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. alignment and asymmetric cell division. Although cell polarity is uniformly oriented along a tissue axis in

many tissues, its mechanism is not well understood. In this paper, we propose a theoretical framework
to understand the generic dynamical properties of polarity alignment in interacting cellular units, where
each cell is described by a reaction—diffusion system, and the cells further interact with one another
through the contacting surfaces between them. Using a perturbation method under the assumption
of weak coupling between cells, we derive a reduced model in which polarity of each cell is described
by only one variable. Essential dynamical properties including the effects of cell shape, coupling
heterogeneity, external signal and noise can be clarified analytically. In particular, we show that the
anisotropicity of the system, such as oriented cell elongation and axial asymmetry in the coupling
strength, can serve as a global cue that drives the uniform orientation of cell polarity along a certain
axis. Our study bridges the gap between detailed and phenomenological models, and it is expected to
facilitate the study of polarity dynamics in various nonequilibrium systems.

Spatially ordered patterns are ubiquitous in nature and have been of central importance in various disciplines!—.
In particular, we are concerned with the dynamical alignment of polarity in nonequilibrium systems of inter-
acting cellular units, including chemical and biological systems, where polarity can be regarded as asymmetric
distributions in chemical species within a cellular unit. Polarity has great importance in biology, and it is essential,
for example, in cell movement and oriented cell division®. A well-known example in biology is planar cell polarity
(PCP), which refers to the coordinated alignment of cell polarity across the planar tissue. This results in the for-
mation of the ordered pattern of, e.g., hair follicles and cilia positioning*. Although cellular polarity aligns over
long distances in skin and wing, its mechanism is not well understood’. Recently, several possibilities have been
suggested®™”’. Attributed to the challenge of experimental investigation, theoretical work provides an important
role in developing a unifying explanation of the phenomenon. Several mathematical models have been proposed
to describe the effects of various factors on polarity alignment, including cell shape, external signal and noise.
Some studies employ detailed models, where each cell is described by a reaction-diffusion system, and these cells
are further coupled by contacting surfaces®®. Other studies employ simple phenomenological models similar
to models for magnetisation or synchronisation®!, which is a reasonable approach because the cell alignment
process phenomenologically resembles those observed in a population of spins or oscillatory units''~'*. Detailed
models contain several free parameters and are too complicated to provide a general understanding of the pro-
cess. Nevertheless, phenomenological models are rather arbitrary and may lack essential dynamical features.

: In the present paper, the generic dynamical properties of cell polarity alignment are examined by the deri-

. vation and analysis of a reduced model for coupled reaction-diffusion systems. For simplicity, a planar tissue is

© considered, as in previous studies on PCP5%-1°, As a first step, each cell is described by a reaction—diffusion sys-
tem. The cells mutually inhibit one another through their contacting surfaces, by which polarity alignment occurs
between neighbouring cells. It is then shown that a perturbation method under the assumption of weak coupling
between cells enables the reduction of the reaction-diffusion model to a phase model, which is drastically simpler
than the reaction-diffusion model yet it is a reasonable approximation to it. In particular, the phase model of a
simple case, which is a particular case of Eq. (55), can be derived as
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Figure 1. Schematic of (a) the cell shape and (b) cell alignment. Regular or elongated hexagonal cells are
considered with a perimeter of 2, thus 20+ 48’ = 2. ;;and d;; denote the midpoint and the length of the
contacting surface between cell i and j, respectively. 6+ = 6+(6;) denotes a point of 6, at which cell j faces the
point 0; of cell i, while 77;; can be regarded as the cell-to-cell direction from cell i to cell j.
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Figure 2. Polarity patterns of (a,b) single cell and (c,d) two coupled cells. In (a) and (b), a steady profile of U;
and its colour scale representation are displayed, respectively. The arrow in (b) indicates polarity orientation.
In (c) and (d), typical examples of polarity patterns of two coupled cells with different cell alignments are
displayed.

