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Myostatin (MSTN) functional inactivation can change the proportion of lean meat
and fat content in pigs. While both genotype and microbial composition are
known to affect the host phenotype, so far there has been no systematic study
to detect the changes in the intestinal microbial composition and metabolome
of MSTN single copy mutant pigs. Here, we used 16S rDNA sequencing and
metabolome analysis to investigate how MSTN gene editing affects changes in the
microbial and metabolome composition in the jejunum and the cecum of Large
White pigs. Our results showed that Clostridium_sensu_stricto_1, Bifidobacterium,
Lachnospiraceae_UCG-007, Clostridium_sensu_stricto_6, Ruminococcaceae_UCG-
002, and Ruminococcaceae_UCG-004 were significantly upregulated; while
Treponema_2 and T34_unclassified were significantly downregulated in the jejunum
of MSTN pigs. Similarly, Phascolarctobacterium, Ruminiclostridium_9, Succinivibrio,
Longibaculum, and Candidatus_Stoquefichus were significantly upregulated, while
Barnesiella was significantly downregulated in the cecum of MSTN pigs. Moreover,
metabolomics analysis showed significant changes in metabolites involved in purine,
sphingolipid and tryptophan metabolism in the jejunum, while those associated
with glycerophospholipid and pyrimidine metabolism were changed in the cecum.
Spearman correlation analysis further demonstrated that there was a significant
correlation between microflora composition and metabolites. Our analyses indicated
the MSTN editing affects the composition of metabolites and microbial strains in the
jejunum and the cecum, which might provide more useable nutrients for the host of
MSTN± Large White pigs.
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INTRODUCTION

Myostatin (MSTN) is a protein that inhibits muscle development
(McPherron et al., 1997) and its inactivation interferes with
fat deposition, which results in a higher proportion of lean
meat (Zhao et al., 2005; Guo et al., 2009). Pigs are a major
source of high-value animal protein, whereby farming animals of
containing with MSTN loss-of-function mutations has become
a research priority to facilitate the breeding of stock with better
meat quality and higher economic value. Previous studies have
reported the successful generation of healthy MSTN knockouts
in different pig breeds, including Meishan (Qian et al., 2015),
Erhualian (Wang et al., 2017), Large White/Landrace × Duroc
(Rao et al., 2016) and Landrace pigs (Wang et al., 2015). The
animals showed a reduced fat content and increased tenderness.
Furthermore, pigs harboring naturally occurring single copy
MSTN mutations have higher muscle mass and lower fat content
compared to the wild-type genotype (Matika and Robledo, 2019).
In fact, the phenotype of mutant MSTN pigs is affected by both
double and single mutations that consistently the host leaner,
with higher muscle and lower fat proportions. Therefore, these
genotypes are likely to have significant future applications.

On the other hand, the gut microbial community is a complex
system that co-exists inside each living body and associated
with meat quality and body fat (Park et al., 2014). Yang et al.
(2017) reported that microbial transplantation from pigs to mice
changed the metabolic profiles of skeletal muscle (Yang et al.,
2017). Mach et al. (2015) investigated the early establishment
of the microbiome in pigs and identified enterotypes related to
growth (Ramayo-Caldas et al., 2016), and (Xiao et al., 2016)
reported the potential effects of different microbial profiles
on lipid metabolism. Finally, Lu et al. (2018) reported a
relationships between growth and carcass composition and
specific microbial composition as well as alpha diversity (Lu et al.,
2018). These observations demonstrate that gut bacteria affect
host nutritional, physiological and immunological processes
in various ways (Maltecca and Bergamaschi, 2020). Indeed,
interference with intestinal microbial homeostasis is known to
have downstream effects on intestinal metabolism (Alou et al.,
2016; Lippert et al., 2017).

Given the above literatures, MSTN gene mutation can affect
the proportion of lean meat and fat of pigs. And the gut microbial
is associated with meat quality and body fat Nevertheless, up
to data there is no a systematic study detecting the changes
in intestinal microbial composition and metabolome of MSTN
single mutant pigs. In this study, we used 16S rDNA gene
sequencing and metabolome analysis to investigate changes in the
microbial composition and metabolome in the jejunum and the
cecum of MSTN edited Large White pigs.

