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A B S T R A C T   

The COVID-19 pandemic has collapsed the public healthcare systems, along with severely damaging the econ-
omy of the world. The SARS-CoV-2 virus also known as the coronavirus, led to community spread, causing the 
death of more than a million people worldwide. The primary reason for the uncontrolled spread of the virus is the 
lack of provision for population-wise screening. The apparatus for RT-PCR based COVID-19 detection is scarce 
and the testing process takes 6–9 h. The test is also not satisfactorily sensitive (71% sensitive only). Hence, 
Computer-Aided Detection techniques based on deep learning methods can be used in such a scenario using other 
modalities like chest CT-scan images for more accurate and sensitive screening. In this paper, we propose a 
method that uses a Sugeno fuzzy integral ensemble of four pre-trained deep learning models, namely, VGG-11, 
GoogLeNet, SqueezeNet v1.1 and Wide ResNet-50-2, for classification of chest CT-scan images into COVID and 
Non-COVID categories. The proposed framework has been tested on a publicly available dataset for evaluation 
and it achieves 98.93% accuracy and 98.93% sensitivity on the same. The model outperforms state-of-the-art 
methods on the same dataset and proves to be a reliable COVID-19 detector. The relevant source codes for 
the proposed approach can be found at: https://github.com/Rohit-Kundu/Fuzzy-Integral-Covid-Detection.   

1. Introduction 

COVID-19 is an extremely contagious disease that led to a commu-
nity spread in the world. It was declared to be a public health emergency 
by the World Health Organization (WHO) in January 2020 and recog-
nized as a pandemic in March 2020. Currently, more than 50 million 
people worldwide have been affected by the coronavirus, out of which it 
accounts for more than 1.25 million unfortunate deaths (2.5% mortality 
rate). However, many positive cases go undetected due to the lack of 
provision for conducting population-wise testing. The current statistics 
of the COVID-19 pandemic in the world are shown in Fig. 1. All the data 
for the graphs have been obtained from a publicly available source by 
Ref. [47]. 

The available standard tests for COVID-19 detection is the Real-Time 

Polymerase Chain Reaction (RT-PCR) and the rapid antigen test. How-
ever, there are some drawbacks of the RT-PCR test [59]. First, it takes 
6–9 h for the testing process. Secondly, there is the issue of unavail-
ability of sufficient apparatus for population-wise testing, and thirdly, 
the RT-PCR test is not wholly reliable, being only 71% sensitive [67]. 
Due to these reasons, this virus has spread to an uncontrollable extent. 
On the other hand, the rapid antigen test [34] uses the human blood 
sample to detect the presence of IgG and IgM antibodies for COVID-19 
detection and can produce the result within 15 min. However, the 
human body takes several days to produce these antibodies after the 
virus has entered the host, making the antibody test unreliable to detect 
COVID-19 in its early stages. This can lead to the spread of the virus even 
before the disease is diagnosed. Even though several vaccines have been 
developed by experts across the world, it will take a lot of time to 
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vaccinate each individual on the planet, especially with the spread of the 
new variants of the COVID-19 virus that are emerging due to gene 
mutation in the virus. Therefore, there is a need to develop 
Computer-Aided Detection tools for faster and less laborious screening 
procedures to help control the pandemic. A large part of this research 
focuses on using deep learning techniques [9,42]. Deep learning is a 
machine learning technique that uses artificial neural networks for 
classifying structured or unstructured data through a complex 
decision-making process. As compared to the RT-PCR test, chest 
CT-scans are more sensitive [1,14], and more widely available. 
Although X-Ray images are being used for automated screening, CT-scan 
images give a more detailed view of the lungs and therefore, are more 
reliable for this study [39]. The most distinguishing feature of COVID-19 
infected chest CT scans is the ”ground-glass opacities” (GGO) that 
appear inside the lungs [11,33]. They emerge when the alveoli (tiny air 
sacs) get filled with fluid and appear as a white frosted-glass like 
appearance in the chest CT-scan [43]. Fig. 2 shows the chest CT-image of 
a COVID-19 infected patient and a COVID-negative patient. The GGO in 
the lungs of the infected patient are marked in the image. 

Deep learning has been proven successful in biomedical supervised 
learning applications like [2,15]. In the current image classification 
task, transfer learning has been employed which refers to the method of 
re-using a deep learning model used for a specific task, on a separate but 
related task. It is used when the current problem lacks sufficient data for 
training the model from scratch. Here, the parameters from the previous 
task are loaded, and the data from the current task are used for 
fine-tuning the model. 

The present work uses the Ensemble Learning technique for classifier 
fusion. In doing so, four pre-trained models, namely, VGG-11 by 
Simonyan et al. [53], GoogLeNet by Szegedy et al. [57], SqueezeNet 
v1.1 by Iandola et al. [24] and Wide ResNet-50-2 by Zagoruyko et al. 
[69] have been used, and Sugeno Fuzzy Integral has been used for 
ensembling the four classifiers and generating the final prediction scores 
for the images. Ensemble Learning enhances the performance of the 
constituent models by accounting for increased diversity in predictions. 