Qsi = a; sin(¢; — ¢,) + ¢; Sin(27],~ — & — D)
F Lol = ) s cysnCn, 4= 9) 0

where ¢; is the phase of cell i, which approximately describes the position of the maximum of a reaction-diffusion
component, A(f) is the group of cells adjacent to cell 4, 7); is the cell-to-cell direction from cell i to cell j and a;; and
c; are functions of the width d;; of the contacting surfaces (see Figs 1 and 2). In the absence of the second term,
this phase model is same as the model describing spin states in ferromagnets, known as the XY model, and a
special case of spatially extended phase oscillator models'®~'8. Such a model was employed in a previous study on
PCPY. Our phase model is distinct from the study, as it includes novel terms representing geometric information,
such as the cell shape and the relative position between neighbouring cells. As the model is easily manageable,
essential dynamical properties including the effects of cell shape, external signal and noise can be clarified analyt-
ically, which have only been studied numerically in previous works using detailed models®°. Finally, we discuss
symmetry-breaking patterns in PCP>~7 by using of our model. In particular, we point out that axial asymmetry
in the system, such as oriented cell elongation and asymmetric distribution of coupling strength, can be a global
cue for the orientation of cell polarity across the entire tissue. Our study bridges the gap between detailed and
phenomenological models, it is expected to facilitate the study of polarity dynamics in various nonequilibrium
systems.

Reaction-diffusion model

The entire system is composed of a population of planar cells aligned in two-dimensional space. Reaction-dif-
fusion dynamics of each cell takes place on the one-dimensional surface, and the cells further interact with one
another through the contacting surfaces between them. For simplicity, it is assumed that every cell has identical
shape, which is either regular or elongated hexagonal with a perimeter of 27, and they form hexagonal lattices, as
shown in Fig. 1. Each cell obeys the equation,
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where X;=X;(0,, t) (i=1, ..., N) denotes the concentration of chemical species at time ¢ and the position
0:(0 <6, <27) on the surface of each cell, F(X;) describes the local reaction dynamics, Dis the diagonal matrix
consisting of diffusion coefficients, A(i) is the group of cells adjacent to cell i, H;= H;(0,, t) describes interactions
between cells and ¢ is the coupling strength. Interaction occurs at every contact point and depending on the state
at the contact point, i.e.,

Hij(ei’ t) = Hij(Xi(ei’ 1), Xj(@j*, ), (3)

where g = 6(6))is a point of ¢ at which cell j faces the point §; of cell 7, as illustrated in Fig. 1(b), and Hy(0,, t) van-
ishes if cell i does not contact cell j at ;. As it is described later, external signals and noise may also be considered. In
each cell, X;(6;, t) is assumed to form a unimodal distribution for € = 0; i.e., polarity is spontaneously formed. The
orientation of polarity of cell i at time ¢ is defined by the 6, value at which the first component of X;(6;, ), denoted by
Uy(0; t), is maximal.

Here, some concrete examples are provided. For Fand D, two examples are considered: (a) the real Ginzburg-
Landau equation (GLE)i9 and (b) the activator-inhibitor model?’. Both models have two variables, denoted by
X;=(U, V;),and Fand D can be written as

. Ui—(U,-Z"'V,»Z)U, ﬁ:[DO 0]
V= (U + V)Y, 0 Dy @)
where D, is set to 0.3 at which a stable unimodal distribution is obtained, and
2
Py
— u, U + o ~ D 0
F=|a+s)y U7V D=|Y ,
X 0 Dy
vai - /’LVVt (5)

where p;=0.01, py=0.02, y=0.01, p1y=0.02, o;,=0.0, K =0.0, D;=0.005 and D= 0.2, respectively. The
parameter values for the latter model are taken from the reference®. The former is a long-wave amplitude equa-
tion, which is widely used to describe various systems near the onset of instability. The latter is a reaction-diffu-
sion model, describing biological pattern formation®. In these models, given appropriate initial conditions, X;
exhibits a stationary unimodal distribution for € =0, thus, they are suitable as dynamical models describing cell
polarity. Figure 2(a,b) shows a steady profile of U,(6,,t) for ¢ =0 numerically obtained using the activator-inhib-
itor model given by equation (5).
As a simple example of intercellular interaction, we consider a linear coupling given by

H,(0, 0 = s,00)| %% 1~ UL D),
0

(6)
where S;=1if cell i faces cell j at §;and S;;= 0 otherwise; i.e.,
1 for |0 i
s;0) = {1 for 10 —ml < =
0 otherwise. (7)

The coupling given by equation (6) acts as mutual inhibition between neighbouring cells through the
U-component for € > 0, causing polarity ordering, as shown in Fig. 2(c,d). Later, another type of linear coupling,
ie,— U].(Gj*, t)instead of U(6,, t) — Uj(ej*, t), is considered to show the robustness of our results.