MATERIALS AND METHODS

Animals
The pigs had ad libitum access to a commercial pig diet and
water throughout the study period. All experiments involving
animals were approved by the Animal Welfare and Research

Ethics Committee at the Institute of Animal Sciences, Chinese
Academy of Agricultural Sciences (IAS2018-10). Animal care
and treatment were complied with the standards described in
the guidelines for the care and use of laboratory animals of the
Institute of Animal Sciences of CAAS.

Sampling
To minimize the number of variables in the experiment,
we selected six heterozygous mutants (average body
weight: 114.4441 ± 3.6756 kg; average body length:
100.2235 ± 0.9389 cm) and six wild type (average body
weight: 115.3689 ± 3.6499 kg; average body length:
114.4441 ± 3.6756 cm) 8 month old pigs from the offspring of
the same MSTN+/− mutant boars (Supplementary Table 1).
The animals were raised on the same farm with the same
management. Feed came from Tianjin Taikang feed mill, and
contained corn, fish meal, soybean meal, sodium chloride,
amino acids, vitamins, trace elements, stone powder and
calcium hydrogen phosphate; the nutrient levels of the diets
can be found in Supplementary Table 2. The animals were
electrocuted, and the jejunum and cecum contents were
immediately removed.

Genotype Identification
Samples of piglets’ ear tissue were taken and preserved in
alcohol. Total DNA was extracted according to the instructions
of the animal tissue genomic DNA extraction Kit (TIANGEN,
DP324). After that, the MSTN gene was amplified with 2 × Es
Taq MasterMix (CoWin Biosciences).The PCR amplification
products of MSTN (20 µL) were detected by 1.5% agar-gel
electrophoresis. The PCR products (20 µL) were sequenced by
Sangon Biotech (Shanghai) Co., Ltd.

16S rDNA Sequencing
DNA from fecal samples was isolated using the
Stool DNA Kit (Omega, United States). The primers
(F: 5′-ACTCCTACGGGAGGCAGCAG-3′; R: 5′-
GGACTACHVGGGTWT-CTAAT-3′) were used in the PCR
amplification of the V3–V4 region of the bacterial 16S rRNA
gene. The 5′ ends of the primers were tagged with specific
barcods per sample and sequencing universal primers. PCR
amplification was performed in a total volume of 25 µL reaction
mixture containing 25 ng of template DNA, 12.5 µL PCR Premix,
2.5 µL of each primer, and PCR-grade water. The size of the PCR
products was confirmed with 2% agarose gel electrophoresis,
purified with AMPure XT beads (Beckman Coulter Genomics,
Danvers, MA, United States) and then quantified by Qubit
(Invitrogen, CA, United States). The amplicon pools were
prepared for sequencing, and the size and quantity of the
amplicon library were assessed on an Agilent 2100 bioanalyzer
(Agilent, United States) and with the Library Quantification Kit
for Illumina (Kapa Biosciences, Woburn, MA, United States).

Amplicon libraries were sequenced on an Illumina MiSeq
platform according to the manufacturer’s recommendations,
which were provided by LC-Bio. Feature list and feature sequence
were obtained by removing the background. Non-metric
Multidimensional Scaling(NMDS) analysis was performed
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according to the weighted UniFrac distance metrics. The number
of observed species and the indices of Chao 1 (species richness),
Shannon and Simpson (diversity) were calculated to estimate
alpha diversity. The PICRUSt software was used to predict the
function of composition of samples.

The dataset for 16S rDNA sequencing was deposited in
GenBank Sequence Read Archive (SRA) database and are
available under the accession number PRJNA 687099 (https://
dataview.ncbi.nlm.nih.gov/object/PRJNA687099).

Untargeted Metabolomic Study
All fecal samples were thawed on ice, and metabolite were
extracted with 50% methanol Buffer. The detailed extraction
procedures can be found in (Yu et al., 2018). LC-MS analysis
was performed on an ultra performance liquid chromatography
(UPLC) system (SCIEX, United Kingdom) coupled with the
high-resolution tandem mass spectrometer TripleTOF5600plus
(SCIEX, United Kingdom). The Q-TOF was operated in both
positive and negative ion modes.

