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Abstract
Many approaches have been designed to extract brain effective connectivity from functional

magnetic resonance imaging (fMRI) data. However, few of them can effectively identify the

connectivity network structure due to different defects. In this paper, a new algorithm is

developed to infer the effective connectivity between different brain regions by combining

artificial immune algorithm (AIA) with the Bayes net method, named as AIAEC. In the pro-

posed algorithm, a brain effective connectivity network is mapped onto an antibody, and

four immune operators are employed to perform the optimization process of antibodies,

including clonal selection operator, crossover operator, mutation operator and suppression

operator, and finally gets an antibody with the highest K2 score as the solution. AIAEC is

then tested on Smith’s simulated datasets, and the effect of the different factors on AIAEC

is evaluated, including the node number, session length, as well as the other potential con-

founding factors of the blood oxygen level dependent (BOLD) signal. It was revealed that,

as contrast to other existing methods, AIAEC got the best performance on the majority of

the datasets. It was also found that AIAEC could attain a relative better solution under the

influence of many factors, although AIAEC was differently affected by the aforementioned

factors. AIAEC is thus demonstrated to be an effective method for detecting the brain effec-

tive connectivity.

Introduction
Effective connectivity is the influence that one neuronal system exerts over another between
brain regions [1]. Effective connectivity is different from functional connectivity, and can ren-
der the performance of the specific tasks under conditions of functional connectivity. Specifi-
cally, effective connectivity can describe the directed networks in the resting state and specific
changes of baseline brain activity in some diseases [2, 3]. How to accurately identify effective
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connectivity from functional magnetic resonance imaging (fMRI) data is becoming a research
hotspot in the domain of neuroimaging as well as cognitive neuroscience.

Recently, various mathematical methods have been widely used to determine the effective
connectivity involved in human brain [4]. One kind of these methods is the model-driven
approach or hypothesis-driven approach, such as structural equation modeling (SEM) [5] and
dynamic causal modeling (DCM) [6]. The priori models are required for this method to con-
duct a valid connectivity analysis. The model-driven approach is thus not suitable for resting-
state fMRI data or for those situations where the prior knowledge is insufficient [7–9]. In par-
ticular, the model-driven approach is typically limited to construct the relative small networks,
and does not have the ability to effectively search across the full range of possible network
topologies.

Another kind of effective connectivity methods are the data-driven approaches. The data-
driven approaches directly extract causal interactions from fMRI data, but do not require the
prior knowledge or assumptions. However, different types of data-driven methods still have
their own limitations. For example, Granger causality uses a vector autoregressive model to
estimate the effective connectivity among brain regions [10, 11], and only requires the data to
be wide-sense stationary and has a zero mean [12]. However, Granger causality is sensitive to
noise and down sampling, thus it may generate spurious causality under some circumstances
[13]. Linear non-Gaussian acyclic model (LiNGAM) [14] algorithm utilizes higher-order
distributional statistics and independent component analysis (ICA) to estimate the network
connections. Nevertheless, some prior assumptions are required by LiNGAM [15], including:
(a) the data generating process is linear, (b) no unobserved confounders are present, and (c)
disturbance variables follow non-Gaussian distributions. These assumptions per se have lim-
ited its use [8]. Generalised synchronization (Gen Synch) [16] evaluates neural synchrony by
analyzing the interdependence between the signals, and employs three related measures of
nonlinear interdependence, called Sk,Hk, Nk [17]. The three measures generated by Gen Synch
are directional, but the direction of the asymmetry is not always consistent [8]. Patel’s condi-
tional dependence measures use a multinomial likelihood with a Dirichlet prior distribution to
construct a bivariate Bernoulli Bayesian model for the joint activation of each pair of brain vox-
els, and formulates a measure of connection strength κ and a measure of connection direction-
ality τ [18]. Although Patel’s τ is demonstrated to be prior to the other methods at identifying
the directions which can reach nearly 65% at d-accuracy [8], it should be further improved, as
Patel’s κ performs worse than the partial correlation, inverse covariance (ICOV), as well as
Bayes net methods at c-sensitivity.

Bayes net is another kind of data-driven approaches for identifying the effective connectivity
[19–21]. Many Bayes net methods have been developed, such as PC [22], conservative PC
(CPC) [23], cyclic causal discovery (CCD) [24], fast causal inference (FCI) [25], greedy equiva-
lence search (GES) [26] and independent multisample greedy equivalence search (iMaGES)
[27]. It was found that Bayes net methods, e.g. PC and GES, performed well in identifying func-
tional connectivity, but none of them completely and reliably inferred causal directions [8].
One possible reason may be ascribed to the fact that these Bayes net methods have less search
ability in the space of the candidate network topologies. So far, how to further explore new
Bayes net modeling methods for identifying effective connectivity from fMRI data is still a chal-
lenging research topic.

In this paper, a new method for learning effective connectivity network structure from fMRI
data is presented by combining artificial immune algorithm (AIA) with the Bayes net method,
named as AIAEC. The focus of the algorithm is the optimization process of antibody popula-
tion where some artificial immune mechanisms are employed to iteratively search for the best
effective connectivity network structure. During each iteration, AIAEC first makes up an initial
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population including memorized antibodies and randomly generated antibodies, and com-
putes an affinity value for every antibody. Then three operators of clonal selection, crossover,
and mutation are performed to optimize antibodies in the current population. Finally, AIAEC
updates antibodies in the current population by a suppression operator, and obtains new mem-
orized antibodies. This iteration process is repeated until the best solution is found. A series of
experiments have been carried out on all Smith’s simulated datasets of 50 subjects.

Methods

Artificial Immune Algorithm
The human immune system is a remarkable information processing and self learning system in
nature. Inspired by the human immune system, an artificial immune system (AIS) is built to
solve some complex computational problems [28, 29]. In the last decade, AIS has drawn signif-
icant attention and obtained widespread development and application. Especially, its highly
distributed, adaptive, and self-organizing nature, together with its learning, memory, feature
extraction, and pattern recognition, always offers rich metaphors for novel approaches to
many real-world problems [30].

As a main form of AIS, AIA receives inspiration from the cell theory and network theory,
and implements antigen recognition, cell differentiation, memory and the self adjustment func-
tions in the immune system. In general, AIA roughly contains the following steps: 1) Randomly
generate an initial population, 2) Calculate the affinity of the antibodies in a population, 3)
Select some antibodies with higher affinity values and then clone them, 4) Mutate these anti-
bodies which are generated by clone, and 5) Update the population. This process is repeated
until a termination criterion is satisfied. A general artificial immune algorithm is shown in
Algorithm 1.

Algorithm 1 Artificial Immune Algorithm
Begin

Initialize population;
Repeat

Evaluate the population: calculate the affinity of every antibody to
antigen;

Perform immune operations;
{ 1) Clone operation: Select some antibodies and then clone them;
2) Mutate operation: Mutate the generated clones; }
Update the population;

Until requirements are met
End

In this paper, based on AIA, we present a new algorithm, named as AIAEC to learn an effec-
tive connectivity network structure from fMRI data based on K2 scoring metric (see below in
Formula (1) for definition). The description of AIAEC is as follows.

The AIAEC algorithm
In this section, we give a detailed description of the AIAEC algorithm, and introduce how to
learn an effective connectivity from fMRI data. AIAEC algorithm is a score-and-search
approach, which is based on an artificial immune principle for determining the structure of
brain effective connectivity network. Just like many methods based on Bayes net, this paper
also views an effective connectivity network as a directed acyclic graph (DAG). AIAEC is essen-
tially a global search method to learn Bayesian network structure, where every solution
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represents an effective connectivity network. Fig 1 shows the flowchart of the proposed algo-
rithm. In AIAEC, we first map a brain effective connectivity network into an antibody in the
artificial immune system, and employ the K2 metric (see below in Formula (1) for definition)
used in Bayesian network learning to evaluate the affinity of every antibody in a population
and guide the optimization process to search for the global maximum in a feasible solution
space. To simulate the artificial immune mechanism, we develop some immune operators to
get some antibodies with the higher score in each iteration. Once end requirements are met,
the antibody with the highest score in the optimization process is reversely mapped to the real
brain effective connectivity network.

Representation of the problem. Identifying effective connectivity network structure by
AIAEC in essence is a discrete optimization problem. Fig 2 gives the mapping relationship
between a brain network and its corresponding candidate solution, where the representation of
the problem is a graph, the states (solutions) of the problem are DAGs with a set of n nodes
(X), each node Xi 2 X denotes a brain region, and each arc aij shows a causal connection
between two brain regions Xi and Xj. Thus, a solution Gk will be a graph including a set of
nodes (X), a set of arcs (A) and no directed cycle. In AIAEC, every antibody in a population
represents such a candidate solution.

Solution construction. In each iteration, antibodies in the initial population are composed
ofM antibodies in a memory set and N −M new antibodies, where the memory set stores the
bestM antibodies obtained so far, N is the population size of antibodies, and each new antibody
is randomly generated by a solution construction process. The construction process is showed

Fig 1. The flowchart of the proposed AIAEC algorithm, where an effective connectivity network with the best K2 is obtained by the antibody
immune optimization process.

doi:10.1371/journal.pone.0152600.g001

Fig 2. Themapping relationship between a brain network and its corresponding candidate solution.

doi:10.1371/journal.pone.0152600.g002
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in Fig 3, where starting from an empty graph with no edge, an arc absent in the current graph
is added to the solution one by one if and only if the K2 score of the new solution is larger than
that of the old one and the generated graph satisfies the DAG constraint. This process is
repeated until there is no way to make the K2 score of the new solution higher by adding an
arc. In the first iteration, since the memory set is empty, all N antibodies in the initial popula-
tion are randomly generated entirely.

Affinity metric of an antibody. To evaluate whether antibodies are well matched for anti-
gens, an affinity metric is employed to evaluate the quality of the generated antibodies. In
AIAEC, we employ an antibody to represent a DAG, and use the K2 metric to evaluate the
affinity of an antibody. The K2 metric is well-known as a structure score in Bayesian network
learning, which can present the interesting characteristic by expressing a tradeoff between qual-
ity and complexity, and favor networks with higher likelihood and simpler structures [31]. The
expression of the K2 metric is:

PðG;DataÞ ¼ PðGÞ �
Yn

i¼1

Yqi

j¼1

ðri � 1Þ!
ðNij þ ri � 1Þ!