Derivation of the phase model

Our reaction-diffusion model given by equation (2) consists of N x M partial differential equations, where N and
M are the numbers of cells and variables in each cell. For such a model, both analytical and numerical treatments
are difficult. Therefore, we applied a perturbation method to equation (2) under the assumption of weak coupling
to obtain a phase model, which consists of N ordinary differential equations and can be useful for both analytical
and numerical analyses. Our method is based on the well-known phase reduction theory*?, and it is an applica-
tion of the recently developed method for oscillatory patterns reported in refs.??2.

Let X5(6) be the stationary distribution of a cell in the unperturbed system (¢ =0). Because of the translational
symmetry, X3(6 — 6,) with any constant 6, is also a steady solution. The phase ¢,(¢) of X,(6;, t) is defined such that
X0, t) converges to X3(0; — ¢) as t — oo in the unperturbed system. In other words, y,(6;, t) — 0 as £ — oo for
€ =0, where the deviation y,(6;, t) is defined by

X0, 1) = X360, — 6) + 300, 1), ®)
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with ¢,(¢) being the phase of state X(6,, t). Without the loss of generality, we assume that U%(#), which is the
U component of X5(6), takes its maximum at 6 = 0. Then, for sufficiently small y,(6;, 1), ¢,(t) of X\(0,, ) is well
approximated by the maximum of U,(0; t), i.e.,

(1) ~ argmaxei(/;(éi, t). (9)

Thus, ¢; can be regarded as the orientation of polarity of cell .
The linear operator £ is defined by

NG A
L=]+ D—
T+ D5p (10)

with Jacobian J= OF(X)/0X determined at X = X(6). The adjoint operator L7 is defined such that it satisfies
(A, LB) = (L'A, B), where the inner product of the 27-periodic functions, A(f) and B(6) is defined by

2T
(A, B) =f0 A - Bdf. an

For equation (2), it can be shown that

Py i
6* (12)

where JT is the transpose of J. The eigenfunctions of £ and £ are denoted by Y, (@) and Z,(0) (£ = 0,1, ...),
respectively. In particular, the zero eigenfunctions are denoted by Y, and Z,, i.e., LY, = L Z;=0. Here, we
choose

00 (13)
These eigenfunctions are assumed to form a complete orthonormal system and are normalised as
<ZZ’ Ym> = 6lm' (14)
The deviation y; can be expanded as
50 1) = 3 CUOY6, — ),
(=1 (15)

where ¢; is the phase of state X;(6,, t). Note that Y,(; — ¢;) is absent in this expansion because y,(6;, t) — 0 as
t— oo fore=0.
Substituting equation (8) into equation (2), we obtain

Y0, — )b + 3 = Ly, + ¢ Y Hy + O().
iEA() (16)

Taking the inner product with Zy(6; — ¢;) and omitting O(£?), we finally obtain the phase model as
‘isi =€ Z Ej(¢i’ ¢j)’
JEA() (17)
Fij = (Zy(0, — ¢, Hi§>’ (18)

where Hg = Hij{Xs(Oi — &), Xs(Oj* - qﬁj)} Given the functional forms of X5(6) and Z(6), equation (17) pro-
vides a closed equation for the phases ¢, (i=1, ..., N).
It is convenient to express F,»j in terms of Fourier coefficients, uy, z;, s,iij) € R, defined by

US9) = 3 u, coskd,
RN (19)

z{V) = 3 —2z, sink#,
’ R (20)

and

S0 +n.) = s coskO,
A k:z_oo ¢ @1)
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Figure 3. Profile of the steady state US(6) (black lines) and the phase sensitivity function Zéu)(ﬁ) (red lines) for
(a) the GLE and (b) the activator-inhibitor model.

where it is assumed that S(6 +1;), US(0) and Zé U)(9) are even, even and odd functions, respectively. By substitut-
ing these expansions into equation (18) with H;; given by equation (6), we obtain a general expression:

L = 27> _zayl( —1)'s) sin{(k + Dy — key — 1oy — s sin{(k + D0, — d)}]-
k1

(22)
For the regular and elongated hexagonal cell shapes shown in Fig. 1, we have s/ = L sin %(k = 0), s¢ = &,
. N . km 2 27
The coeflicients u; and z; can be obtained for a given model.
For the GLE, the phase reduction is analytically performed. By solving
F(X%) + Jﬁa—zxs =0
00* ’ (23)
we obtain
Xx® = (U%, v®) = /T — Dy(cosh, sind), (24)
thus,
Y, = —d—Us —d—Vs = ./1 — D,(sinf, —cosf)
’ o’ do o ' (25)

Furthermore, by solving £'Z, = 0 with the normalisation (Z,,Y,) = 1, where L' = £ in the GLE, we obtain

z,= Y, z{") = (sinf, —cosb)

1
2m,/1 = D, (26)

Functions X® and Z, are shown in Fig. 3. Therefore, equation (17) with equation (22) reduces to

& = ela; sin(¢; — ¢) + by sinZ(nij - ) + ¢ sin(anj — & — &k 27)
where
sind,; d;
47 47 (28)

In the GLE Z, is proportional to ¥, because the linear operator is self-adjoint, i.e. £' = £, in this particular
model. Expressions for all other eigenfunctions are known?, although we only need the expressions for Z; and Y,
here.

For most models, phase reduction is performed numerically by solving equation (2) for ¢ =0 and its adjoint
equation Z, = L£'Z, with (Z,, Y,) = 172 For the activator-inhibitor model, Us and Z{ " are obtained, as shown in
Fig. 3(b). Their Fourier coefficients are given approximately as u,=0.925, u; =0.397, u, = 0.065, z; = —0.180,
z,=—0.062, and the rest of coefficients are negligibly small. We obtain I'; by substituting these values into equa-
tion (22). Then, our phase model becomes
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Figure 4. Comparison of the time series obtained from the reaction-diffusion models (symbols) and the
corresponding phase models (lines). (a) GLE. (b) Activator-inhibitor model. In tgns cang, three redgular

hexz(i)g(())glal cells are aligned in a row, i.e., N, =73 =0, Ny =3, = ma; = b = e 6= E = Ew1th
€

qﬁi ~ 6{0.124sin(¢j — ¢;) +0.124 sin2(77ij — ¢;) + 0.150 sin(Znij — ¢ — gzﬁj)
+0.049 sin(377ij —2¢; — (bj) + 0.049 sin(nij — )
+0.033 sin(nlj = 2¢; + ¢) +0.033 sin3(7]ij — &)
—0.0234 sin(377ij — ¢ — 2¢5j) — 0.0234 sin(nij - &)
+0.0156 sin(nij + ¢ — 2¢j) + 0.0156 sin3(7)ij — &)

—0.008 sin (477i]. —2¢; — 2¢j) — 0.003 sin2(¢j — ¢;) — 0.003 sin4(77ij — qbi)}‘ (29)
As shown in Fig. 4, we confirmed the accuracy of our reduction theory for both the GLE and the activator—
inhibitor models by comparing the time series of the original model given by equation (2) and that of the phase
model given by equation (17) with the corresponding I';.
It should be noted that the phase sensitivity function Z(6) is very useful in understanding the response of the
orientation of polarity to perturbation. See Fig. 3(a) as an example. If the U variable is perturbed upwards at
0=m/2, ¢ increases because Z,(7/2) > 0, i.e., the pattern eventually shifts to the right.

General properties of the phase model
We focus on the phase model given by equation (27) below for the following considerations. If US(d) and Z{")(6)
are nearly harmonic, i.e., 1 and z; with k > 2 are small, an approximation for equation (27) can be obtained with
(i)

a; = b, = —4mzusi?, ¢, = —dmzus

ij ij ij (30)

This is actually the case in our activator-inhibitor model: In the coupling function derived from the activator-
inhibitor model given by equation (29) the first three terms are considerably larger than the other terms. Thus,
the dynamical properties of the activator-inhibitor model are expected to be similar to those of the phase model
in equation (27).

We consider different cell alignments and investigate the effect of cell alignments and boundaries on the exist-
ence and stability of polarity patterns. Moreover, we investigate the effect of noise and external signals. Finally,
we discuss the robustness of our results. Henceforth, without the loss of generality we set ¢ =1 in numerical
simulations.