The raw LC-MS data files were converted into mzXML format,
and then processed by the XCMS, CAMERA and metaX (Li et al.,
2018) toolbox, which was implemented in R. The online KEGG
and HMDB databases were used to annotate the metabolites by
matching the exact molecular mass data (m/z) of the samples with
those from the database.

Student t-tests were used to calculate significant differences
in metabolite concentrations between the two groups. We
have implemented multiple test corrections by adjusting the P
values using an FDR (Benjamini–Hochberg). Supervised PLS-
DA was conducted through metaX in order to discriminate
the different variables between groups. The metabolites with
VIP > 1, P-value < 0.05 and fold change(FC) ≥ 1.5 or
FC ≤ 0.5 were considered significantly different. Furthermore,
significantly differentially abundant metabolites screened from
untargeted metabolomics were imported into the MetaboAnalyst
4.0 database to perform pathway analysis.

Correlation Analysis
We performed spearman correlation analysis on the
differentiated metabolites screened by metabolomics and
the significantly different genera obtained by 16S rDNA
sequencing analysis.

RESULTS

Genotype Identification
The pigs used in this study were selected from the offspring
of healthy MSTN+/− mutant boars created by removing 11bp
nucleotides (869-879), and introducing a single nucleotide
A > G conversion at position 882 (Supplementary Figure 1A)
and WT mothers. Since 6302 is a single copy mutant pig,
the progeny will contain both MSTN+/− and WT pigs. Ear
samples were collected one month after birth for genotyping.
The WT DNA sequences showed single peaks throughout the
MSTN gene, while the mutant DNA sequences showed multiple,

overlapping, divergent base calls starting after position 868 (see
Supplementary Figure 1B).

Microbiome of Intestinal Contents From
WT and MSTN+/− Large White Pigs
We used a total of 24 samples consisting of the jejunum and
the cecum content from WT and MSTN groups to study gut
microbiota diversity through 16S rDNA (V3-V4 region) high-
throughput sequencing. We evaluated differences in bacterial
diversity between the MSNT and WT groups in both jejunum
and cecum samples aligning these sequences and estimating
alpha and beta diversity indices. The Chao1 index, Shannon
and Simpson indexes, indicators of microbial richness were no
statistically significant differences between groups (Figures 1A–
C). β-diversity was assessed by Weighted UniFrac distance-
based Non-metric Multidimensional Scaling (NMDS), which
is a powerful ordination method that allows to uncover non-
linear relationships between samples. The NMDS-based maps
of the jejunum showed distinct differences between wild-type
(WT_J) and MSTN -edited (MSTN_J) pigs (stress value = 0.02,
Figure 1D). Similar distinct differences were observed when
comparing cecum sample (stress value = 0.06, Figure 1F). Our
results further showed that MSTN editing had no significant
effect on the bacterial abundance and diversity of despite the
aforementioned changes in the gut microbiota composition in the
jejunum and the cecum of MSTN pigs.

Next, we assessed the overall bacterial community
compositions using heatmaps displaying the abundance
of taxa at the phylum (Supplementary Figure 2A) and
genus (Figure 2A) levels. At the phylum level, we found an
downregulated of Spirochaetes in the jejunum of MSTN+/−

pigs (Supplementary Figure 2B). At the genus level,
Lactobacillus (44.99%), Clostridium_sensu_stricto (22.00%),
Terrisporobacter (14.11%) and Turicibacter (3.08%) were the
predominant genera in the MSTN jejunum; while Lactobacillus
(39.63%), Escherichia-Shigella (14.87%), Brevundimonas
(8.20%) and Clostridium_sensu_stricto (4.85%) were the
most abundant in the WT jejunum. Wilcoxon Rank Sum Test
was performed to compare the relative abundance of species
in the two groups. Clostridium_sensu_stricto_1 (p = 0.0065),
Bifidobacterium (p = 0.0374), Lachnospiraceae_UCG-007
(p = 0.0374), Clostridium_sensu_stricto_6 (p = 0.0061),
Ruminococcaceae_UCG-002 (p = 0. 0.0495), and
Ruminococcaceae_UCG-004 (p = 0. 0.0495) were significantly
upregulated in MSTN_J;while Treponema_2 (p = 0.021)
and T34_unclassified (p = 0.0028) were significantly
downregulated (Figure 2B).