Although simple fusion schemes, such as averaging probability scores, 
majority voting, etc., have been used in literature, such techniques 
cannot account for the complex co-occurrences within the data to be 
classified. They do not account for the different weights of classifiers 
based on the decision scores obtained at testing time. Therefore, there is 
a need to generalize the simple fusion schemes, such that the weightage 
of one classifier may be conditioned upon the weightage of the others, to 
promote the adaptive importance of different classifiers for every sample 
image. 

In the present work, the Sugeno fuzzy integral has been used for 
ensembling the aforementioned classifiers to address the shortcomings 
of using simple fusion techniques. Fuzzy integrals [61] are effective 
aggregators, that use the degree of uncertainty in the decision scores as 
additional information for the fusion of classifiers. It can be viewed as a 
generalisation of aggregation operators on a set of confidence scores that 
use some weightage given to each information source, called fuzzy 
measures. The Sugeno fuzzy integral takes into consideration the con-
fidence of predictions by the base learners to assign adaptive weights to 
them for each input to the model, unlike the simple fusion schemes 
found in the literature that use fixed pre-determined weights. This 
concept and its application in the present study are discussed in detail in 
Section 3.5. 

The rest of the paper has been organized into sections as follows: 
Section 2 provides a brief literature survey of existing COVID-19 
detection models; Section 3 explores in detail, the methodology pro-
posed in the current study; Section 4 describes the results obtained on 
implementation of the proposed model on a publicly available dataset 
and finally, Section 5 concludes the findings from this paper and outlines 
some possible extension of this work. 

2. Literature survey 

Since the outbreak of the COVID-19 pandemic, a diverse range of 
classification models have been proposed for the automated detection of 
COVID-19 patients [28]. A large number of these methods use chest 

Fig. 1. Graph showing the growth of COVID-19 disease in the world (till mid-September 2021) [47]: (a) Total cases and deaths, and (b) Daily new cases and deaths.  
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radiology images (X-Rays) like [5,63]. Mahmud et al. [38] developed 
the CovXNet model for differentiating COVID-19 cases from pneumonia 
using chest X-ray images, wherein they achieved 90.2% accuracy on the 
multi-class classification problem. Ozturk et al. [42] developed the 
DarkNet model for the binary and multi-class classification of COVID-19 
and pneumonia using chest X-Ray images. They based their model on the 
You Only Look Once (YOLO) architecture imbibing some modifications 
and achieved an accuracy of 98.08% for the binary classification prob-
lem (COVID-19 vs. No Findings) and 87.02% for the multi-class problem 
(COVID-19 vs. Pneumonia vs. No Findings). 

However, chest CT-scan images are more sensitive as they give a 
clearer view of the lungs, therefore enabling a more reliable diagnosis. 
Shi et al. [51] segmented the lungs from the CT-scan image and used 
machine learning techniques for location-specific feature extraction. 
The extracted features were fed to their proposed ”infection Size Aware 
Random Forest (iSAR)” classifier for the final classification. Incorpo-
rating 5-fold cross-validation on their dataset, they obtained 87.9% ac-
curacy, 90.7% sensitivity and 83.3% specificity. Machine learning 
requires the extraction of handcrafted features and often results in 

redundant features being extracted. Deep learning, on the other hand, 
learns the important features on its own and provides an end-to-end 
classification system, and therefore has been used for developing 
several COVID-19 detection models like [32,50]. Gozes et al. [16] used a 
fusion of two deep learning models for the classification of 
COVID-infected patients. One model uses 2D slices of CT scans and the 
other uses volumetric CT-scan images. Xu et al. [66] proposed a 
location-attention classification model that uses features extracted by 
the ResNet-18 pre-trained model from the lung CT images for classifi-
cation. Burdick et al. [10] conducted a multi-centre clinical trial to 
predict invasive mechanical ventilation of COVID-19 infected patients 
within 24 h of the initial encounter with the virus. However, acquiring 
data from clinical trials requires authorization from several bodies and is 
not publicly accessible. 

Hu et al. [22] developed a weakly supervised COVID classification 
model that first performs lung segmentation and then uses a deep CNN 
model that extracts features at 3 different steps for multi-scale learning. 
Ni et al. [41] proposed a deep learning algorithm for lesion detection, 
segmentation and segmentation to find pneumonia lesions in COVID-19 
patients. 

An elaborate study on the efficacy of different transfer learning 
models (popular and new models) for COVID-19 detection using chest 
CT images have been conducted by Ardakani et al. [6]. They found 
ResNet-101 to be the most accurate classifier, obtaining an AUC of 0.994 
on a dataset of 1082 CT images. Amyar et al. [3] developed an 
encoder-decoder network for the segmentation and classification of 
chest CT images for COVID-19 detection. For this, they use an encoder 
coupled with two decoders and a multi-layer perceptron for the seg-
mentation, reconstruction and classification tasks. They achieved an 
average AUC of 97% on a dataset of 1349 patients’ lung CT scans. 

Carvalho et al. [12] developed a framework for COVID-19 classifi-
cation using CT images wherein they extracted deep features from a 
CNN model and then used a Genetic Algorithm for optimal feature 
subset selection and classification. Vinod et al. [62] proposed a ”Deep 
Covix-Net” model for detecting COVID-19 from both X-ray and CT im-
ages. They tested their model in both binary-class and multi-class set-
tings achieving accuracies of 97% and 96.8% respectively. 