Yri

k¼1

Nijk!; ð1Þ

where G is a possible network structure, Data is the fMRI data set discretized, ri is the number
of possible values of the node variable Xi, qi is the number of possible configurations (instantia-
tions) for the node variables in ∏(Xi), and Nijk is the number of cases in Data with Xi has its k

th

value and ∏(Xi) is instantiated to its j
th configuration. From the perspective of the meaning of

the formula, the best K2 value is the biggest one which is related to the optimal structure of an
effective connectivity network on Data.

Immune operator. After the initial population is formed in each iteration, antibodies in
the population will randomly perform some immune operators to search better antibodies
(solutions). To perform the optimization process of antibodies in AIAEC, we employ four
immune operators, namely clonal selection operator, crossover operator, mutation operator,
and suppressing operator. Fig 4 shows the schematic diagram of the optimization process of
antibodies in a population, where these shaded areas represent the four immune operators. In
the following, we will give the detailed descriptions about them.

1) Clonal selection operator. The excellent antibodies always have a good ability to adapt
to the environment, so the number of excellent antibodies will increase along with the evolu-
tion of antibodies. The clonal selection operator is to select some antibodies with higher affinity
values from the initial population, and keep them and their derivatives generated by crossover
and mutation operators into the updating population at the current iteration.

Fig 3. The schematic diagram of the process of constructing a solution, where an arc is added one by one from an empty graph to an initial
solution (DAG).

doi:10.1371/journal.pone.0152600.g003
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As shown in Fig 4, the operator first sorts the antibodies in the initial population by their
affinity values (K2 values), and selects N � Ps antibodies with the biggest affinity values as a set
of selected antibodies (GS), where Ps is a probability of clonal selections. Then all selected anti-
bodies are completely cloned to form a set of copied antibodies (GSC). Obviously, GS = GSC
when the clonal selection operator is just finished. Then, the crossover and mutation operators
are executed on some antibodies in GSC to search for better antibodies. In a word, clonal selec-
tion operator retains some excellent antibodies, and provides the possibility for these antibod-
ies to change better in each iteration.

2) Crossover operator. Crossover refers to that two parent antibodies generate two new
antibodies by locally exchanging antibody components between the two parent antibodies. As
shown in Fig 5(a), suppose that two parent antibodies are Ga and Gb in GSC, Xi is a shared
node in Ga and Gb, Aa(i) and Ab(i) are two arc sets connected to Xi in Ga and Gb, respectively,
and Aa(i) 6¼ Ab(i). To obtain offsprings of the two parent antibodies, the rule of the crossover
operator is designed as follows: If exchanging Aa(i) and Ab(i) between Ga and Gb still forms two
directed acyclic graphs, i.e., G0

a and G
0
b, then G0

a ¼ GanAaðiÞ [ AbðiÞ, G
0
b ¼ GbnAbðiÞ [ AaðiÞ, and Ga

and Gb in GSC are replaced with G0
a and G

0
b. It should be noted that two parent antibodies and

their shared node are randomly selected from GSC and the set of nodes, respectively, which
ensures the randomness and diversity of new antibodies. Based on a crossover probability Pc,
this crossover operator is repeated N � Ps � Pc times in each iteration. Obviously, the crossover
operator has the function of a random search, which is performed on parent antibodies to
achieve the purpose of cooperation with a crossover probability Pc.

3) Mutation operator. Mutation is a structure change of an antibody in its neighbor solu-
tion space. For a solution Gh in GSC, AIAEC employs addition, deletion, and reversion strate-
gies to carry out the mutation operator, where the constraint of directed acyclic is always
remained. All these strategies on the current solution will generate a new solution by simply
modifying the set of arcs A in Gh. Fig 5(b) gives three instances of these mutation strategies,
which can be described as:

Fig 4. The schematic diagram of the optimization process of antibodies, where four immune operators are employed to optimize antibodies.

doi:10.1371/journal.pone.0152600.g004
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- Addition: The strategy randomly selects two nodes Xj and Xi in Gh where i 6¼ j, and
Xi 2 X \P(Xj). If adding an arc aij = Xi ! Xj does not generate a directed cycle, then
G0

h ¼ Gh [ faijg.
- Deletion: The strategy first randomly selects an arc aij 2 A which is present in Gh, then
deletes it from the Gh. Namely, a new solution, G0

h ¼ Gh n faijg, is obtained.
- Reversion: The strategy randomly selects an arc aij 2 A, and then modifies the direction of
the arc if the reversion of the arc in Gh still forms a DAG. By means of this strategy, a new
solution, G0

h ¼ Ghnfaijg [ fajig, is obtained.
Based on a mutation probability Pm, the mutation operator is performed N � Ps � Pm times in

each iteration. Each mutation randomly selects one of three strategies to carry out while keep-
ing the constraint of any directed acyclic graph. Once a mutation operator is performed, the
current solution in GSC will be replaced with the solution newly generated. By mutation opera-
tor, an antibody can implement self-changing to get better in each iteration.

4) Suppression operator. Updating the population is an important step to search for good
solutions in every iteration. The new population at every iteration consists of two parts: all anti-
bodies inGS and all antibodies inGSC. Though many antibodies inGSC have been changed by
the crossover and mutation operators, there might be some antibodies inGSC which are the
same as antibodies inGS. To avoid redundancy and maintain the diversity of antibodies, sup-
pression operator is employed to eliminate identical antibodies in the new population. Since
each antibody structure will get an affinity value (K2 score), the suppression method is designed
to compute the affinity value for each changed antibody inGSC and then compare affinity val-
ues of all antibodies in the new population. For those antibodies with the same affinity value, we
only retain one of them and remove the others from the new population. So suppression opera-
tor is employed to eliminate the duplicate antibodies to maintain the diversity of population.

AIAEC algorithm
The proposed AIAEC algorithm is presented in Algorithm 2. It starts with an initialization
phase where some parameters are preset. Then an antibody optimization process is performed

Fig 5. The sample graphs of the crossover andmutation operators. (a) Crossover operator. (b) Mutation operator.

doi:10.1371/journal.pone.0152600.g005
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where four artificial immune mechanisms are employed to search an optimal solution. In each
iteration, there are 8 steps as follows: 1) An initial population P[t] is generated, it not only
includes high-quality solutions in the past memory, but also adds new solutions randomly gen-
erated; 2) Every antibody in the population is evaluated using the K2 metric to test its own
affinity; 3) Clonal selection operator first selects a set GS to keep some high-quality solutions,
then completely clones these antibodies in GS and forms a copy set GSC to perform further
immune operators; 4) Based on Pc, crossover operators on antibodies in GSC are carried out,
and original antibodies involved in crossover operators are replaced with antibodies generated;
5) Based on Pm, mutation operators on antibodies in GSC are executed, and similarly original
antibodies involved in mutation operators are also replaced with antibodies generated; 6) The
initial population is updated with antibodies in GS and GSC; 7) Suppression operator is
employed to remove redundancy antibodies in the current population; and 8) Memory mecha-
nism selects the bestM antibodies in the current P[t] to update the memory set PM[t]. This
process is repeated until the termination criterion is satisfied. In AIAEC, the algorithm termi-
nates when the iteration of the antibodies achieves the maximum number of iterations (T).
Finally, AIAEC returns the solution with the highest K2 value in all iterations as the output
result.

Algorithm 2 AIAEC: Artificial Immune Algorithm to identify Effective Connectivity
Input: fMRI Data
Output: Brain effective connectivity network
1. Initialization:

Set parameters N, T, M, Ps, Pc, Pm, PM[0] = �;
�N: population size of antibodies, T: maximum number of iterations, �
�M: capacity of the memory set, Ps: probability of clonal selections, �
�Pc: probability of crossovers, Pm: probability of mutations, �
�PM[0]: initial memory set with best antibodies. �

2. Loop: Antibody optimization process
For t = 0 to T �t is the iteration number of antibodies�

{ 1) Generate an initial population P[t]
P[t] = PM[t] + PG[t]; � PG[t]: set of antibodies randomly generated �

2) Calculate the affinity value for every antibody
For k = 0 to N

Compute the K2 value of Gk 2 P[t] by Equ.1;
3) Perform clonal selection operator

Select and obtain a set of N � Ps antibodies with the higher K2 values
(GS) by Ps;

Clone these selected antibodies, and form a copy set GSC;
4) Perform a crossover operator

For i = 1 to |GSC| � Pc
{ Select two antibodies from GSC, and perform crossover operator;
Update GSC with new antibodies generated; }

5) Perform a mutation operator
For i = 1 to |GSC| � Pm

{ Select an antibody from GSC, and perform a mutation operator;
Update GSC with the antibody newly generated; }

6) Update the population
P[t] = GS+GSC;

7) Perform suppression operator
P[t] = P[t]-{Gj|8Gi 2 P[t], i 6¼ j, and Gi = Gj};

8) Memorize the solutions with higher affinity values
Put the best M antibodies in P[t] into the memory set PM[t + 1];
t = t + 1; }

3. Return: Effective connectivity network with the highest K2 value;
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In essence, AIAEC algorithm uses crossover and mutation operators to locally optimize
solutions in the current population, and employs an exploring phase of randomly generated
solutions to overcome the stagnation of solutions in the whole optimization, which not only
keeps the balance between exploitation and exploration processes, but also realizes the perfect
combination of global searching and local searching in the available solution space. Moreover,
clonal and memory mechanisms play an important role in the transfer of good solution infor-
mation. Specifically, clonal mechanism selects some good antibodies as starting points to be
further searched while memory mechanism reserves the best antibodies into the next iteration.

Results
In this study, Smith et al. (2011) simulated datasets (http://www.fmrib.ox.ac.uk/analysis/netsim/
index.html) are used to test the proposed AIAEC algorithm. The experimental platform is a PC
with Core 2, 2.13 GHz CPU, 2.99 GB RAM, andWindows 7. The performances of AIAEC on
the simulated datasets are assessed, and then compared with the other 10 existing algorithms.
Seven of them including PC, CPC, CCD, FCI, GES, iMaGES, and LiNGAM are implemented in
the Tetrad IV toolbox (www.phil.cmu.edu/projects/tetrad/tetrad4.html). Granger and Gen
Synch are run from two corresponding public platforms (www.mathworks.co.kr/matlabcentral/
fileexchange/25467-grangercausality-test and www.vis.caltech.edu/rodri/programs/synchro.m),
respectively. Additionally, Patel is directly accomplished from Smith [8].