Straight cell alignments.  We first consider two coupled cells aligned horizontally, as shown in Fig. 2(d).
For this alignment, we have 1,, =0, 1, =7, a;, = a5, b1, = b,}, ¢;, = ¢,;. For convenience, we introduce £ = ¢, + ¢,
and (= ¢, — ¢,. From equation (27), we obtain

£= —2¢(by cos( + ¢y)siné, (31)

¢ = —2¢(a; + by cosé)sin. (32)

Thus, the in-phase state (¢;, ¢,) = (¢, ¢*) with ¢* =0, T and ¢* :t are steady. By introducing A{ =£ —2¢"
and linearizing equations (31) and (32) for small A¢ and ¢, we obtain
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Figure 5. Polarity pattern for winding cell alignment with a regular hexagonal shape, obtained numerically by
the phase model given by equation (27). (a) Initial and (b) final patterns. Each arrow indicates the phase of each
cell. Initial conditions were chosen such that no topological defects appeared (see Methods).

AL = —2e(b; + ¢;)(cos2¢M)AE, (33)

(= _25(‘1:‘]‘ + bij c0s2¢*)(. (34)
The solutions (¢, ¢,) = (0, 0) and (, 7) are thus linearly stable when
e(aij + bij) > 0 and e(bij + cij) > 0. (35)

In this case, the solution (¢,, ¢,) = + g, g is unstable. The GLE with € > 0 satisfies this condition. For the
1D straight chain of any number N of cells with open and periodic boundaries, we obtain the same stability con-
dition for the in-phase state ¢;= 0 and ¢, = for 1 <i <N, which can be shown by applying the Gershgorin circle
theorem to the corresponding stability matrix.

Effects of cell alignments, cell shapes and heterogeneity in coupling strengths.  We investigated
the dependence of polarity pattern on complex cell alignments and cell shapes, as well as the heterogeneity in
coupling strengths. It should be pointed out that in equation (27), the second and third terms facilitate the phase

¢; and the mean phase %% to be oriented to the cell-to-cell direction 7;» respectively. If only the first term is
present in equation (27), which is the case in the XY model, there is a family of stable solutions ¢,=¢" (i=1, ...,
N) with arbitrary ¢ values, and the realised polarity pattern is determined by the initial conditions. However, if
either b;; or ¢; is nonvanishing, the in-phase state even with a particular ¢” value does not exist except for special
networks such as a straight chain.

To obtain useful insight into the dynamical behaviour of a complicated alignment of cells, we made an approx-
imation in the phase model using the assumption that the neighbouring cells are nearly in phase. Under the
approximation that ¢;= ¢, for any neighbouring cells (i.e., the in-phase state), equation (27) reduces to

&; = R, sin2(7;, — ¢,), (36)
where R;>0and 7, € R are determined by

Rieiﬁi — Z (bij + Cij)em‘i,
JEAW) (37)

which can be interpreted as the effective strength and the preferred direction of the net interaction of cell i,
respectively. For hexagonal lattices with each cell shape being regular hexagonal, R; vanishes for cell i that does not
facing boundaries of the lattice because b,»j and c;are not depending on i, j and un takes the values 0, 27/n, 47/n,
..» 2(n— 1)w/n with n=6. The same is true for square lattices with each cell shape being square. Nevertheless, for
cells at the boundary, R; is non-vanishing and 77, it is approximately parallel to the boundary line. Therefore, cell
polarity at the boundary tends to be parallel to the boundary line and cell polarity of bulk cells is smoothly aligned
to that of the neighbouring cells. As shown in Fig. 5, this prediction is confirmed using the system with winding
cell alignment.

When the cell shape is elongated, R; is non-vanishing even in the bulk. In this case, 7, tends to orient to the
direction of a contact surface with a larger width. When the number of bulk units is much more than that of
boundary units, polarity orientation is dominantly depending on the cell shape. In particular, when the cell shape
is uniformly elongated as shown in Fig. 1(a), stability analysis is straightforward. In this case, equation (36)
reduced to

¢; = —2e) sin2¢, (38)

where
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Figure 6. Polarity pattern for planar alignment in a periodic system of 60 x 20 cells, obtained numerically by

the phase model given by equation (27). In (a), initial cell shape (regular hexagonal, 80) = %) and initial phases

are shown. In (b), the time series of the mean phase ®(¢) defined as Qe = izje@j(ﬂ with Q>0and

® € R is shown. Cells are elongated only for 500 < ¢t < 1000 during which §(t) = = — Z; otherwise §(t) = =.
or - 3, 0 3

In (c) snapshots are presented. Initial conditions were chosen such that no topological defects appeared (see

Methods).