Most of the existing methods use a single classification model. The 
ensemble learning paradigm is very seldom explored for addressing the 
COVID-19 detection problem. Thus in this paper, we develop a deep 
ensemble model for the classification of chest CT images for COVID-19 
detection. However, instead of using popular ensemble approaches 
prevalent in literature, like probability averaging, or weighted proba-
bility averaging, we use a fuzzy integral-based ensemble. This leverages 
adaptive priority to the classifiers on the fly instead of the classical 
ensemble methods that set the priority given to each classifier 
beforehand. 

2.1. Motivation and contributions 

The COVID-19 pandemic has caused the front-line workers to work 
tirelessly for attending to COVID-infected patients, along with patients 
homing other diseases, putting their lives at risk. Also, there is no sign of 
the pandemic stopping, and since population-wise screening is impos-
sible with the current level of RT-PCR test kits available. So, the need for 
the development of an automated screening model motivated us to 
conduct this study. 

In this paper, we propose a method to improve the efficiency of the 
Convolutional Neural Network (CNN) models by using a fuzzy integral 
based ensemble. Four distinct CNN architectures are used to ensure that 
there are multiple sources of information, manifested by the individual 
characteristics of the different features. The overall workflow of the 
proposed model is shown in Fig. 3. The complementary nature of the 
data captured by the different CNNs is verified by comparing the sta-
tistical divergences from the decision scores of each CNN model. The 
CNN classifiers are fused by applying the Sugeno Fuzzy integral using 

Fig. 2. Sample chest CT-scan images of: (a) COVID-19 positive patient, and (b) 
COVID-19 negative patient. The images have been taken from the publicly 
available SARS-COV-2 dataset [54] used in this study. 
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which has two advantages, first, it works as a generalization of classical 
empirical schemes, and second, conditioning the weights of each model 
based on the probability scores of the individual classifiers capture the 
complementary information more robustly. 

The main contributions of this paper are as follows:  

1. Chest CT-scan images are used to develop the proposed model in this 
study which is both widely available and can be performed faster 
compared to the tedious RT-PCR testing process.  

2. To address the challenge of low availability of publicly available 
chest CT data of COVID-19, transfer learning models have been used 
in the first phase of the framework. The complementary natures of 
the features vectors obtained from the CNNs are verified using the 
Kullback-Leibler Divergence and Jensen-Shannon Divergence.  

3. For using the features of the various models, an ensemble technique 
has been used based on a fuzzy measure: the Sugeno Integral. Fuzzy 
integrals are a powerful fusion technique for using the characteristics 
of all the input information sources.  

4. The proposed method outperforms the existing state-of-the-art 
models achieving very high accuracy (98.93%) and sensitivity 
(98.93%) compared to the 71% sensitivity of the RT-PCR test. 

3. Proposed method 

The proposed framework uses four pre-trained deep learning models, 
which are trained on the ImageNet dataset [13]. The ImageNet dataset is 
a huge data source consisting of 14 million images belonging to 1000 
classes. Training the models on such a large variety of images set the 
model parameters (weights and biases of the nodes of each layer) opti-
mally, and only minor fine-tuning is generally required for using the 
trained models on a different classification task. The deep transfer 
learning models used in this study are:  

1. VGG-11 by Simonyan et al. [53].  
2. GoogLeNet by Szegedy et al. [57].  
3. SqueezeNet v1.1 by Iandola et al. [24].  
4. Wide ResNet-50-2 by Zagoruyko et al. [69] 

VGG-11 is a very deep network whereas GoogLeNet has inception 
modules that contain parallel convolutions and hence, both of these 

networks have a high number of parameters. On the other hand, both 
SqueezeNet v1.1 and Wide ResNet-50-2 models boast about their 
computational efficiency due to a far lesser number of parameters for the 
number of layers they possess. The VGG-11 model can extract very deep 
features due to the use of linearly progressive convolution layers with 
small filter sizes. The GoogLeNet model can extract a diverse set of 
features through its inception modules. The SqueezeNet v1.1 model uses 
the squeeze and expand blocks to extract deep features while also con-
trolling the number of parameters. Whereas, the WideResNet-50-2 
model uses its residual connections to control the feature flow and 
eliminate the vanishing gradient problem, while concatenating the 
shallow features with the deep ones for efficient feature extraction. 
Thus, these four pre-trained models have been chosen for the current 
study to fuse the diverse properties of each model while also controlling 
the computational complexity. The total number of parameters in each 
network are shown in Table 1. 

These pre-trained models are used for the binary classification task at 
hand and the prediction probability scores for the images are stored. 
These probability prediction scores are then used for computing the 
Sugeno Fuzzy Integral to calculate the final predictions on the test set 
and then the predictions are used to compute the evaluation metrics. The 
transfer learning models and the fuzzy integral ensemble method 
adopted in this study are described in the following subsections. 

3.1. VGG-11 

The VGG models developed by the Visual Geometry Group [53], are 
some of the deepest CNNs in literature. The introduction of several 
weight layers (up to 16–19 layers) was made possible by decreasing the 
size of the convolution filters to 3x3 kernels. The VGG group stresses the 
fact that the depth of a CNN model is important for visual 

Fig. 3. Overall workflow of the proposed approach.  

Table 1 
Layer and Parameter details of the pre-trained models used in the current study.  