In cecum samples, Lactobacillus (15.59%),
Ruminococcaceae_UCG-005 (10.13%), Escherichia-Shigella
(4.40%) and Clostridium_sensu_stricto_1 (4.14%) were the most
abundant genera in the MSTN_C group; while Lactobacillus
(18.55%), Streptococcus (11.03%), Ruminococcaceae_UCG-
005 (8.26%) and Clostridium_sensu_stricto_1 (5.22%)%)
were the most frequent in the WT_C group. A comparison
between these groups showed a significant upregulated of
Phascolarctobacterium (p = 0.0374), Ruminiclostridium_9
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FIGURE 1 | Gut microbiome diversity and structure analysis. (A–C) Violin plots showing chao1 (A), shannon (B), and simpson (C) of indices in both WT and
MSTN+/− jejunum and cecum samples; (D,E) Non-metric multi-dimensional scaling (NMDS) ordination plot derived from weighted pairwise UniFrac distances in
both WT and MSTN+/− jejunum (D), and cecum (E) samples. Stress values for ordination plot were <0.1, which indicates the accuracy of data representation in a
two-dimensional space.
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FIGURE 2 | Generic differences between WT and MSTN groups. (A) Heat map of relative abundance of 30 genera. (B) Significantly different genera between WT
and MSTN cecum samples. (C) Significantly different genera between WT and MSTN jejunum samples.

(p = 0.0163), Succinivibrio (p = 0.0278), Longibaculum
(p = 0.0033), and Candidatus_Stoquefichus (p = 0.0463) in
the MSTN group. On the contrary, Barnesiella (p = 0.0201) was
significantly downregulated (Figure 2C).

We predicted the functional potential of bacterial
communities in WT and MSTN samples using the PICRUSt2
software (Langille et al., 2013). KEGG pathway analyses
unveiled a total of 15 significant pathways were classified in
MSTN jejunum samples (Figure 3A), in particular L-rhamnose
degradation I (the most significant). Moreover, we were able
to find 7 significantly different KEGG pathways in MSTN
cecum samples, including acetyl-CoA fermentation to butanoate
II, adenosylcobalamin salvage from cobinamide I, colanic
acid building blocks biosynthesis, purine ribonucleosides
degradation, superpathway of arginine and polyamine

biosynthesis, superpathway of GDP-mannose-derived O-antigen
building blocks biosynthesis and thiamin salvage II (Figure 3B).

Non-targeted Metabolomics of Fecal
Samples Form WT and MSTN+/− Large
White Pigs
To evaluate the metabolic changes occurring as a response
to MSTN gene editing, we analyzed a total of 24 intestinal
contents from the jejunum and cecum of WT and MSTN+/−

Large White pigs (n = 6 for each group) by LC-MS-based
untargeted metabolomics. This analysis allowed us to identify
a total of 805 metabolites from experiments including both
positive and negative ion modes. We then performed a partial
least-squares-discriminant analysis (PLS-DA) to identify the
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FIGURE 3 | Comparison of PICRUSt-predicted functional pathways in the jejunum and the cecum between WT and MSTN+/− groups. (A,B) The extended error
bars method in STAMP showing relative difference pathway in comparisons involving one hypervariable dataset and other datasets using Welch’s t-test (two sided).

altered metabolites in MSTN-edited Large White pigs. The PLS-
DA model revealed significant differences between WT and
MSTN+/− samples in the same intestinal tract (Figures 4A–
D). Specifically, our PLS-DA model revealed metabolic profile
differences between WT_J and MSTN_J (Figures 3A,B), WT_I
and MSTN_I (Figures 4A,B), and WT_C and MSTN_C
(Figures 4C,D), suggesting that MSTN gene editing leads to
significant biochemical changes in the gut. The R2 and Q2
values of all mathematical models used are summarized in
Supplementary Table 3.

We identified 15 differently enriched metabolites between
MSTN_J and WT_J based on VIP values and relative abundance,

of which 5 were up-regulated and 10 were down-regulated
in MSTN_J samples (Table 1). These metabolites were mainly
involved in purine, sphingolipid and tryptophan metabolism
(Figure 5A).