Simulation of fMRI Data
The data derived from 28 simulation cases was created with different number of nodes and per-
cent of noise [8]. The nodes are corresponded to brain regions, and the simulated networks
contain 5, 10, 15 or 50 nodes, respectively. The blood oxygen level dependent (BOLD) data was
sampled with a repetition time (TR) of 3 s (reduced to 0.25 s in a few simulations), and all the
simulations comprised 50 separate subjects where most of them employed the same simulation
parameters. Moreover, each subject’s data was a 10-min fMRI session (200 time points) in
most of the simulations. In this experiment, the BOLD time series data are concatenated over
50 subjects and analyzed for each simulated dataset. Table 1 shows a summary of the specifica-
tions for the 28 simulated datasets.

Preprocessing
Like many other Bayesian network learning algorithms, a discrete processing is essential for
AIAEC, as it cannot directly use continuous variables. According to the number of time points,
the discretized instance data are obtained for the whole brain, where each instance includes the
discretized values of all brain regions (nodes) at the corresponding time point. For each node’s
timeseries of a subject, the range of voxel values is divided into several equal parts, and each
part contains the same number of voxel values. Based on the division of node values, the voxel
value of each node is quantized at every instance into a discrete value. For example, a node’s
time series is quantized into four parts, including low (set value = 1), medium (set value = 2),
high (set value = 3) and very high (set value = 4), with each of the four parts containing 25% of
the data points. In this experiment, the number of discrete parts for the 28 simulated datasets is
varied from 3 to 8.

Evaluation metrics
In Smith et al. (2011), they use “c-sensitivity” and “d-accuracy” to evaluate the network con-
nection and the connection direction. To more clearly evaluate the performance of algorithms,
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we use Precision, Recall and F-measure to measure the network connection and direction.
Connection’s Precision and Recall can be defined as follows:

Precisionc ¼
Cs

Ca þ Cs

ð2Þ

and

Recallc ¼
Cs

TC
; ð3Þ

where Ca, Cs are used to show the structure differences between the learned network (LN) and
the ground-truth network (GN). Specifically, Ca represents the number of connections acciden-
tally added to LN, Cs denotes the number of same connections in LN and GN, and TC is the
total number of the connections in GN.

F-measure is a harmonic mean of Precision and Recall, so it can be used to evaluate the
overall performance of connections [32]. It is defined as:

Fc ¼
2 � Precisionc � Recallc
Precisionc þ Recallc

: ð4Þ

Table 1. Description of the 28 simulation cases [8].

Sim nodes Session duration (min) TR (s) Noise (%) HRF std. dev. (s) Other factors

1 5 10 3.00 1.0 0.5

2 10 10 3.00 1.0 0.5

3 15 10 3.00 1.0 0.5

4 50 10 3.00 1.0 0.5

5 5 60 3.00 1.0 0.5

6 10 60 3.00 1.0 0.5

7 5 250 3.00 1.0 0.5

8 5 10 3.00 1.0 0.5 shared inputs

9 5 250 3.00 1.0 0.5 shared inputs

10 5 10 3.00 1.0 0.5 global mean confound

11 10 10 3.00 1.0 0.5 bad ROIs (timeseries mixed with each other)

12 10 10 3.00 1.0 0.5 bad ROIs (new random timeseries mixed in)

13 5 10 3.00 1.0 0.5 backwards connections

14 5 10 3.00 1.0 0.5 cyclic connections

15 5 10 3.00 0.1 0.5 stronger connections

16 5 10 3.00 1.0 0.5 more connections

17 10 10 3.00 0.1 0.5

18 5 10 3.00 1.0 0.0

19 5 10 0.25 0.1 0.5 neural lag = 100 ms

20 5 10 0.25 0.1 0.0 neural lag = 100 ms

21 5 10 3.00 1.0 0.5 2-group test

22 5 10 3.00 0.1 0.5 nonstationary connection strengths

23 5 10 3.00 0.1 0.5 stationary connection strengths

24 5 10 3.00 0.1 0.5 only one strong external input

25 5 5 3.00 1.0 0.5

26 5 2.5 3.00 1.0 0.5

27 5 2.5 3.00 0.1 0.5

28 5 5 3.00 0.1 0.5

doi:10.1371/journal.pone.0152600.t001
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Similarly, direciton’s Precision and Recall can be defined as follows:

Precisiond ¼
Ds

Dw þ Da þ Ds

ð5Þ

and

Recalld ¼
Ds

TD
; ð6Þ

where Ds, Dw, Da are used to denote the direction differences between LN and GN. Specifically,
Ds represents the number of same arcs in LN and GN, Dw represents the number of arcs in LN
whose connections are the same as those of GN and directions are different from the corre-
sponding ones in GN. Da shows the number of extra arcs in LN due to Ca connections newly
added. Moreover, TD is the total number of the arcs (directions) in GN.

Naturally, direction’s F-measure is defined as:

Fd ¼
2 � Precisiond � Recalld
Precisiond þ Recalld

: ð7Þ

In particularly, if both Precisiond and Recalld are zero, we think Fd should also be zero.

Experimental results on various cases
The default parameter configurations for each algorithm are as follows. PC, CPC, CCD and FCI
use the same parameters where Alpha = 0 andDepth = −1. The parameters of GES and iMaGES
are set as Penalty Discount = 1.0, andNum Patterns to Save = 1. LiNGAM runs with Prune Fac-
tor = 1.0. Gen Synch runs withm = 10, τ = 2, theiler = 50, and nn = 10. Patel is performed with
binarisation = 0.75. The parameters of Granger are set as Alpha = 0.05 andmax_lag 2 [1, 30].
Based on the results of the preliminary experiments, we found that AIAEC algorithm is not very
sensitive to the parameters, and the parameter setting of AIAEC is shown as followings:
T = 150, Ps = 0.5, Pc = 0.6, Pm = 0.4,M = 70, andN = 80. Moreover, larger T or N may be more
likely to find the globally optimal solution at the expense of computation time. M is set from
0.7N to 0.9N, while Ps, Pc and Pm usually do not need to change. Once some of the algorithms
have different parameters in some different simulations, the specific parameter values are given
in the corresponding tables. Moreover, AIAEC is run 10 times, and then the best, the worst, and
the average results (i.e., AIAECb, AIAECw and AIAECa) over these 10 runs are shown, since
AIAEC is a kind of random optimization method.

Results of all algorithms including PC, CPC, CCD, FCI, GES, iMaGES, LiNGAM, Gen
Synch, Patel, Granger and AIAEC in terms of various evaluation metrics on all 28 simulated
datasets are shown in Tables 2 to 8. For each algorithm, the number of the connections (Num.
of Conn.) including the number of the added connections (Ca) comparing to the correspond-
ing ground-truth network and the number of the same connections (Cs) as the corresponding
ground-truth network, as well as the number of the directions (Num. of Dire.) including the
number of the wrong directions (Dw) comparing to the corresponding ground-truth network
and the number of the same directions (Ds) as the corresponding ground-truth network are
displayed. In addition, the connection measurements including Precisionc, Recallc, and Fc as
well as direction measurements including Precisiond, Recalld, and Fd are listed.

Situation 1: Factor of network node number. The detailed comparison results of Sim1,
Sim2, Sim3 and Sim4 datasets are shown in Table 2. The four simulated datasets have the same
test conditions, i.e., 10 min fMRI sessions for each subject, 50 subjects, TR = 3 s, final added
noise of 1%, and HRF variability of ±0.5s. In this situation, the only difference is the number of
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Table 2. Experimental results on Sim1–4 for eleven algorithms.

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

Sim1 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 4 1 100% 100% 1 20% 20% 0.2

CCD 0 5 1 4 100% 100% 1 80% 80% 0.8

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES 0 5 3 2 100% 100% 1 40% 40% 0.4

iMaGES 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM 1 5 0 5 83% 100% 0.91 83% 100% 0.91

Gen Synch 0 5 2 3 100% 100% 1 60% 60% 0.6

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 0 5 0 5 100% 100% 1 100% 100% 1