CNN Layers Kernels Parameters 

VGG-11 11 (3x3) 30.15 M 
GoogLeNet 22 (1x1), (3x3), (7x7) 11.98 M 
SqueezeNet v1.1 14 (1x1), (3x3) 0.72 M 
Wide ResNet-50-2 50 (3x3) 66.8 M  
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representations and beneficial for accurately applying to several genres 
of classification tasks in Computer Vision. The VGG-11 CNN architecture 
has been shown in Fig. 4. 

3.2. GoogLeNet 

The GoogLeNet CNN model by Szegedy et al. [57], the name of which 
is inspired from LeNet-5 [31] is 22 layers deep network that consists of 
”inception modules” instead of uniformly increasing networks. The 
inception block inspired by Lin et al. [35], allows a large number of units 
to be accommodated at each stage due to the parallel convolution and 
pooling, without facing an uncontrolled computational complexity 
because of the increased number of parameters. For controlling the 
computational complexity, the architecture uses dimensionality reduc-
tion in the inception blocks as shown in Fig. 5(b), rather than the naive 
inception block (Fig. 5(a)). The GoogLeNet model proves that an optimal 

sparse architecture made from the available dense building blocks, i.e., 
the introduction of inception blocks, improves the performance of 
neural networks for Computer Vision tasks. The architecture of the 
GoogLeNet CNN model has been shown in Fig. 6. 

3.3. SqueezeNet v1.1 

The SqueezeNet [24] is a CNN model having 50 times lesser pa-
rameters than AlexNet [26] model but achieving similar accuracies on 
the ImageNet data classification task. However, to employ model 
compression techniques [18,19] allow the SqueezeNet model to be 
stored under 0.5 MB space which is 510 times smaller than the space 
occupied by the AlexNet model. 

The salient features of the SqueezeNet architecture are as follows: 

Fig. 4. Architecture of the VGG-11 CNN model used in the present work.  

Fig. 5. Block diagram illustrating the inception modules in the GoogLeNet architecture.  

Fig. 6. Architecture of the GoogLeNet model (Inception Block is as in Fig. 5(b)).  
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1. Majority of 3x3 filters have been replaced with 1x1 filters, which 
have 9 times fewer number parameters.  

2. To maintain a small total number of parameters, the number of input 
channels has been decreased to only 3x3 filters using ”squeeze 
layers”.  

3. The down-sampling of the images has been performed late in the 
architectures for obtaining larger activation maps from the convo-
lution layers.  

4. A ”fire module” has been introduced, which is comprised of a 
”squeeze” convolution layer that feeds into an ”expand” layer that is 
a mix of 1x1 and 3x3 convolutions. The fire module is shown in 
Fig. 7. The squeeze layer in the fire module helps to limit the number 
of input channels. The following hyperparameters describe a fire 
module: s1 denotes the number of 1x1 filters in the squeeze layer; e1 
denotes the number of 1x1 filters in the expand layer, and e3 denotes 
the number of 3x3 filters in the expand layer. 

The architecture of SqueezeNet v1.1 is shown in Fig. 8. 

3.4. Wide ResNet-50-2 

Wide ResNets [69] are a genre of CNNs honing residual blocks in 
their architecture. They have lower depths and greater width than the 
traditional ResNets [20] achieving state-of-the-art results but consuming 
much lesser training time. They have proven that the 50 layers deep 
Wide ResNet (Wide ResNet-50-2) outperformed the 152 layers deep 
ResNet (ResNet-152) on the ImageNet [13] data classification task. 
Similar to the previous networks, the final classification layer of the 
Wide ResNet-50-2 architecture was changed for the binary classification 
task in the present study. The various residual blocks used in the Wide 
ResNet architecture has been shown in Fig. 9, and the complete 

Fig. 7. Illustration of the Fire Module: a salient feature of the SqueezeNet 
architecture. 

Fig. 8. Architecture of the SqueezeNet v1.1 CNN model.  

Fig. 9. Residual Blocks present in Wide ResNet.  
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architecture has been shown in Fig. 10. 

3.5. Ensemble: Sugeno Fuzzy Integral 

Ensemble learning is a strategy for fusing the salient properties of 
two or more base learners. Such a framework performs more robustly 
than its constituent models because ensembling reduces the variance in 
the prediction errors. However, most of the traditional ensemble 
frameworks [29,30] tend to assign a pre-defined classifier weight to 
compute the ensemble. In this study, we use a fuzzy integral-based 
approach, wherein instead of assigning a fixed weight to the classi-
fiers, we leverage adaptive importance on the fly while testing. Such a 
method takes into account the confidence in the predictions of the base 
learners for every sample to assign importance to the classifier, and thus 
performs more robustly than the traditional approaches in the literature. 

Fuzzy integrals have proven successful in several pattern recognition 
problems like [36,65]. They are powerful and flexible functions for 
aggregating information based on a fuzzy measure. This fuzzy measure 
represents the relevance or importance of the constituent information 
sources when the aggregation is computed. 

A fuzzy measure [55] is the set function f that satisfies the following 
properties:  

1. f(φ) = 0, f(X) = 1  
2. A, B ∈ β and A ⫅ B, implies f(A) ≤ f(B)  
3. If Cn ∈ β, C1 ⫅ C2 ⫅ C3 ⫅…⫅ Cn, then limn→∞f(Cn) = f(limn→∞Cn) 

where β is a Borel field [37] of an arbitrary set X. 
The Sugeno fuzzy-λ measures was introduced by Tahani et al. [60]. 