Analogously, we found 22 differently enriched metabolites
between the MSTN_C and WT_C samples, of which 7 were
up-regulated and 14 were down-regulated in the former. Half
of these metabolites were classified as lipids including fatty
acyls, sterol lipids, prenol lipids and glycerophospholipids
(Table 2). Functional analysis of these metabolites revealed
that they were mainly involved in glycerophospholipid and
pyrimidine metabolism (Figure 5B).
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FIGURE 4 | PLS-DA plot based on fecal metabolites. (A–D) PLS-DA plot of fecal metabolites detected in positive and negative mode between MSTN and WT pigs
in the jejunum (A,B) and cecum (C,D).

Correlation of Gut Microbiota With Fecal
Metabolic Phenotype
We have also conducted correlation analyses between the
changed relative abundance of gut bacterial taxa and altered
fecal metabolites, which were visualized in a heatmap (Figure 6).
In general, we found an agreement between the observed
taxa enrichment and metabolites presence in the jejunum
and samples. Network regulation analysis results of altered
metabolites and genera in the jejunum and the cecum are showed
in Supplementary Figure 3.

In summary, we demonstrated that MSTN gene editing
changed the structure and composition of the gut microbiome
and altered fecal metabolic configuration in the jejunum and the
cecum of MSTN+/− Large White pigs. Moreover, we showed
that a strong correlation between the significant differential

metabolites and significant changed genera in jejunum and
cecum. Non-targeted metabolomics identified a number of
metabolites that affected gene editing, possibly, at least in part,
due to ecological changes in the microbiota.

DISCUSSION

In this study, we aimed to determine the effects of MSTN gene
editing on the fecal microbiome and metabolome. Accordingly,
we employed an integrated approach consisting of 16S rDNA
sequencing and LC-MS-based untargeted metabolomics to
explore the phenotypical changes in gut microbiota and fecal
metabolic composition in the jejunal and cecal of MSTN-edited
Large White pigs.
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TABLE 1 | Fold changes (FC) for LC-MS-based significant different metabolomics datasets for the MSTN_J and WT_J groups.

Metabolites FC (MSTN_J/WT_J) p-value VIP Regulated HMD KEGG Class

Acylcarnitine 20:3 0.4430 0.0278 1.7653 down - C02301 Fatty Acyls

Indoleacetic acid 0.3444 0.0167 2.6622 down HMDB0000197 C00954 Indoles and derivatives

Stearidonic acid ethyl
ester

0.4983 0.0108 1.4994 down NA NA Fatty Acyls

trans-13-Octadecenoic
acid

0.4872 0.0489 1.9726 down NA NA Fatty Acyls

Trp-Ile 0.1674 0.0031 3.3156 down HMDB0029086 NA Carboxylic acids and derivatives

4-Pyrimidinamine,
5-cyclopropyl-2-[1-[(2-
fluorophenyl)methyl]-
1H-pyrazolo[3,4-
b]pyridin-3-yl]-

2.0251 0.0358 1.7076 up NA NA -

Acylcarnitine 18:2 3.1434 0.0440 2.1855 up HMDB06461 C02301 Fatty Acyls

Cholesta-4,6-dien-3-
one

3.7609 0.0432 2.3096 up HMDB0002394 NA Sterol Lipids

D-erythro-N-
stearoylsphingosine

2.2831 0.0237 1.2371 up HMDB0000252 C00319 Organonitrogen compounds

D-erythro-Sphinganine 3.5663 0.0175 2.2467 up HMDB0000269 C00836 Organonitrogen compounds

Guanine 3.5499 0.0103 2.3976 up HMDB0000132 C00242 Imidazopyrimidines

Guanosine 5.4285 0.0353 2.1855 up HMDB0000133 C00387 Purine nucleosides

Heptadecasphinganine 2.0789 0.0310 1.1752 up NA NA -

Inosine 4.7907 0.0029 2.7243 up HMDB0000195 C00294 Purine nucleosides

L-Cysteine S-sulfate 3.7617 0.0123 2.0186 up HMDB0000731 C05824 Carboxylic acids and derivatives

FIGURE 5 | Metabolic pathway enrichment analysis. (A,B) Overview of metabolites that were changed in the jejunum (A) and the cecum (B) of MSTN pigs
compared to WT.

