistically significant.
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