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

Sim2 PC 0 10 3 7 100% 91% 0.95 70% 64% 0.67

CPC 0 11 6 5 100% 100% 1 45% 45% 0.45

CCD 0 11 4 7 100% 100% 1 64% 64% 0.64

FCI 0 11 4 7 100% 100% 1 64% 64% 0.64

GES 0 11 4 7 100% 100% 1 64% 64% 0.64

iMaGES 0 11 2 9 100% 100% 1 82% 82% 0.82

LiNGAM 1 11 1 10 92% 100% 0.96 83% 91% 0.87

Gen Synch 0 11 2 9 100% 100% 1 82% 82% 0.82

Patel 0 11 2 9 100% 100% 1 82% 82% 0.82

Granger 0 11 4 7 100% 100% 1 64% 64% 0.64

AIAECb 0 11 0 11 100% 100% 1 100% 100% 1

AIAECw 0 11 2 9 100% 100% 1 82% 82% 0.82

AIAECa 0 11 1 10 100% 100% 1 91% 91% 0.91

Sim3 PC 0 17 5 12 100% 94% 0.97 71% 67% 0.69

CPC 0 18 6 12 100% 100% 1 67% 67% 0.67

CCD 0 18 5 13 100% 100% 1 72% 72% 0.72

FCI 0 18 5 13 100% 100% 1 72% 72% 0.72

GES1 0 18 9 9 100% 100% 1 50% 50% 0.5

iMaGES2 0 18 8 10 100% 100% 1 56% 56% 0.56

LiNGAM3 2 18 2 16 90% 100% 0.95 80% 89% 0.84

Gen Synch 0 18 2 16 100% 100% 1 89% 89% 0.89

Patel 0 18 4 16 100% 100% 1 80% 89% 0.84

Granger 1 18 6 12 95% 100% 0.97 63% 67% 0.65

AIAECb 0 18 2 16 100% 100% 1 89% 89% 0.89

AIAECw 0 18 4 14 100% 100% 1 78% 78% 0.78

AIAECa 0 18 2.8 15.2 100% 100% 1 84% 84% 0.84

Sim4 PC 0 60 15 45 100% 98% 0.99 75% 74% 0.74

CPC 0 61 16 45 100% 100% 1 74% 74% 0.74

CCD 0 61 24 37 100% 100% 1 61% 61% 0.61

FCI 0 61 24 37 100% 100% 1 61% 61% 0.61

GES4 0 61 25 36 100% 100% 1 59% 59% 0.59

iMaGES5 0 61 24 37 100% 100% 1 61% 61% 0.61

(Continued)
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nodes. That is, the numbers of nodes in Sim1, Sim2, Sim3 and Sim4 datasets are 5, 10, 15 and
50, respectively. Following the chain of Sim1-Sim2-Sim3-Sim4 (node number increasing), it
was found that AIAEC has a little decrease of Fd, while still has comparable or better perfor-
mance to other algorithms. In Sim1, all algorithms except LiNGAM perform excellent on iden-
tifying network connections. As for connection directions, AIAEC and Granger have the best
performance, and directions identified by them are entirely consistent with those of the
ground-truth network. With the 10 nodes in Sim2, AIAEC obtains 5 times the best results over
10 running. AIAECb and AIAECa get the highest Fd, and AIAECw get the same performance
with that of iMaGES, Gen Synch and Patel. When the number of nodes increases to 15 or
more, none of the methods in Sim3 and Sim4 can correctly identify all directions. For the 15
nodes in Sim3, AIAECb and Gen Synch perform best. The average performance of AIAEC
(AIAECa) also perform well, which is the same as that of LiNGAM and Patel. For the 50 nodes
in Sim4, AIAECb has the best performance among all algorithms. Though the Fd values of
AIAECw and AIAECa are inferior to Gen Synch and Patel, they are still equal to or better than
the other eight algorithms. From overall perspective, the increase of the node number will affect
to a certain extent the performance of AIAEC and some other algorithms, however, AIAEC
still has good performance.

Situation 2: Factor of session durations. The experimental results of Sim5, Sim6 and
Sim7 are shown in Table 3. Sim5 and Sim7 have the same conditions as Sim1 except for differ-
ent session lengths. Specifically, Sim5 has 60-min sessions while Sim7 has 250-min sessions.
Sim6 has the same conditions as Sim2, but contains 60-min sessions. Sim25 and Sim26 also
have the same conditions with Sim1, the only difference is that Sim25 contains 5-min sessions
while Sim26 has 2.5-min sessions. Following the chain of Sim26-Sim25-Sim1-Sim5-Sim7 (i.e.,
the session duration is increasing from 2.5 min, to 5 min, 10 min, 60 min, 250 min) and the
chain of Sim2-Sim6 (the session duration is increasing from 10 min to 60 min), it was found
that AIAEC can get the stable solution of the effective connectivity from short time to long
time, while other algorithms have an obvious setback when the session length decreases. From
the comparison between Tables 2 and 3, we can clearly see that most of algorithms have
improved on direction measurement as the fMRI session length increasing. These results are

Table 2. (Continued)

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

LiNGAM6 2 60 18 42 97% 98% 0.98 68% 69% 0.68

Gen Synch 0 61 13 48 100% 100% 1 79% 79% 0.79

Patel 0 61 14 47 100% 100% 1 77% 77% 0.77

Granger 6 61 24 37 91% 100% 0.95 55% 61% 0.58

AIAECb 0 61 12 49 100% 100% 1 80% 80% 0.8

AIAECw 0 61 16 45 100% 100% 1 74% 74% 0.74

AIAECa 0 61 15.2 45.8 100% 100% 1 75% 75% 0.75

1 The parameters of GES: Penalty Discount = 7.0, Num Patterns to Save = 1.
2 The parameters of iMaGES: Penalty Discount = 7.0, Num Patterns to Save = 1.
3 The parameters of LiNGAM: Prune Factor = 3.0.
4 The parameters of GES: Penalty Discount = 9.0, Num Patterns to Save = 1.
5 The parameters of iMaGES: Penalty Discount = 9.0, Num Patterns to Save = 1.
6 The parameters of LiNGAM: Prune Factor = 4.0.

doi:10.1371/journal.pone.0152600.t002
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Table 3. Experimental results on Sim5–8 for eleven algorithms.

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

Sim5 PC 1 5 3 2 83% 100% 0.91 33% 40% 0.36

CPC 1 5 3 2 83% 100% 0.91 33% 40% 0.36

CCD 1 5 3 2 83% 100% 0.91 33% 40% 0.36

FCI 1 5 3 2 83% 100% 0.91 33% 40% 0.36

GES 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES 0 5 2 3 100% 100% 1 60% 60% 0.6

LiNGAM1 0 5 0 5 100% 100% 1 100% 100% 1

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 0 5 100% 100% 1 100% 100% 1

Granger 0 5 2 3 100% 100% 1 60% 60% 0.6

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

Sim6 PC 2 11 4 7 85% 100% 0.92 54% 64% 0.58

CPC 2 11 3 8 85% 100% 0.92 62% 73% 0.67

CCD 2 11 5 6 85% 100% 0.92 46% 55% 0.5

FCI 1 11 4 7 92% 100% 0.96 58% 64% 0.61

GES 0 11 4 7 100% 100% 1 64% 64% 0.64

iMaGES 0 11 3 8 100% 100% 1 73% 73% 0.73

LiNGAM1 0 11 0 11 100% 100% 1 100% 100% 1

Gen Synch 0 11 1 10 100% 100% 1 91% 91% 0.91

Patel 0 11 1 10 100% 100% 1 91% 91% 0.91

Granger 0 11 4 7 100% 100% 1 64% 64% 0.64

AIAECb 0 11 0 11 100% 100% 1 100% 100% 1

AIAECw 0 11 2 9 100% 100% 1 82% 82% 0.82

AIAECa 0 11 0.8 10.2 100% 100% 1 93% 93% 0.93

Sim7 PC 2 5 1 4 71% 100% 0.83 57% 80% 0.67

CPC 2 5 1 4 71% 100% 0.83 57% 80% 0.67

CCD 2 5 3 2 71% 100% 0.83 29% 40% 0.33

FCI 2 5 2 3 71% 100% 0.83 43% 60% 0.5

GES2 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES3 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM4 0 5 0 5 100% 100% 1 100% 100% 1

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 0 5 100% 100% 1 100% 100% 1

Granger 0 5 1 4 100% 100% 1 80% 80% 0.8

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

Sim8 PC 2 5 4 1 71% 100% 0.83 14% 20% 0.17

CPC 2 5 5 0 71% 100% 0.83 0% 0% 0

CCD 2 5 3 2 71% 100% 0.83 29% 40% 0.33

FCI 2 5 3 2 71% 100% 0.83 29% 40% 0.33

GES 1 5 2 3 83% 100% 0.91 50% 60% 0.55

iMaGES 1 5 3 2 83% 100% 0.91 33% 40% 0.36

(Continued)
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consistent with the research of Smith et at. (2011). Compared with Sim1, AIAEC still performs
well at estimating directionality in Sim5, all of which get the Fd of 1. Moreover, LiNGAM has
improved a lot in Fd, which also verifies the view mentioned in Simth et al. (2011): the
increased number of timepoints helps temporal ICA function well in LiNGAM. Compared
with Sim2, Sim6 also gets the similar results with Sim5, where the Fd value of AIAECa has
increased to 0.93 from 0.91. In Sim7, AIAEC still performs well, and some other algorithms
improved. Moreover, the similar pattern is also verified by partial results in Table 8, where in
Sim25, it was found that AIAEC performs well when the number of data points is smaller
(recording length is shorter) while some algorithms’ performance obviously declines. When
the session durations reduce to 2.5-min in Sim26, AIAEC still maintains the accurate direction
judgments though some algorithms (e.g., LiNGAM and Granger) have a significant decrease
on direction metrics. That is, AIAEC has a better performance than other algorithms in the
cases of shorter session, which will be very beneficial to the real fMRI data research because
people usually can not get a very long fMRI data in many cases, especially for subjects of brain
diseases. In other words, the shorter session lengths lead to most algorithms performing worse,
while AIAEC always performs well whenever the session durations are long or short.

Situation 3: Factor of the shared inputs. Sim8 and Sim9 introduce the shared inputs in
the 5 node simulations, which means that the external inputs are mixed into the network.
These external inputs can be thought of as neuronal “noise” in these simulations. Besides the
shared inputs, Sim8 has the same conditions with Sim1 while Sim9 has the same conditions
with Sim7. The experimental results on these two simulations are shown in Tables 3 and 4.
Compared to corresponding results in Sim1 and Sim7, the experimental results in Sim8 and
Sim9 show that: the shared inputs seriously affect the performance of AIA and other algo-
rithms whether on network connections or connection directions. In Sim8, AIAECb, AIAECa

and LiGAM perform well, AIAECw is not quite well. In Sim9, other methods except for
AIAEC, LiNGAM and Patel have obvious drawback on inferring network connections and
directions. From the comparison results, we can see external inputs affect the performance of
most algorithms, while AIAEC has obvious advantages on network connections and directions
in these two simulations.

Table 3. (Continued)

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

LiNGAM5 0 5 1 4 100% 100% 1 80% 80% 0.8

Gen Synch 2 5 2 3 71% 100% 0.83 43% 60% 0.5

Patel 2 5 1 4 71% 100% 0.83 57% 80% 0.67

Granger 1 5 3 2 83% 100% 0.91 33% 40% 0.36

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 3 2 100% 100% 1 40% 40% 0.4

AIAECa 0 5 1.2 3.8 100% 100% 1 76% 76% 0.76

1 The parameters of LiNGAM: Prune Factor = 4.0.
2 The parameters of GES: Penalty Discount = 9.0, Num Patterns to Save = 1.
3 The parameters of iMaGES: Penalty Discount = 9.0, Num Patterns to Save = 1.
4 The parameters of LiNGAM: Prune Factor = 6.0.
5 The parameters of LiNGAM: Prune Factor = 3.0.

doi:10.1371/journal.pone.0152600.t003
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Table 4. Experimental results on Sim9–12 for eleven algorithms.

Data set Algorithms Num. of
Conn.