LI e B,

4T 4T 4 8w
(39)

Thus, stability depends on the sign of . For A >0 (A <0), which is the case ford > g d< %), states ¢, =0 or
¢i=7(d = % or ¢; = — ) for all i are stable. For A=0, which is the case ford = =, ¢, dynamics becomes neu-
tral, and the steady state is determined by the initial conditions. To clearly demonstrate the effect of cell elonga-
tion, a two-dimensional periodic system was considered, as shown in Fig. 6. Initially, the cells were set to be
regular hexagonal. Because the boundary effects are negligibly small for the periodic boundary condition under
consideration, phases can be aligned with arbitrary values determined by the initial conditions. Here, a random
initial condition was used, where phases were chosen from a uniform distribution within the range (—0.5, 0.5). At
t =100, phases were almost perfectly aligned at ¢;~ 0, which is approximately the average of the initial phases. At
t=500, the cell shape was changed to be elongated. Then, the cell polarity was aligned upwards, pointing to the
direction of a contact surface with a larger width, as predicted above. This polarity pattern was maintained even
when the cell shape was returned to be regular hexagonal (¢ > 1000).

A similar result can be obtained by considering heterogeneity in coupling strength even for regular hexagonal
cell shapes. We considered the condition in which coupling strength ¢ in our reaction-diffusion model given by
equation (2) is dependent on i, j, by replacing ¢ with (1 + ;). Then, the corresponding phase model becomes

G=c Y (L+aplasin(g — &) + bsin2(n, — ¢) + ¢ sin(2n; — ¢ — &)},
JeA() (40)

wherea = b = g andc = % By assuming an in-phase state, this equation reduces to

di=clb+0c) > 1+ ay)sin2(n; — ¢).
JEAQ) (41)

Now we introduce an axial asymmetry such that only the surfaces along the vertical axis, which are shown as
bold lines in Fig. 7, have ay;= o, and ;= 0 for other surfaces. In this case, we further obtain

& = —2ea(b + c)sin24,. (42)

Thus, the sign of v plays the exactly same role as that of  in equation (38); the polarity pattern is aligned along
the axis with stronger coupling. In Fig. 7, numerical results can be seen obtained using our phase model with
coupling heterogeneity, given by equation (40). To emphasise the effects of geometry-dependent terms, we also
show results obtained using equation (40) with b and ¢ being set to zero, corresponding to the XY model, which
indeed shows no response to the coupling heterogeneity. The axial asymmetry of the system under consideration
affects the dynamics only in the presence of geometric-dependent terms.

Effects of noise and external signals. Phase reduction is also possible when our reaction-diffusion
model includes external signals and noise, given as

9 ~ 0°
—X,=F(X)) + D—X; + ¢ Y H;+ <G, +p,
ot 967 jeA() ! (43)
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Figure 7. Polarity pattern in the system with heterogeneous coupling strengths. The cell alignment is the same
as that of Fig. 6, while cell shape is fixed to be regular hexagonal. The coupling strength is initially homogeneous,
ie., a;=0 for 0 <t <200. For t > 200, we set c;;=0.1 and —0.1 for the surfaces with 1;=0, 7 in (a), (b) and (c),
(d), respectively; and ;=0 otherwise. Thus, the contacting surfaces shown with bold lines have larger coupling
strength. (a,c) Time series of the mean phase ®(f) obtained with the phase model given by equations (27) (solid
lines) and with its XY model variant (dashed lines) in which b; and c;; values are set to zero, while a;; = é is
unchanged. (b,d) Snapshots are shown. The rightmost panels show snapshots obtained by the XY model variant.
The same initial condition was used for all cases.

where G;= G;(0;, t) is the external signal, ¢, is its strength, and p= (pi(l)(Oi, t), pi(z)(@, t), ...)is white Gaussian
noise that satisfies E[pl.(m)(ﬂ, Nl =0 andE[pi(m)(H, Hp™(@, t)] = VnijOmn0(0 — 6)6(t — 1) with E[] represent-
ing the expected value, and v, is the noise intensity. For sufficiently small ¢, and v, the same procedure was fol-

lowed as for equation (2) to obtain

G=e 2 Lildn &) + &Il ) + q0)