Suppose there is a set of scores S = {s1, s2, s3, …, sn} where N is the 
number of information sources (N = 4 in our case), and e ∈ S. The 
Sugeno-λ measure is the function fλ: 2S → [0, 1] such that it satisfies the 
following conditions:  

1. fλ(S) = 1  
2. if ei ∩ ej = φ, then ∃ a λ > − 1, such that, Equation (1) holds true. 

fλ(ei ∪ ej) = fλ(ei) + fλ(ej) + λ.fλ(ei)(ej) (1) 

Therefore, λ is the real root of the equation as given in Equation (2). 

λ + 1 =
∏N

n=1
(λ.f (en) + 1) (2) 

The Sugeno Integral [56] is a fuzzy measure integral [46] that can be 
defined as follows: Suppose (A, μ) is a measurable (Borel) space, and f: X 
→ [0, 1] is a μ-measurable function, then the Sugeno Integral of the 
measurable function f with respect to a fuzzy measure Ω is given as in 
Equation (3). 
∫

f (x)dΩ = max
1≤i≤n

(min(f (xi),Ω(Ai))) (3)  

where Ω(Ai) = Ω({xi, xi+1, xi+2, …, xn}) and. 
{f(x1), f(x2), f(x1), …, f(xn)} are the ranges defined as f(x1) ≤ f(x2) ≤ f 

(x3) ≤ … ≤ f(xn) The algorithm for computing the Sugeno Integral is 

shown in Algorithm 1. 

Algorithm 1. Pseudo code for Sugeno Integral Ensemble

4. Results and discussion 

This section describes the dataset used in the current study, and the 
results obtained by implementing the proposed approach on the dataset. 
Comparisons to existing standard models in literature have also been 
drawn to validate the efficacy of the framework. 

4.1. Dataset description 

The dataset used in the present work is proposed by Soares et al. [54] 

Fig. 10. Architecture of wide ResNet.  

Table 2 
Class-wise distribution of images in the train and test set of the SARS-COV-2 
dataset [54].  

Class Category Total Train set Test set 

1 COVID 1252 876 376 
2 Non-COVID 1229 860 369  
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which they generously made publicly available on Kaggle.2 It consists of 
a total of 2481 chest CT-scan images divided into two categories: COVID 
and Non-COVID, distributed unevenly among the two classes. The dis-
tribution of images in the training and test set from each class are shown 
in Table 2. The images in the dataset have been classified by Soares et al. 
[54] according to the results from the RT-PCR tests conducted on the 
patients. Patients with confirmed COVID or Non-COVID cases are only 
present in the dataset and thus, there is little or no risk of unnecessary 
bias through the non-representative selection of control patients. 

4.2. Evaluation criteria 

The current image classification problem is a binary classification 
task and the metrics that have been used for evaluating the performance 
of the proposed approach on this task are accuracy, specificity, preci-
sion, recall or sensitivity and f1-score. The definitions for ”True Positive 

(TP)”, ”False Positive (FP)”, ”True Negative (TN)” and ”False Negative 
(FN)” are required to understand and formulate these parameters. 

The two classes in the binary classification task are the COVID-19 
positive class and the COVID negative class. If the lung CT-image is of 
a COVID-19 positive patient and the model classifies it to be COVID 
positive class (i.e., correct classification), then the sample image is said 
to be True Positive (TP). Now, if the lung CT image is of a COVID positive 
patient, but the model classifies it to be COVID negative, the sample is 
called False Positive (FP). Similarly, a COVID negative lung CT image 
when classified correctly is called True Negative (FN). And, a COVID 
negative CT-scan image misclassified as COVID positive is called False 
Negative (FN). The evaluation metrics can now be formulated as 
Equations (4)–(8). 

Accuracy =
TP + TN

TP + FP + TN + FN
(4)  

Specificity =
TN

TN + FP
(5)  

Precision =
TP

TP + FP
(6)  

Recall or Sensitivity =
TP

TP + FN
(7)  

F1 − Score =
2 × Precision × Recall

Precision + Recall
(8) 

Table 3 
Hyperparameters set used for model training in the proposed framework.  

Hyperparameter Value 

Optimizer Stochastic Gradient Descent 
Loss function Cross-entropy 
Batch Size 16 
Initial Learning Rate 0.0001 
Momentum 0.99 
Period of Learning Rate Decay 10 epochs 
Number of Epochs 100  

Fig. 11. Loss curves obtained by the pre-trained models on the SARS-COV-2 dataset [54]: (a)VGG-11 (b) GoogLeNet (c)SqueezeNet1.1 and (d) Wide ResNet-50-2, on 
the Kaggle COVID-19 dataset. 

2 https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset. 
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In the COVID-19 classification task, the number of FP cases is more 
dangerous, because COVID-19 is an extremely contagious disease, and a 
COVID-19 positive patient whose diagnosis is determined as COVID 
negative will infect other people as a super-spreader. However, the FP 
case is not that big a problem, since a COVID negative patient diagnosed 
as a positive needs to just maintain precautions under prescribed 
guidelines since it is a disease with a very low mortality rate. The 
contagiousness of a virus is inversely related to its deadliness. 