Despite the overall similarities in the composition of the fecal
microbiome of at a phylum level, Wilcoxon Rank Sum Test
analyses revealed differences in the microbial profiles of MSTN-
edited and WT groups, which indicate that MSTN gene editing
is associated with shifts in the relative abundance of individual
gut bacterial species. The alpha diversity of intestinal microbiota
in the jejunum and the cecum was not observed between the
two groups. However, we found that the beta diversity of MSTN
intestinal contents was altered. Besides, several genus microbes
in both the jejunum and cecum were seen to up/down regulated
MSTN+/− Large White pigs. These findings somehow indicated
that the MSTN gene editing not only changes the proportion of
lean meat in Large White pigs (data no showed in this article),
and also the composition of microorganisms in the gut. The
result is inconsistent with a previous research using rectal feces

of MSTN double-allele knockout Meishan pigs (Cui et al., 2019).
The differences may arise from analyzing distinct pig species,
different genotypes and from employing different methodological
approaches for data analysis (e.g., QIIME 2 does not performed
clustering based on sequence similarity but instead revises the
sequencing errors of amplitors through dereplication, chimeric
filtering and other methods to improve accuracy).

The alpha diversity of the microbiome, to some degree, is a
health indicator of the host. In mice, social stress significantly
changes microbial population (Bailey et al., 2010) and reduces
the alpha diversity of gut microbiome (Bailey et al., 2011).
Stress-induced cage rearing reduces gut microbial diversity in
chickens as compared to free-range rearing (Chen et al., 2019),
while heat stress results in decreased gut microbial diversity in
Holstein dairy cows (Chen et al., 2018). Here, no changes in the
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TABLE 2 | Fold changes (FC) for LC-MS-based significant different metabolomics datasets for the MSTN_C and WT_C groups.

Metabolite FC
(MSTN_C/WT_C)

p-value wilcox.test_
p.value

VIP Regulated HMD KEGG MS2class

13-HODE 0.4684 0.0473 0.0650 1.7067 down HMDB0061708 null Fatty Acyls

1b,3a,12a-Trihydroxy-5b-
cholanoic
acid

0.3959 0.0383 0.0411 1.6173 down HMDB0000326 null Sterol Lipids

(3’RS,3’SR)-Astaxanthin 0.3865 0.0369 0.0411 3.0134 down HMDB0039128 null Prenol lipids

2-Indolinone 0.4540 0.0287 0.0411 2.0002 down NA NA -

Benzothiazole 0.4211 0.0372 0.0931 2.2433 down HMDB0032930 Benzothiazoles

3-Methylguanine 0.4256 0.0211 0.0152 1.8673 down HMDB0001566 C02230 Imidazopyrimidines

N-Acetyl-L-phenylalanine 0.3614 0.0170 0.0411 2.1251 down HMDB0000512 C03519 Carboxylic acids and
derivatives

2-(4-
Methoxyphenyl)naphthalic
anhydride

0.4777 0.0149 0.0152 1.8517 down HMDB0032909 null Naphthalenes

12,13-Dihydroxy-9Z-
octadecenoic
acid

0.4841 0.0167 0.0260 2.2591 down HMDB0004705 C14829 Fatty Acyls

2-Linoleoylglycerol 0.4459 0.0052 0.0043 1.9289 down HMDB0011538 NA Fatty Acyls

Acylcarnitine 17:2 0.4226 0.0215 0.0152 2.8360 down - C02301 Fatty Acyls

Peimine 0.4183 0.0214 0.0152 2.8521 down NA C10830 -

Acylcarnitine 19:4 0.4927 0.0027 0.0043 1.2353 down - C02301 Fatty Acyls

Acylcarnitine 20:3 0.3083 0.0126 0.0260 2.3226 down - C02301 Fatty Acyls

Ganoderiol F 0.4074 0.0084 0.0087 1.8565 down HMDB0038707 null Prenol lipids

Termitomycamide E 4.8589 0.0118 0.0152 1.6471 up NA NA -

LysoPG 18:0; LysoPG
18:0

4.3783 0.0140 0.0260 2.2877 up - C05980 Glycerophospholipids

2-Piperidinone 2.6932 0.0143 0.0152 1.9661 up HMDB0011749 null Piperidines

Thymidine 4.4249 0.0108 0.0260 2.6997 up HMDB0000273 C00214 Pyrimidine nucleosides