Num. of
Dire.

Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

Sim9 PC 3 5 4 1 63% 100% 0.77 13% 20% 0.15

CPC 3 5 3 2 63% 100% 0.77 25% 40% 0.31

CCD 3 5 3 2 63% 100% 0.77 25% 40% 0.31

FCI 3 5 3 2 63% 100% 0.77 25% 40% 0.31

GES 3 5 2 3 63% 100% 0.77 38% 60% 0.46

iMaGES 3 5 2 3 63% 100% 0.77 38% 60% 0.46

LiNGAM1 0 5 1 4 100% 100% 1 80% 80% 0.8

Gen Synch 3 5 1 4 63% 100% 0.77 50% 80% 0.62

Patel 2 5 0 5 71% 100% 0.83 71% 100% 0.83

Granger 1 5 2 3 83% 100% 0.91 50% 60% 0.55

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 2 3 100% 100% 1 60% 60% 0.6

AIAECa 0 5 0.8 4.2 100% 100% 1 84% 84% 0.84

Sim10 PC 0 5 4 1 100% 100% 1 20% 20% 0.2

CPC 0 5 4 1 100% 100% 1 20% 20% 0.2

CCD 0 5 4 1 100% 100% 1 20% 20% 0.2

FCI 0 5 5 0 100% 100% 1 0% 0% 0

GES 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM 1 5 0 5 83% 100% 0.91 83% 100% 0.91

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 0 5 0 5 100% 100% 1 100% 100% 1

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

Sim11 PC 2 6 2 4 75% 55% 0.63 50% 36% 0.42

CPC 7 11 5 6 61% 100% 0.76 33% 55% 0.41

CCD 7 11 2 9 61% 100% 0.76 50% 82% 0.62

FCI 7 11 7 4 61% 100% 0.76 22% 36% 0.28

GES2 9 11 6 5 55% 100% 0.71 25% 45% 0.32

iMaGES3 9 11 5 6 55% 100% 0.71 30% 55% 0.39

LiNGAM1 11 11 1 10 50% 100% 0.67 45% 91% 0.61

Gen Synch 6 11 2 9 65% 100% 0.79 53% 82% 0.64

Patel 5 11 1 10 69% 100% 0.81 63% 91% 0.74

Granger 4 11 4 7 73% 100% 0.85 47% 64% 0.54

AIAECb 4 11 2 9 73% 100% 0.85 60% 82% 0.69

AIAECw 7 11 4 7 61% 100% 0.76 39% 64% 0.48

AIAECa 5.6 11 2.8 8.2 66% 100% 0.80 49% 75% 0.59

Sim12 PC 0 10 3 7 100% 91% 0.95 70% 64% 0.67

CPC 0 11 6 5 100% 100% 1 45% 45% 0.45

CCD 0 11 4 7 100% 100% 1 64% 64% 0.64

FCI 0 11 4 7 100% 100% 1 64% 64% 0.64

GES 0 11 2 9 100% 100% 1 82% 82% 0.82

iMaGES 0 11 2 9 100% 100% 1 82% 82% 0.82

(Continued)
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Situation 4: Factor of global mean confound. Sim10 shows the situation with global
mean confound in Sim1. The global mean confound means to add the same random timeseries
to all nodes’ BOLD timeseries. The comparison results between Sim1 and Sim10 show that the
global mean confound has no significant impact on AIAEC performance, where AIAECb,
AIAECw and AIAECa can correctly identify all the network connections and connection direc-
tions. In this simulation, Gen Synch and Granger also perform well, especially they can cor-
rectly identify directions. Compared with Sim1, PC, CCD and FCI perform worse while GES
and Gen Synch perform better. So it’s not sure that global mean confound has good effects or
bad effects on the different algorithms, such similar conclusion also was mentioned in [33].

Situation 5: Factor of bad ROIs. Sim11 and Sim12 show the situation of bad ROIs—mix-
ing the BOLD timeseries with each other. Besides the bad ROIs, Sim11 and Sim12 have the
same conditions with Sim2. However, Sim11 and Sim12 have different bad ROIs. In Sim11,
each node’s timeseries are mixed in a relatively small amount of one other node’s timeseries
(randomly chosen, but the same for all subjects). But in Sim12, each timeseries of interest is
mixed in unrelated timeseries (achieved, for each subject, by using data from another subject).
From Table 4, we find that the bad ROIs in Sim11 result into a great impact on detecting net-
work connections and connection directions to AIA and other algorithms, while the bad ROIs
in Sim12 have no obvious effect on them. In Sim11, none of algorithms perform well at esti-
mating directionality, AIAECb is comparable with Patel which is better than other algorithms.
In Sim12, all algorithms except PC correctly detected network connections, and only AIAECb

can correctly identify network directions.
Situation 6: Factor of backwards connections. Sim13 shows the situation of backwards

connections. As mentioned by Smith et al. (2011), they randomly selected half of the forwards
connections in Sim1, and added a negative backwards connection of equal average strength (0.4
±0.1). Compared the results with Sim1, the factor of backwards connections has no effect on
identifying network connections of AIAEC while make AIAEC performs worse on identifying
connection directions. In addition, other algorithms not only perform worse on identifying con-
nection directions, but also have an obvious drawback on detecting network connections. So the
factor of backwards connections affects most algorithms, and makes them perform worse.

Situation 7: Factor of cyclic connections. Sim14 shows the situation where there is a
cyclic causality by reversing the direction of arc 1! 5. In this simulation, the ground-truth

Table 4. (Continued)

Data set Algorithms Num. of
Conn.

Num. of
Dire.

Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

LiNGAM 0 11 2 9 100% 100% 1 82% 82% 0.82

Gen Synch 0 11 2 9 100% 100% 1 82% 82% 0.82

Patel 0 11 1 10 100% 100% 1 91% 91% 0.91

Granger 0 11 1 10 100% 100% 1 91% 91% 0.91

AIAECb 0 11 0 11 100% 100% 1 100% 100% 1

AIAECw 0 11 2 9 100% 100% 1 82% 82% 0.82

AIAECa 0 11 1.2 9.8 100% 100% 1 89% 89% 0.89

1 The parameters of LiNGAM: Prune Factor = 3.0.
2 The parameters of GES: Penalty Discount = 6.0, Num Patterns to Save = 1.
3 The parameters of iMaGES: Penalty Discount = 6.0, Num Patterns to Save = 1.

doi:10.1371/journal.pone.0152600.t004
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network is changed, and is different from that of other 5 node networks. This condition is a
fatal problem for many of the global network modeling approaches including most of the Bayes
net methods, as it breaks the general modeling assumption implied in these approaches, i.e.,
there is no cycle in the graph. As shown in Table 5, the factor of cyclic connections seriously
affects the performance of AIAEC on identifying connection directions. All algorithms perform
well on connection metrics, and every algorithm except Granger obtains the best result. For
direction metrics, most of the Bayes Net methods are fallen, while Gen Synch can correctly
identify all the directions. Another interesting thing is that when the direction of arc 1! 5
change to 5! 1, the AIAECb, GES, iMaGES are all false to identify the direction of arc 1! 2.
This may be because these methods obey the assumption that the graph has no cycle. So the fac-
tor of cyclic connections has effect on Bayes Net methods, and leads to inaccurate identification
of directions.

Situation 8: Factor of stronger connections. Sim15 shows the situation where the
strength of the network connections is increased to a mean of 0.9 instead of 0.4. Since the num-
ber of nodes 5 or 10 has no obvious effect on the performance of most algorithms, we do a
comparison between Sim15 and Sim17. The two cases have the same conditions besides the
strength of the network connections and number of nodes. Compared with Sim17, the factor
of strong connections has no obvious effect on AIAEC. However, the increasing strength of
connections leads to many approaches fall in detecting network connections, while most Bayes
net methods still have excellent performances. Especially, AIAEC, FCI, GES and iMaGES cor-
rectly detect all the connections. Meanwhile, all algorithms except AIAEC perform worse at
estimating directionality in Sim15 than that of in Sim17. So the factor of stronger connections
has bad effect to all algorithms besides AIAEC on identifying connection directions.

Situation 9: Factor of more connections. Sim16 shows the situation where there are
more connections in 5 nodes’ networks. Different from the ground-truth network in Sim1, the
ground-truth network in Sim16 adds two arcs 2! 4 and 3! 5 while other conditions are the
same as that of Sim1. In Sim16, more connections make AIAEC perform worse. Compared
with Sim1, performance of PC, CPC, FCI, GES, Gen Synch and Patel improved, while CCD,
iMaGES, LiNGAM and Granger have declined. AIAECa has the comparable performance with
LiNGAM and Gen Synch which is better than other algorithms except for Patel. In conclusion,
the factor of more connections has different effect on different algorithms.

Situation 10: Factor of HRF variability and low TR. Compared to Sim1, Sim18 has the
same conditions except that HRF variability is set to 0s, Sim19 reduces the TR to 0.25s, sets the
noise to 0.1% and increases the neural lag to 100ms, and Sim20 is a further version of Sim19 by
removing the HRF variability. From Table 6, it was found that most of the algorithms have the
similar performance as Sim1 where all algorithms can correctly detect network connections in
Sim18. Moreover, LiNGAM, Gen Synch and AIAEC also perform well on identifying connec-
tion directions. In Sim19 and Sim20, LiNGAM, Gen Synch and AIAEC perform excellent, they
can correctly detect all network connections and connection directions. In particular, AIAEC
has a stable performance, the Fd values of AIAECb, AIAECw and AIAECa are 1.

Situation 11: Factor of 2-group test. Sim21 has the same conditions as Sim1 except for
2-group test. The 2-group test in Smith et al. (2011) is to test how sensitive the different meth-
ods are at detecting changes in connection strength across different subjects. In our experi-
ment, we make the 50 subjects into two groups. That is, the former 25 subjects with the same
connection strength as that of Sim1 are divided in group1, and the latter 25 subjects with half
of connection strength are divided in group2. Then all algorithms are used to test with these
two groups, respectively. The results of Sim21 are shown in Table 7 which contains the test of
all algorithms in the two groups. From the table we can see, AIAEC and most of the algorithms
can find the changes of connection strength. With the reduction of the connection strength,
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Table 5. Experimental results on Sim13–16 for eleven algorithms.