4.3. Implementation 

The deep transfer learning models used in the current study have 
been trained for 100 epochs on the COVID-19 binary classification 
dataset of lung CT-scan images. The hyperparameters used for the model 
training are shown in Table 3 which have been set experimentally. The 
loss curves obtained on training by the four models are shown in Fig. 11. 

The probability distribution from the four classifiers has been fused 
using the Sugeno Fuzzy Integral as described in Section 3.5. The 
confusion matrix of the final predictions on the test set is shown in 
Fig. 12. 

The class-wise results obtained by the proposed framework on the 
test set of the SARS-COV-2 dataset are shown in Table 4. 

The most commonly used tests for COVID-19 detection are the RT- 
PCR test and the rapid antigen-antibody test. The RT-PCR test takes a 
long time to produce results and is not sufficiently sensitive. The rapid 
antigen-antibody test relies on the detection of formed antibodies in the 

human body and produces results in 15 min. However, the human body 
requires several days to form antibodies, and thus in the initial stage, an 
infected patient may go undetected for days. The proposed automated 
framework gives a high classification accuracy and sensitivity by using 
chest CT-scan images while also being a much faster method. The pro-
posed method can be used as a plug-and-play model, where new test 
images can be passed through the model to get the predictions by the 
ensemble mechanism. Thus, the incorporation of the proposed method 
in the field under consideration is simplistic and COVID-19 cases can be 
screened more efficiently. 

4.4. Verification of complementary features 

For establishing the complementary nature (dissimilarity) in the 
probability vectors generated by the four pre-trained CNN models, two 
statistical divergence methods are incorporated: the Kullback-Leibler 
Divergence (KLD) [27] and the Jensen-Shannon Divergence (JSD) [40]. 

KLD, is closely related to relative entropy, is a measure of dissimi-
larity between two probability distributions, and is an non-symmetric 
measure. Suppose we have a probability space X. For every discrete 
random variable x in X, suppose there are two discrete probability dis-
tributions p(x) and q(x) on this same space obtained from two classifiers, 
i.e., p(x) + q(x) = 1 and p(x), q(x) > 0. Then the KLD (discrete form) 
from q(x) to p(x) is given as in Equation (9). 

DKL(p(x)‖q(x)) =
∑

x∈X
p(x)ln

(
p(x)
q(x)

)

(9) 

Since DKL(p(x)‖q(x)) ∕= DKL(q(x)‖p(x)), the symmetrical statistical 
divergence known as JSD has been proposed, which is derived from the 
KLD, and is a smoothed version of it. For probability distributions P = p 
(x) and Q = q(x) on the probability space X, suppose we have another 
probability distribution M = 1

2 (P + Q), then the discrete form of JSD is 
given as in Equation (10). 

DJS(P‖Q) =
1
2
[DKL(P‖M) + DKL(Q‖M)] (10) 

The KLD and JSD values between every pair of classifiers from the 

Fig. 12. Confusion matrix obtained by the proposed framework on the test set 
of the SARS-COV-2 dataset [54] used in this study. 

Table 4 
Class-wise results obtained by the proposed method on the test set of the SARS- 
COV-2 dataset [54].  

Class Accuracy 
(%) 

Specificity 
(%) 

Precision 
(%) 

Sensitivity 
(%) 

F1- 
Score 
(%) 

COVID 98.94 98.92 98.94 98.94 98.94 
Non- 

COVID 
98.92 98.94 98.92 98.92 98.92 

Aggregate 98.93 98.93 98.93 98.93 98.93  

Table 5 
KL and JS divergences among the four pre-trained CNN classifiers on the SARS- 
COV-2 dataset [54].  

Distribution P Distribution Q DKL(P‖Q) DJS(P‖Q) 

VGG-11 GoogLeNet 0.108 0.134 
GoogLeNet VGG-11 0.456 
VGG-11 SqueezeNet v1.1 0.651 0.105 
SqueezeNet v1.1 VGG-11 0.164 
VGG-11 Wide ResNet-50-2 0.314 0.104 
Wide ResNet-50-2 VGG-11 0.480 
GoogLeNet SqueezeNet v1.1 0.386 0.131 
SqueezeNet v1.1 GoogLeNet 0.105 
GoogLeNet Wide ResNet-50-2 0.226 0.128 
Wide ResNet-50-2 GoogLeNet 0.194 
SqueezeNet v1.1 Wide ResNet-50-2 0.297 0.106 
Wide ResNet-50-2 SqueezeNet v1.1 0.326  

Table 6 
Comparison of the proposed framework with some standard 
pretrained models on the SARS-COV-2 dataset [54].  

Model Accuracy 

DenseNet161 [23] 96.91% 
Wide ResNet-50-2 [69] 96.78% 
VGG-11 [53] 96.38% 
SqueezeNet v1.1 [24] 96.24% 
GoogLeNet [57] 96.11% 
Inception v3 [58] 92.15% 
Proposed Method 98.93%  
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four pre-trained CNN models are shown in Table 5. 

4.5. Comparison with existing methods 

The proposed approach is compared with some standard deep 
transfer learning models, including the ones used for the ensemble in the 
present study, and the results thus obtained are tabulated in Table 6. 
DenseNet161 performs closest to the proposed ensemble model, 
obtaining an accuracy of 96.91%, but still, the performance is 2.2% 
lower than the proposed method. 