trans-13-Octadecenoic
acid

2.1795 0.0468 0.0931 2.6609 up NA NA Fatty Acyls

Erucamide 2.6252 0.0045 0.0043 2.9174 up NA NA -

LysoPE 18:0 2.2495 0.0095 0.0260 1.1495 up HMDB11129;HMDB11130 C04438 Glycerophospholipids

intestinal microbial alpha diversity of MSTN gene editing pigs
likely indicates no change in the health status of MSTN pigs.

The gut microbiota comprises numerous microorganisms,
and changes in the gut microbial composition are influenced by
both the host genotype and environmental factors (Neish, 2009;
David et al., 2014). Results showed that 2 genotypes, GG and
TT, in the rs16775833 within the DMRT1 gene can modulate the
microbial community structure and are associated with the body
weight of birds (Ji et al., 2020). The host’s genetic background,
including the different isoforms of the apolipoprotein E (APOE)
gene, can exert an influence over microbiota composition
(Guardia-Escote et al., 2019). All pigs were sampled under
the same feeding conditions throughout the experiment, but
the gut microbial composition of MSTN pig jejunum and
cecum microbes were altered, most likely due to changes in
the MSTN gene. The jejunum is specialized in absorbing small
nutrient particles via the enterocytes, and the mammal intestinal
microbiome plays a key role in converting food into useable
nutrients for the host. In the present study, concordant changes
in both metabolite presence and microorganism composition
in the jejunum were obtained. Clostridium_sensu_stricto_1,
a genus belonging to butyrate-producing Clostridia bacteria,

increased significantly in the MSTN group. Butyrate has a
significant part in the development of intestinal epithelial cells
and is essential for the energy supply of the host as the
final unabsorbed polysaccharide metabolite in the fermented
food of the intestinal microbiota (Pryde et al., 2002). Hence,
our observations suggest an upregulation in the production
of butyrate in the MSTN group that subsequently enhances
energy metabolism. Bifidobacterium is associated with health
promoting outcomes due to the production of bacteriocins
(Martinez et al., 2013), and might contribute to improved
metabolic end-products (e.g., acetate and lactate) (Alcon-Giner
et al., 2020). Accordingly, the upregulated of Bifidobacterium in
the MSTN group indicate that the production of acetate, lactate
and bacteriocins is likely upregulated in MSTN group, which
promotes energy metabolism and health. Interestingly, the main
function of this genus is to ferment sugars into volatile fatty
acids, CO2 and H2 (Berkessa et al., 2020), whereby an enrichment
of Clostridium_sensu_stricto_6 in the MSTN group suggest
that MSTN pigs might have enhanced sugar metabolism. The
Ruminococcaceae_UCG-002 is a hydrolytic-acidogenic bacteria,
that is known for its role in the organic compounds during
cation exchange resin-induced hydrolysis of waste activated
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FIGURE 6 | Correlation analysis between perturbed gut microbes and altered metabolites. (A,B) Pearson’s correlation analysis between perturbed genera and
metabolite concentrations in the jejunum (A) and the cecum (B). Asterisks indicate significant correlations between MSTN and WT pigs. Cells are according to
Spearman’s correlation coefficient between the significantly altered genera and metabolites; significantly positive correlation (P < 0.05), and significantly negative
(P < 0.05) correlations are shown in red and blue, respectively. ∗P < 0.05, ∗∗P < 0.01.

sludge. Some of these compounds include tryptophan-like and
tyrosine-like proteins, amino acids, aliphatic, and metabolic
intermediates (Xiao et al., 2020). The Ruminococcaceae_UCG-
004 has been associated with intestinal permeability indices

(Gao et al., 2019). The significant overrepresentation of these two
genera in MSTN_J suggested that the absorptive capacity of the
intestinal wall may be stronger, and that digestion of substances
in the intestinal tract is more efficient compared to wild-type.
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The increase of Phascolarctobacterium in the cecum of MSTN-
edited pigs with low fat content is consistent with previous results
showing a negative correlation between Phascolarctobacterium
and the percentage of body fat (Naderpoor et al., 2019). A decline
in the abundance of Phascolarctobacterium has been associated
with inflammatory diseases, including colorectal cancer, whereby
this bacteria might reduce colonic inflammation, enhance
protection of the colonic mucosa and provide nutrition to
the colon cells. It is possible that similar processes occur in
the cecum as a result of an increase in Phascolarctobacterium
in MSTN samples.