Data set Algorithms Num. of
Conn.

Num. of
Dire.

Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

Sim13 PC 0 3 1 2 100% 60% 0.75 67% 40% 0.5

CPC 0 3 3 0 100% 60% 0.75 0% 0% 0

CCD 0 3 1 2 100% 60% 0.75 67% 40% 0.5

FCI 0 3 1 2 100% 60% 0.75 67% 40% 0.5

GES 1 4 0 4 80% 80% 0.8 80% 80% 0.8

iMaGES 1 4 0 4 80% 80% 0.8 80% 80% 0.8

LiNGAM 2 3 1 2 60% 60% 0.6 40% 40% 0.4

Gen Synch 0 3 2 1 100% 60% 0.75 33% 20% 0.25

Patel 0 3 1 2 100% 60% 0.75 67% 40% 0.5

Granger 1 3 2 1 75% 60% 0.67 25% 20% 0.22

AIAECb 0 5 1 4 100% 100% 1 80% 80% 0.80

AIAECw 0 5 3 2 100% 100% 1 40% 40% 0.4

AIAECa 0 5 1.8 3.2 100% 100% 1 64% 64% 0.64

Sim14 PC 0 5 5 0 100% 100% 1 0% 0% 0

CPC 0 5 5 0 100% 100% 1 0% 0% 0

CCD 0 5 4 1 100% 100% 1 20% 20% 0.2

FCI 0 5 5 0 100% 100% 1 0% 0% 0

GES1 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES2 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM3 0 5 1 4 100% 100% 1 80% 80% 0.8

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 3 2 100% 100% 1 50% 60% 0.55

Granger 1 5 1 4 83% 100% 0.91 67% 80% 0.73

AIAECb 0 5 1 4 100% 100% 1 80% 80% 0.8

AIAECw 0 5 3 2 100% 100% 1 40% 40% 0.4

AIAECa 0 5 2.4 2.6 100% 100% 1 52% 52% 0.52

Sim15 PC 1 5 3 2 83% 100% 0.91 33% 40% 0.36

CPC 1 5 3 2 83% 100% 0.91 33% 40% 0.36

CCD 1 5 3 2 83% 100% 0.91 33% 40% 0.36

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES1 0 5 2 3 100% 100% 1 60% 60% 0.6

iMaGES2 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM3 1 5 2 3 83% 100% 0.91 50% 60% 0.55

Gen Synch 3 5 2 3 63% 100% 0.77 38% 60% 0.46

Patel 2 5 0 5 71% 100% 0.83 71% 100% 0.83

Granger 3 5 2 3 63% 100% 0.77 38% 60% 0.46

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 1 4 100% 100% 1 80% 80% 0.8

AIAECa 0 5 0.2 4.8 100% 100% 1 96% 96% 0.96

Sim16 PC 0 7 4 3 100% 100% 1 43% 43% 0.43

CPC4 1 7 4 3 88% 100% 0.93 38% 43% 0.4

CCD 0 7 4 3 100% 100% 1 43% 43% 0.43

FCI 0 7 4 3 100% 100% 1 43% 43% 0.43

GES 0 7 4 3 100% 100% 1 43% 43% 0.43

iMaGES 0 7 4 3 100% 100% 1 43% 43% 0.43
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most algorithms’ performances on group2 are better than those on group1. More importantly,
AIAEC performs well, which is comparable to LiNGAM, and can dramatically find the changes
of connection strength between the two groups.

Situation 12: Factor of nonstationary and stationarity connection strengths. Sim22 and
Sim23 investigate the factor of nonstationarity and stationarity of connection strength between
nodes. Sim23 has 5 nodes, noise of 0.1%, strong connections (mean 0.9) and reduced strength
of 0.3 for all external inputs apart from node1, this situation is called stationarity connection
strengths. Sim22 is the same as Sim23, except that the connection strength is modulated over
time by additional random processes, and this situation is called nonstationary connection
strengths. From the results, it was found AIAEC perform well in Sim22 which is the same as in
Sim1, indicating that nonstationary connection strengths has no effect on AIAEC. While
AIAEC has an obvious setback in Sim23 compared to Sim1, which shows the factor of statio-
narity connection strengths has a bad effect on AIAEC. In Sim22, most of the algorithms keep
the same performance, iMaGES, Gen Synch, Patel and AIAEC perform very well, correctly
identifying all directions. LiNGAM performs the worst, and its Fd value is only 0.17, this result
is consistent with the views in Hyvärinen and Smith (2013). In their paper [34], they said that
nonstationary connection strengths in Sim22 violate the basic assumption of the model
employed by LiNGAM. In Sim23, no algorithm can correctly detect all connection directions.
More specifically, though AIAEC is inferior to Gen Synch which performs the best in the case,
it obtains the second best performance, which is comparable to iMaGES and better than other
algorithms. In the two situations, we found that factor of stationarity connection strengths has
a bad effect on most of the algorithms, while factor of nonstationary connection strengths has
no effect on most algorithms and even improves some algorithms’ performance.

Situation 13: Factor of having only one stronger external input. Different from Sim15
where each node has a strong external input, Sim24 shows the situation that there is only one
stronger external input. More specifically, all nodes apart from node 1 have their own external
input strengths reduced from 1 to 0.1 in Sim24. Compared with Sim15, it was found that
AIAEC and most algorithms become poor on performance. Though no algorithm can detect
network connections entirely correctly, AIAEC performs the best. Similarly, AIAEC also per-
forms the best on estimating directionality, the Fd values of AIAECb, AIAECw and AIAECa are
0.73, 0.67 and 0.68, respectively. Even in the worst case, the Fd value of AIAECw is higher than

Table 5. (Continued)

Data set Algorithms Num. of
Conn.

Num. of
Dire.

Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

LiNGAM 1 7 2 5 88% 100% 0.93 63% 71% 0.67

Gen Synch 1 7 2 5 88% 100% 0.93 63% 71% 0.67

Patel 1 7 0 7 88% 100% 0.93 88% 100% 0.93

Granger 1 7 4 3 88% 100% 0.93 38% 43% 0.4

AIAECb 0 7 2 5 100% 100% 1 71% 71% 0.71

AIAECw 0 7 4 3 100% 100% 1 43% 43% 0.43

AIAECa 0 7 2.8 4.2 100% 100% 1 60% 60% 0.6

1 The parameters of GES: Penalty Discount = 6.0, Num Patterns to Save = 1.
2 The parameters of iMaGES: Penalty Discount = 6.0, Num Patterns to Save = 1.
3 The parameters of LiNGAM: Prune Factor = 3.0.
4 The parameters of CPC: Alpha = 0.01, Depth = −1.

doi:10.1371/journal.pone.0152600.t005
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Table 6. Experimental results on Sim17–20 for eleven algorithms.

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

Sim17 PC 0 10 3 7 100% 91% 0.95 70% 64% 0.67

CPC 0 11 4 7 100% 100% 1 64% 64% 0.64

CCD 0 11 4 7 100% 100% 1 64% 64% 0.64

FCI 0 11 4 7 100% 100% 1 64% 64% 0.64

GES 0 11 2 9 100% 100% 1 82% 82% 0.82

iMaGES 0 11 2 9 100% 100% 1 82% 82% 0.82

LiNGAM1 0 11 1 10 100% 100% 1 91% 91% 0.91

Gen Synch 0 11 0 11 100% 100% 1 100% 100% 1

Patel 0 11 1 10 100% 100% 1 91% 91% 0.91

Granger 3 11 2 9 79% 100% 0.88 64% 82% 0.72

AIAECb 0 11 0 11 100% 100% 1 100% 100% 1

AIAECw 0 11 1 10 100% 100% 1 91% 91% 0.91

AIAECa 0 11 0.2 10.8 100% 100% 1 98% 98% 0.98

Sim18 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 4 1 100% 100% 1 20% 20% 0.2

CCD 0 5 1 4 100% 100% 1 80% 80% 0.8

FCI 0 5 4 1 100% 100% 1 20% 20% 0.2

GES 0 5 2 3 100% 100% 1 60% 60% 0.6

iMaGES 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM1 0 5 0 5 100% 100% 1 100% 100% 1

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 0 5 1 4 100% 100% 1 80% 80% 0.8

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 1 4 100% 100% 1 80% 80% 0.8

AIAECa 0 5 0.6 4.4 100% 100% 1 88% 88% 0.88

Sim19 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 3 2 100% 100% 1 40% 40% 0.4

CCD 0 5 3 2 100% 100% 1 40% 40% 0.4

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES 0 5 3 2 100% 100% 1 40% 40% 0.4

iMaGES 0 5 3 2 100% 100% 1 40% 40% 0.4

LiNGAM1 0 5 0 5 100% 100% 1 100% 100% 1

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 2 5 1 4 71% 100% 0.83 57% 80% 0.67

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

Sim20 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 3 2 100% 100% 1 40% 40% 0.4

CCD 0 5 3 2 100% 100% 1 40% 40% 0.4

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES 0 5 1 4 100% 100% 1 80% 80% 0.8
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the second best algorithms (GES and Patel) and much better than other Bayes net algorithms.
In this situation, all algorithms except for GES have an obvious setback, the results show that
the factor of having only one stronger external input make most algorithms perform worse.

Situation 14: Factor of different noises. Sim27 and Sim28 are two variations of Sim26
and Sim25, respectively, by reducing the noise to 0.1%. Comparing these results in Table 8, it is
not difficult to see that the noise reduction can make a small improvement for AIA and most
of the algorithms on estimating connection directions. Along with the noise reduction in
Sim27 and Sim28, AIAEC can correctly identify all connection directions in all cases. It’s worth
recalling that Sim26 has the worst condition compared with other three simulations. In the
simulation, AIAEC still maintains the best on the performance of directionality, where the Fd
values of AIAECb, AIAECw and AIAECa are 1, 0.8 and 0.96, respectively. Even in the worst
case, AIAEC is not inferior to the second best algorithms (GES and Patel) and much better
than other algorithms. These results on the situation show that AIAEC has very good perfor-
mances when the session is short and the noise is significant. From another aspect, it shows
that high noises make algorithms perform worse.