The results obtained by using different ensemble techniques on the 
SARS-COV-2 dataset [54] are shown in Table 7. The fuzzy measures used 
for the Sugeno Integral has been found through extensive experimen-
tation to be {0.35, 0.35, 0.02, 0.28} for {VGG-11, GoogLeNet, Squee-
zeNet v1.1, Wide ResNet-50-2} giving the best performance on several 
runs. The weights assigned for computing the weighted average are 
{0.27, 0.32, 0.23, 0.18}. Other than the weighted average approach, 
other ensembles that have been used for comparison are the 
element-wise Multiplication Rule, Maximum Probability Rule, Majority 
Voting Ensemble, and Average Probability Rule. 

Among the explored ensemble techniques, the weighted average 
approach gives the result closest to the fuzzy integral ensemble, where 

the weights have also been assigned experimentally. This weighted 
average ensemble is a static computation process since there is no scope 
for dynamically refactoring the weights at the prediction time. Fuzzy 
integral fusion, on the other hand, can use the confidence scores of each 
classifier and tailors the weights on the fly, which is a different set for 
each sample data point. This enables further refinement of predictions 
even after setting the fuzzy measures. 

Existing approaches for the chest CT classification for COVID-19 
detection on the dataset used in this study mostly use a single CNN 
model for classification. Halder et al. [17] and Jaiswal et al. [25] used 
transfer learning with DenseNet201, for classification. Panwar et al. 
[44] used transfer learning with VGG-19 along with adding 5 more fully 
connected layers before the final classification layer. In their experi-
ments on chest X-Ray images, they employed a Grad-CAM based colour 
visualization approach for interpreting the X-ray scans for further 
diagnosis. Angelov et al. [4] used the GoogLeNet architecture (non--
pretrained model) for extracting deep features, which were used by an 
MLP classifier for the final classification on the chest CT-images dataset 
and Sen et al. [49] used a bi-stage deep feature selection approach for 
the COVID-19 detection problem. The results obtained by these methods 
on the SARS-COV-2 dataset [54], used in the current study, have been 
compared with the model proposed by us in Table 8. The performance of 
the proposed model is seen to be appreciably better than the existing 
methods in the literature. As compared to the single CNN model-based 
approaches by Jaiswal et al. [25], Panwar et al. [44] and Angelov 
et al. [4], the proposed approach performs significantly better justifying 
the use of an ensemble framework. 

4.6. GradCAM analysis 

Gradient-weighted Class Activation Maps or GradCAM [48] provides 
a visual representation of the regions in an image that is focused on by 
the CNN model. The features from the convolution layers of the trained 
CNN model are used to produce a gradient-based weighted activation 
map which is superimposed on the input image to highlight the regions 
that are considered discerning by the CNN model. 

Fig. 13 shows the GradCAM activations by the four different models 
used to form the ensemble on some sample images taken from the SARS- 
COV-2 dataset [54]. As seen from the figure, different models focus on 
different parts of the same chest CT image. For example, Fig. 13(a) 
shows a CT image of a COVID-19 infected patient. Fig. 13(b), (c), (d) and 
(e) respectively show the activations produced by VGG-11, GoogLeNet, 
SqueezeNet v1.1 and Wide ResNet-50-2. VGG-11 focuses on the lower 
part of the right lung (left side of the image) and the middle part of the 
left lung. GoogLeNet focuses on the middle to lower part of the left lung. 
SqueezeNet v1.1 focuses their attention on the GGO appearing on the 
upper and lower regions of the right lung and middle of the left lung, and 
Wide ResNet-50-2 focuses on the entirety of the right lung (primarily on 
the lower side) where the GGO is more concentrated. 

The different models focusing on the different regions of the chest CT 
images justify that complementary information is being extracted, 
making the ensemble successful. From the examples shown, it is clear 
that all the models focus on different regions inside the lungs of the 
patients. Since GGO starts appearing in the lungs of COVID-19 infected 
patients from the onset of the disease, the models can classify the images 
correctly most of the time by looking for the white opacities in the lungs. 
Thus, the proposed framework is fit for detecting the early stages of 
COVID-19, unlike the rapid antigen test which is only effective after 
several days of the infection. This makes the proposed framework a good 
COVID-19 predictor for use in the practical field. 

4.7. Error analysis 

The proposed framework works reliably well for even heavily noisy 
images examples of which are shown in Fig. 14(a) and (f). Both the 
images in the figure have been taken in bad imaging conditions, the 

Table 7 
Comparison of Fuzzy Integral fusion of classifiers with 
other popular ensemble techniques on the SARS-COV-2 
dataset [54].  

Ensemble technique Accuracy 

Multiplication Rule 95.82% 
Maximum 96.78% 
Majority Voting 97.65% 
Average 97.83% 
Weighted Average 98.12% 
Proposed Method 98.93%  

Table 8 
Comparison of the proposed framework with existing methods in the literature 
on the SARS-COV-2 dataset [54].  