The main function of the cecum is to absorb the remaining
fluids and salts after intestinal digestion and absorption are
completed, and to mix these contents with mucus, a lubricating
substance. We identified several overrepresented genera in this
intestinal segment. Among these is Ruminiclostridium_9, a
bacterial group which has been previously connected to obesity
and other metabolic disorders (Wang et al., 2019), although
these results are regarded with caution. While some studies
have proposed that obese mice have a higher abundance of
Ruminiclostridium_9 in their fecal microbiota than the leaner
counterparts (Hou et al., 2019; Luo et al., 2019; Wang et al., 2020),
others have shown that Ruminiclostridium_9 is instead negatively
correlated with obesity (Zhao et al., 2017; Zhu et al., 2018; Hu
et al., 2019). Another example of a MSTN-edited upregulated
group in the cecum is Succinivibrio, a bacteria that has high
potential for fiber degradation (Hippe et al., 1999) and thus can
improve metabolism. Enrichment of Succinivibrio in the cecum
might also provide the host with additional nutrients.

In addition to alterations in the fecal composition of
microbiota in MSTN-edited pigs, we implemented, for the
first time, a comprehensive analysis of the fecal metabolome
of the intestinal MSTN-edited samples. The disruption of
the gut microbiota homeostasis subsequently affects intestinal
metabolism (Alou et al., 2016; Lippert et al., 2017), whereby
we envisioned that MSTN gene editing-associated changes in
microbial composition might be followed by changes in the
relative abundance of different metabolites in fecal samples.
We were able to support this hypothesis by demonstrating
differentially detected metabolites in both the jejunum and
the cecum. We found differential metabolites in the contents
of the ileum and cecum, and a lot of these were accounted
for by fatty acids, sterol lipids and glycerophospholipids (Fahy
et al., 2009). Functional analysis showed they were involved in
metabolism of sphingolipid (jejunum) and glycerophospholipid
(cecum). Both sphingolipid and glycerophospholipid metabolism
belong to the lipid metabolism pathway. A recent study
reported the protective roles of Huangjinya green tea extract
against obesity, liver steatosis and insulin resistance in high-
fat diet-fed mice, highlighting its favorable modulation on
fecal metabolites of amino acids, sphingolipids, and bile
acids in vivo(Li et al., 2020). Another study found that oral
hydroxysafflor yellow can reduce obesity in mice and the
changed metabolites by serum metabolomics analysis were
mainly linked with the pathways of glycerophospholipid and
sphingolipid metabolism (Liu et al., 2018). These studies
suggest that the resistance to obesity in animals may cause

changes in the lipid metabolic pathways. The ratio of fat
of MSTN-edited pigs was 100% lower than that of WT
([| heterozygote value–original value of WT|]/original value
of WT). Correlation analysis allowed us to identify several
bacterial genera potentially implicated in the host metabolic. For
instance, in the jejunum, T34_unclassified, Bifidobacterium and
Clostridium_sensu_stricto_1 were positively correlated with the
majority of metabolites that were changed in the MSTN pigs.
In the cecum, Barnesiella abundance was negatively correlated
with 3 metabolites and positively correlated with 11 metabolites,
while Longibaculum was positively and negatively correlated
with 4 metabolites and 9 metabolites, respectively. The strongly
correlation between the differentially detected metabolites with
flora composition Hence, it is possible that these changes
are consistent with phenotype and are caused by alterations
in the microflora.

CONCLUSION

In conclusion, our study showed that MSTN gene editing alters
the composition of metabolites and microbial communities in
the jejunum and the cecum. Our results demonstrate that the
different microbiome composition in the jejunal and cecal may
provide more useable nutrients for the host of MSTN-edited pigs
and influence the composition of metabolites.
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