Comparative network structures. To explicitly reveal the results obtained by our algo-
rithm, we take two networks as the examples to explain. In these two examples, two ground-
truth graphs under the corresponding conditions denote the mean ground-truth networks
across 50 “subjects”, other graphs show the best results detected by corresponding algorithms.
Moreover, in each graph, black lines mean that the connections and directions in this graph are
consistent with the ground-truth network, while the blue lines are not. Fig 6 shows the first
example in Sim1, where 10 algorithms except for LiNGAM can correctly detect 5 connections,
however, most of algorithms generate errors at identifying the directions. More specifically, only
Granger and AIAEC algorithms shown in Fig 6(k) and 6(l) can correctly identify all directions.
CCD, iMaGES and Patel algorithms can correctly identify 4 of 5 directions. As shown in Fig 6
(d), 6(g) and 6(j), the error directions of CCD, iMaGES and Patel are 3! 2, 2! 1 and 4! 3,
respectively. LiNGAM detects an extra arc 1! 3 shown in Fig 6(h). Gen Synch can correctly
identify 3 of 5 directions, two error directions in Fig 6(i) are 5! 1 and 5! 4. As shown in Fig
6(b), 6(e) and 6(f), there are three error or unlabelled directions, i.e., 4! 3, 3! 2 and 2! 1
for PC and GES, 4 − 3, 3 − 2 and 2 − 1 for FCI. As shown in Fig 6(c), CPC only correctly identi-
fies a direction 1! 5, and other directions are error.

Fig 7 shows another example on Sim2, where 9 algorithms can correctly detect 11 connec-
tions except for PC and LiNGAM, in which PC loses a connection between node 7 and node 8

Table 6. (Continued)

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

LiNGAM1 0 5 0 5 100% 100% 1 100% 100% 1

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 4 5 0 5 56% 100% 0.71 56% 100% 0.71

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

1 The parameters of LiNGAM: Prune Factor = 3.0.

doi:10.1371/journal.pone.0152600.t006
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Table 7. Experimental results on Sim21–24 for eleven algorithms.

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

Sim211 PC 0/0 5/5 3/2 2/3 100%/100% 100%/100% 1/1 40%/60% 40%/60% 0.4/0.6

CPC 0/0 5/5 4/4 1/1 100%/100% 100%/100% 1/1 20%/20% 20%/20% 0.2/0.2

CCD 0/0 5/5 1/0 4/5 100%/100% 100%/100% 1/1 80%/100% 80%/100% 0.8/1

FCI 0/0 5/5 3/3 2/2 100%/100% 100%/100% 1/1 40%/60% 40%/60% 0.4/0.6

GES 0/0 5/5 2/0 3/5 100%/100% 100%/100% 1/1 60%/100% 60%/100% 0.6/1

iMaGES 0/0 5/5 2/0 3/5 100%/100% 100%/100% 1/1 60%/100% 60%/100% 0.6/1

LiNGAM 0/0 5/5 0/0 5/5 100%/100% 100%/100% 1/1 100%/100% 100%/100% 1/1

Gen Synch 0/0 5/5 2/2 3/3 100%/100% 100%/100% 1/1 60%/60% 60%/60% 0.6/0.6

Patel 0/0 5/5 1/1 4/4 100%/100% 100%/100% 1/1 80%/80% 80%/80% 0.8/0.8

Granger 0/0 4/5 0/1 4/4 100%/100% 80%/100% 0.89/1 100%/80% 80%/80% 0.89/0.8

AIAECb 0/0 5/5 0/0 5/5 100%/100% 100%/100% 1/1 100%/100% 100%/100% 1/1

AIAECw 0/0 5/5 1/0 4/5 100%/100% 100%/100% 1/1 80%/100% 80%/100% 0.8/1

AIAECa 0/0 5/5 0.6/0 4.4/5 100%/100% 100%/100% 1/1 88%/100% 88%/100% 0.88/1

Sim22 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 3 2 100% 100% 1 40% 40% 0.4

CCD 0 5 1 4 100% 100% 1 80% 80% 0.8

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES 0 5 0 5 100% 100% 1 100% 100% 1

LiNGAM 2 5 4 1 71% 100% 0.83 14% 20% 0.17

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 0 5 100% 100% 1 100% 100% 1

Granger 0 4 2 2 100% 80% 0.89 50% 40% 0.44

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

Sim23 PC 1 5 3 2 83% 100% 0.91 33% 40% 0.36

CPC 1 5 3 2 83% 100% 0.91 33% 40% 0.36

CCD 1 5 4 1 83% 100% 0.91 17% 20% 0.18

FCI 1 5 5 0 83% 100% 0.91 0% 0% 0

GES2 2 5 2 3 71% 100% 0.83 43% 60% 0.5

iMaGES3 2 5 1 4 71% 100% 0.83 57% 80% 0.67

LiNGAM 1 5 3 2 83% 100% 0.91 33% 40% 0.36

Gen Synch 2 5 0 5 71% 100% 0.83 71% 100% 0.83

Patel 3 5 1 4 63% 100% 0.77 50% 80% 0.62

Granger 3 5 2 3 63% 100% 0.77 38% 60% 0.46

AIAECb 2 5 1 4 71% 100% 0.83 57% 80% 0.67

AIAECw 2 5 1 4 71% 100% 0.83 57% 80% 0.67

AIAECa 2 5 1 4 71% 100% 0.83 57% 80% 0.67

Sim24 PC 4 5 4 1 56% 100% 0.71 11% 20% 0.14

CPC 4 5 5 0 56% 100% 0.71 0% 0% 0

CCD 4 5 5 0 56% 100% 0.71 0% 0% 0

FCI 4 5 4 1 56% 100% 0.71 11% 20% 0.14

GES2 3 5 1 4 63% 100% 0.77 50% 80% 0.62

iMaGES3 3 5 2 3 63% 100% 0.77 38% 60% 0.46

(Continued)

Learning Effective Connectivity from fMRI Data Based on AIA

PLOS ONE | DOI:10.1371/journal.pone.0152600 April 5, 2016 23 / 32



while LiNGAM genarates an extra connection between node 5 and node 3. For identifying the
directions, AIAEC is the only algorithm which can correctly detect all directions, and other
algorithms produce at least 2 mistakes. In detail, LiNGAM, iMaGES, Gen Synch and Patel gen-
erate 2 error arcs, such as 5! 4 and 5! 3 in Fig 7(h), 3! 2 and 2! 1 in Fig 7(g), 10! 9
and 8! 7 in Fig 7(i), and 3! 2 and 9! 8 in Fig 7(j). PC, CCD, FCI, GES and Granger gener-
ate 4 error arcs, they are: three error arcs (2! 1, 3! 2 and 4! 3) and a losing arc 7! 8 in
Fig 7(b), four error arcs (2! 1, 3! 2, 4! 3) and 9! 8 in Fig 7(d), three undirection arcs (2
− 1, 3 − 2 and 4 − 3) and one bidirection arc 7$ 8 in Fig 7(e), 4 error directions such as 4! 3,
3! 2, 2! 1 and 7! 6 in Fig 7(f), one error direction 10! 9 and three bidirection arcs (5$
4, 9$ 8, 6$ 10) in Fig 7(k). Finally, as shown in Fig 7(c), CPC generates 6 error arcs: 5$ 4,
4$ 3, 3$ 2, 2! 1, 8! 7 and 7! 6.

Comparative whole performance. Figs 8 and 9 show the average comparison results of
these algorithms over all 28 simulations in terms of various evaluation metrics, including Preci-
sionc, Recallc, Fc, Precisiond, Recalld, Fd for connection and direction measurements, respec-
tively. From Fig 8, we can conclude that AIAEC archives excellent performance on the
connection measurements. In detail, it was found that AIAEC obtains the highest values of Pre-
cisionc, Recallc, Fc in three cases though the connection measurements of all these algorithms
are generally good. E.g., three Fc values of AIAEC are 0.9858 (AIAECb), 0.9802 (AIAECw), and
0.9820 (AIAECa), respectively, which are 8.76%, 8.20%, and 8.38% higher than the worst value
0.8982 (Granger) in all algorithms.

Fig 9 shows the comparative direction measurements of various algorithms over all 28 simu-
lations. We can observe that the best and mean values of AIAEC are higher than that of other
algorithms while the worst value of AIAEC is only inferior to Patel. More specifically, three Fd
values of AIAEC are 0.9342 (AIAECb), 0.7905 (AIAECw), 0.8711 (AIAECa). AIAECb and
AIAECa are 13.78%, 7.47% higher than that of the second best algorithm Patel (Fd = 0.7964). In
other words, the performance difference on network direction is relatively large for all test algo-
rithms where AIAEC gets the better performance in average.

Discussion
In this paper, a new algorithm, i.e., AIAEC, is proposed, which is a global search method to
learn the effective connectivity from fMRI data. In AIAEC, an effective connectivity network is

Table 7. (Continued)

Data set Algorithms Num. of
Conn.

Num. of Dire. Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

LiNGAM 2 5 2 3 71% 100% 0.83 43% 60% 0.5

Gen Synch 4 5 2 3 56% 100% 0.71 33% 60% 0.43

Patel 3 5 1 4 63% 100% 0.77 50% 80% 0.62

Granger 4 5 1 4 56% 100% 0.71 44% 80% 0.57

AIAECb 1 5 1 4 83% 100% 0.91 67% 80% 0.73

AIAECw 2 5 1 4 71% 100% 0.83 57% 80% 0.67

AIAECa 1.8 5 1 4 74% 100% 0.85 59% 80% 0.68

1 Sim21 shows the results of the two groups, shown as group1/group2.
2 The parameters of GES: Penalty Discount = 6.0, Num Patterns to Save = 1.
3 The parameters of iMaGES: Penalty Discount = 6.0, Num Patterns to Save = 1.

doi:10.1371/journal.pone.0152600.t007
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Table 8. Experimental results on Sim25–28 for eleven algorithms.

Data set Algorithms Num. of
Conn.

Num. of
Dire.

Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

Sim25 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 4 1 100% 100% 1 20% 20% 0.2

CCD 0 5 1 4 100% 100% 1 80% 80% 0.8

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES 0 5 0 5 100% 100% 1 100% 100% 1

iMaGES 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM 1 5 1 4 83% 100% 0.91 67% 80% 0.73

Gen Synch 0 5 1 4 100% 100% 1 80% 80% 0.8

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 0 5 2 3 100% 100% 1 60% 60% 0.60

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 1 4 100% 100% 1 80% 80% 0.8

AIAECa 0 5 0.1 4.9 100% 100% 1 98% 98% 0.98

Sim26 PC 0 5 2 3 100% 100% 1 60% 60% 0.6

CPC 0 5 2 3 100% 100% 1 60% 60% 0.6

CCD 0 5 2 3 100% 100% 1 60% 60% 0.6

FCI 0 5 2 3 100% 100% 1 60% 60% 0.6

GES 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES 0 5 2 3 100% 100% 1 60% 60% 0.6

LiNGAM1 0 5 2 3 100% 100% 1 60% 60% 0.6

Gen Synch 0 5 2 3 100% 100% 1 60% 60% 0.6

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 2 5 3 2 71% 100% 0.83 29% 40% 0.33

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 1 4 100% 100% 1 80% 80% 0.8

AIAECa 0 5 0.2 4.8 100% 100% 1 96% 96% 0.96

Sim27 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 4 1 100% 100% 1 20% 20% 0.2

CCD 0 5 1 4 100% 100% 1 80% 80% 0.8

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES 0 5 1 4 100% 100% 1 80% 80% 0.8

LiNGAM 0 5 0 5 100% 100% 1 100% 100% 1

Gen Synch 0 5 1 4 100% 100% 1 80% 80% 0.8

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 3 5 3 2 63% 100% 0.77 25% 40% 0.31

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

Sim28 PC 0 5 3 2 100% 100% 1 40% 40% 0.4

CPC 0 5 3 2 100% 100% 1 40% 40% 0.4

CCD 0 5 1 4 100% 100% 1 80% 80% 0.8

FCI 0 5 3 2 100% 100% 1 40% 40% 0.4

GES 0 5 1 4 100% 100% 1 80% 80% 0.8

iMaGES 0 5 1 4 100% 100% 1 80% 80% 0.8
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mapped to an antibody, and four immune operators are then employed to perform the optimi-
zation process of antibodies, including clonal selection operator, crossover operator, mutation
operator and suppression operator, and the causal connectivity network with the highest K2
score is finally output as the solution. The experimental results demonstrated that the proposed
AIAEC method is superior to the other 10 algorithms in most of the 28 simulated datasets and
attains the comparable performance to the best algorithms on the other cases. In the following
paragraphs, the advantage and disadvantage of AIAEC will be discussed in terms of the differ-
ent influential factors.

It has been demonstrated that the proposed AIAEC method is differently affected by the
experimental factors. Introduction of the shared input, backward connections, stronger con-
nections, only one stronger external input, and noise significantly decreased the performance
of AIAEC, nevertheless, in these situations, AIAEC is superior to all the other 10 algorithms.
Introduction of bad ROIs, cyclic connection, more connections, as well as the increasing node
number also reduce the ability of AIAEC. In these cases, AIAEC still gets the comparable per-
formance to the best algorithm (maybe Granger, Gen Synch, or Patel). When the HRF devia-
tion is reduced, its effect on AIAEC is interacted with the TR factor. In the longer TR cases
(TR = 3 s), AIAEC’s performance is reduced but still comparable to Gen Synch and superior to
the other 9 methods. While in the shorter TR cases (TR = 0.25 s), AIAEC is seldom affected.
When the connection strength is modulated by additional random processes, the performance
of AIAEC is increased, and better than the other 10 algorithms. In addition, global mean con-
found has no effect on AIAEC, and even in the worst condition, AIAEC gets the best perfor-
mance. The session length also has no effect on AIAEC. Following the chain of
Sim26-Sim25-Sim1-Sim5-Sim7 (i.e., the session duration is increasing from 2.5 min, to 5 min,
10 min, 60 min, 250 min), it was found that AIAEC can get the stable solution of the effective
connectivity structures at the relative shorter time period (i.e., 2.5 min; in this cases (Sim26), Fd
is 0.96 averaged for AIAEC).

The current results reveal that the proposed AIAEC is better than all the other existing
Bayes net methods including PC, CPC, CCD, FCI, GES, and iMaGES, and also superior or
comparable to Granger, Gen Synch, and Patel. It was argued that this advantage may be mainly
attributed to its strong global search ability by employing the optimization process of an anti-
body population. Specifically, there are three factors to enhance AIAEC’s global optimization
ability. First, AIAEC is a swarm intelligent algorithm, which employs an antibody population
with different initial solutions to find an optimal solution at each iteration. The swarm search

Table 8. (Continued)

Data set Algorithms Num. of
Conn.

Num. of
Dire.

Connection Measurement Direction Measurement

Ca Cs Dw Ds Precisionc Recallc Fc Precisiond Recalld Fd

LiNGAM 0 5 0 5 100% 100% 1 100% 100% 1

Gen Synch 0 5 0 5 100% 100% 1 100% 100% 1

Patel 0 5 1 4 100% 100% 1 80% 80% 0.8

Granger 0 4 1 3 100% 80% 0.89 75% 60% 0.67

AIAECb 0 5 0 5 100% 100% 1 100% 100% 1

AIAECw 0 5 0 5 100% 100% 1 100% 100% 1

AIAECa 0 5 0 5 100% 100% 1 100% 100% 1

1 The parameters of LiNGAM: Prune Factor = 3.0.

doi:10.1371/journal.pone.0152600.t008
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mechanism can result in an extremely wide search scope, which make AIAEC to be more easily
to get the higher scores. Therefore, AIAEC is better than the other two score-based Bayes
net algorithms (GES and iMaGES) when there is no added factor in Situation 1. Second,
AIAEC utilizes a random search mechanism with some immune operators to ensure the diver-
sity of solutions. For instance, crossover and mutation operators of antibodies enhance the
AIAEC’s global search capability and avoid trapping into local optimum. This characteristic
makes AIAEC perform well in Situation 2, especially in Sim25 and Sim26 where the sessions
are short. As we all know, when the session is short, the information of subjects will be less,
which may bring more difficulty, for the search algorithm to find a good solution. By these
immune operators, AIAEC can maintain the diversity of solutions, which help AIAEC find the
best solution in the situation with less data. Third, AIAEC adopts a memory set in generating

Fig 6. The network structures identified by various algorithms on Sim 1. (a) ground-truth. (b) PC. (c) CPC. (d) CCD. (e) FCI. (f) GES. (g) iMaGES. (h)
LiNGAM. (i) Gen Synch. (j) Patel. (k) Granger. (l) AIAEC (best).

doi:10.1371/journal.pone.0152600.g006
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an initial population. The memory mechanism can keep the useful information of excellent
antibodies in the ancestors and guide the evolution of descendants in stochastic evolutionary
process, which reduces the repeated and blind exploring in a random searching and accelerates
the convergence speed of AIAEC. For instance, in Situation 10, AIAEC can correctly detect all
network connections and entirely identify all connection directions in which the memory
mechanism plays an important role in using the history information and avoiding solution
degeneration.

The noise-tolerance ability of AIAEC may also contribute to its performance. When various
noises (not limited to the signal noise level) are added into data, many algorithms are seriously
affected, but AIAEC still maintains its performance. This may be attributed to the fact that
AIAEC simulates an immune mechanism which not only takes into account local connection
between two nodes, but also judges the global impact of each connection on the whole network
during the learning process of network structures. In other words, just like iMaGES, AIAEC
searches in the space of the overall graph over the ROIs, but not in the space of what the
weights or strengths of these causal relationships are for each connection across subjects [20].
The identifying capabilities of AIAEC and iMaGES are confirmed in Situation 8 and Situation
12, where the performance of many algorithms were worse while AIAEC and iMaGES still per-
formed well. The good noise tolerance of AIAEC was also reflected in Situation 14, where
AIAEC always keeps a good identifying ability whether the noises are added.

Fig 7. The network structures identified by various algorithms on Sim 2. (a) ground-truth. (b) PC. (c) CPC. (d) CCD. (e) FCI. (f) GES. (g) iMaGES. (h)
LiNGAM. (i) Gen Synch. (j) Patel. (k) Granger. (l) AIAEC (best).

doi:10.1371/journal.pone.0152600.g007
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Another advantage of AIAEC is its self-adaptability. Many algorithms are highly dependent
on their parameter setting and threshold selection [8]. That is, the improper threshold or
parameter value may induce the bad results. Thus, many algorithms usually require a consider-
able amount experiments to determine the value of parameters and thresholds on different data-
sets. To objectively demonstrate the solving abilities of 10 comparison algorithms, we have tried
to make them have the best parameter values in our experiments. As shown in Tables 2 to 8, we
keep changing the parameters of some algorithms to adapt to different simulations. Though
AIAEC also has some parameters, its performance is not sensitive to the parameter values. This
is because that AIAEC simulates a kind of heuristic search mechanism, artificial immune, to
search the network connection structure with the best score. The artificial immune mechanism
has self-learning and adaptive abilities, which can not only keep the balance between exploita-
tion and exploration processes, but also realize the perfect combination of global searching and
local searching in the available solution space. Therefore, AIAEC does not need to manually set
a threshold to determine whether there is a connection between two nodes, and it is able to auto-
matically learn a network structure without manual interventions from various datasets.

There are still some limitations for AIAEC. First, AIAEC requires discretized data as inputs,
so it needs an extra data preprocessing step on every simulated dataset. How to overcome the
above limitation will be important to expand the application of AIAEC. Second, AIAEC cannot
guarantee the performance of identifying directions when there is a cyclic causality in a brain net-
work (e.g., in Sim14). The reason is that the cyclic causality breaks the acyclic assumptions for
many Bayes net methods including AIAEC, which also has been indicated by Smith et al. (2011).

Fig 8. Comparative connection measurements of various algorithms over all 28 simulations.

doi:10.1371/journal.pone.0152600.g008
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Conclusion
This paper presents a new method for learning effective connectivity network structure from
fMRI data, i.e., AIAEC. The effectiveness of AIAEC has been experimentally verified. More-
over, AIAEC is superior to the other existing 10 algorithms in the majority of the datasets. The
advantages of AIAEC (e.g., shorter session duration and higher noise-tolerance ability) imply
that it is promising for practical applications in the neuroimaging studies of pediatric, geriatric
subjects and neurological patients.
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