Method Accuracy 
(%) 

Specificity 
(%) 

Precision 
(%) 

Sensitivity 
(%) 

F1- 
Score 
(%) 

Yazdani 
et al. [68] 

– 96.20 – 85.00 90.00 

Silva et al. 
[52] 

87.60 – – – 86.19 

Angelov 
et al. [4] 

88.60 – 89.70 88.60 89.15 

Wang et al. 
[64] 

90.83 – 95.75 85.89 90.87 

Panwar et al. 
[44] 

94.04 95.86 95.00 94.00 94.50 

Sen et al. 
[49] 

95.32 – 95.30 95.30 95.30 

Jaiswal et al. 
[25] 

96.25 96.21 96.29 96.29 96.29 

Halder et al. 
[17] 

97.00 95.00 95.00 98.00 97.00 

Horry et al. 
[21] 

97.40 – 99.10 95.50 97.30 

Kundu et al. 
[30] 

97.81 – 97.77 97.81 97.77 

Pathak et al. 
[45] 

98.37 – 98.74 98.87 98.14 

Biswas et al. 
[8] 

98.79 – 98.79 98.79 98.79 

Banerjee 
et al. [7] 

98.85 – – – – 

Proposed 
Method 

98.93 98.93 98.93 98.93 98.93  
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Fig. 13. Some sample CT-scan images (taken from the SARS-COV-2 dataset [54]) along with their GradCAM activations by the four models used for forming the 
ensemble in this study. 

Fig. 14. Correctly classified noisy samples (from the SARS-COV-2 dataset [54]) of: (a) COVID-19 infected case with its corresponding GradCAM activation by the 
four models shown in (b)–(e) and (f) Non-COVID case with its corresponding GradCAM activation by the four models shown in (g)–(j). 
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images being hazy and having improper contrast. In the CT-scan image 
shown in Fig. 14(f), both the lungs of the patient are not prominent, but 
even so, the proposed approach could classify the images correctly. For 
further justification, the GradCAM activations by the four base learners 
have been shown along with the images. In both cases, the models were 
able to focus on the correct regions inside the lungs to compute the 
predictions. And since different regions were focused on the different 
models, the ensemble was able to incorporate the complementary in-
formation provided by each. 

However, Fig. 15(a) and (f) shows two misclassified samples from 
each category- COVID and Non-COVID. Fig. 15(a) shows the lung CT- 
scan of a COVID-19 positive patient but has been classified as a Non- 
COVID case by the proposed model. The image when examined can be 
seen that does not prominently have GGO in either lung and possibly is a 
very mildly affected COVID case. The image has most likely been taken 
in a very early stage, where the COVID-19 virus has not even started 
affecting the lungs, leading to a wrong prediction. The GradCAM acti-
vations in Fig. 15(b)–(e) shows that the base learners were not able to 
localize on the correct regions of the lungs to extract discerning infor-
mation. Fig. 15(f) shows the lung CT-scan image of a Non-COVID cate-
gory patient which has been misclassified to be a COVID case by the 
proposed model. The bottom portion of the right (image perspective) 
lung has an erroneous white region, which might have been considered 
to be the GGO by the model (which is seen in the GradCAM activation 
maps in Fig. 15(g)–(j)), resulting in a wrong prediction. 

Even so, only a few images have been misclassified by the proposed 
model, and the false positive rate is also low, which is important for a 
COVID classifier. Although the model fails to accurately classify all the 
samples provided, it still performs reliably well and is very sensitive to 
changes in chest CT scans. 

5. Conclusion and future work 

COVID-19 is an extremely contagious disease whose alarming spread 
on the global scale has crippled the world health care systems. It has set 
back the global economy to a near stand-still as the countries of the 
world impose lockdown throughout the country to try and halt the 
spread of the virus. As the human toll increases, the need for a conclusive 
solution becomes direr. The primary reason for the rapid spread of the 
virus is the lack of equipment for population-wide screening of infected 
patients. Coupled with this, the gold-standard RT-PCR test is not all- 
reliable either, being only 71% sensitive, and takes 6–9 h for a single 
test as well. This demands a fully automated system that can detect 

COVID-19 through other modalities in a fast and reliable manner. 
In this paper, we have proposed a fully automated, computer-based 

detection method that uses lung CT-scan images for the classification 
of COVID-19 infected patients. Chest CT scans are more sensitive than 
RT-PCR tests and X-Rays, while also being more widely available than 
RT-PCR test kits. The proposed method uses deep learning techniques 
along with a fuzzy measure based integral, the Sugeno Integral for 
ensembling the features of four pre-trained deep transfer learning 
models. 

The results from the proposed approach on the SARS-COV-2 dataset 
[54] outperforms the current state-of-the-art results on the same dataset. 
From the confusion matrix in Fig. 12, it is clear that the False Positive 
samples are very less which is important as explained in Section 4.2. 
Also, from Table 4, it is evident that the accuracy and sensitivity are very 
high (compare with the 71% sensitivity of RT-PCR). So, it can be 
concluded that the proposed approach is reliable and can be used for 
COVID-19 detection. 

As discussed before, the proposed model was unable to classify a few 
instances of mild COVID situations. Since the COVID-19 infection only 
affects the inside of the lungs, and there are no pleural effusions, a patch- 
based approach that selects patches from the image for training, or an 
attention mechanism can be developed in future. Choosing the fuzzy 
measures is an optimization problem, but for this study, we set the 
measures through extensive experiments. We aim to address this prob-
lem in future as well. 
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