JEA() (44)
where
() = (Zo(6; — &), GO, 1)), (45)
q,(t) = (Zy(; — ¢, p.(0, 1)). (46)
Here, q,(1) is Gaussian white noise that satisfies
Elg,(0)] = 0,  Elq,()g;(t)] = vé;6(t — '), (47)

wherey = Y, 17, [ d6{Z"(9) (see Methods).
In the case of G(LE, any generic choice of external signal G;(6;, t) yields

Hi = c,-(t)sin(qp,-(t) - ¢,) (48)

because Z(6) contains only the first harmonics. As a simple example, we consider a unimodal distribution peaked
at 0,= (1), given as

G,(0) = (cos(¥(t) — 6), 0), (49)

and we obtain

1
Il = ————— si — ¢).
oo, (50)

The phase model under consideration is actually a gradient system, i.e.,
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Figure 8. Polarity orientation in two coupled cells in the presence of external signals and noise. (a) Time series.
(b) The probability density function obtained numerically and theoretically.

; 0
;= ——H +
¢ 09 % (51)
with the potential function H = H({¢;}) given by
H = —EZ Z {aij cos(gﬁj —¢) + b cos2( - &) + ¢ cos(2n ¢ — qﬁj)}

i jEA()

1
_Eezi:ﬁ cos(t) — ¢,). 52

Thus, we obtained a probability distribution

P((6}) = cexP[_@,

(53)
where Cis the normalisation constant. As shown in Fig. 8, the probability distribution obtained numerically from

the GLE, given by equations (43) and (4), is in good agreement with equation (53).

Robustness.  We discuss the robustness of our results described above against changes in our model equa-
tions. Our numerical simulations for regular hexagonal cell shapes were performed using equation (27) with

d;
b, = Sl: = ¥ whered,, = ; We verified that these results do not change qualitatively for small
cflxanges in a,},%,], Cij val’ues 6uahtat1ve change is certainly expected when the stability condition given by equation
(35) is disturbed.

We also observed that there is no qualitative difference between the phase models reduced from the GLE and
the activator-inhibitor model, as shown in Fig. 4. This suggests that higher harmonics in I'; does not considerably
affect dynamics, at least when they are small.

We can also consider different types of couplings in our reaction—diffusion model other than that in equation
(6). For example, we considered

Hy(0, 1) = Sij(gi)[— Uj(OH?‘, t)],

(54)

which describes mutual inhibition, as well as equation (6). By assuming U%(6) and zg‘”(e) are nearly harmonic,
we obtain the following approximation

& = elay sin(¢; — ¢) + by sin(n; — &) + ¢ sin(2n; — ¢, — &}, (55)

where a; = —4rzusi?, b, = 47rzlu0s1(1), ¢ = — 4z (i), The phase model given by (55) is again a gradient
system with the potential function given by

H= ,EZ Z {aij cos(¢; — o) + 2b/ij cos(nij - &) + ¢y cos(2nij — ¢ — (;5]-)}.
i jeA() (56)

The second term in equation (55) differs from that in equation (27), thus different dynamical properties may

. . . . sind;; i
appear. However, in case of GLE given by equation (4), we obtain a; = " LV=0,¢= 41. Thus, the corre-
T s
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sponding phase model is a special case of (27) where b;;= 0. It is straightforward to confirm that the existence and
stability analysis performed above does not change in this case.

Discussion and Conclusion

A theoretical framework for understanding the general dynamical properties of the alignment process of cellular
polarity has been proposed. We derived the phase model as a reduced model of coupled reaction-diffusion sys-
tems and investigated polarity dynamics using the phase model. The first term of our phase model facilitates the
polarity ordering between interacting cells, which is the same as the in-phase coupling in the Kuramoto model
and the ferromagnetic coupling in the XY model'®. The remaining terms include geometric information of the
system, i.e., cell-to-cell directions between neighbouring cells and the width of contacting surfaces. Therefore, our
phase model exhibits polarity dynamics that depends on the shape of individual cells and the alignment of cell
populations, as well as heterogeneity in coupling strengths. In particular, we show that the axial asymmetry of the
system facilitates the formation of globally oriented polarity patterns.

The advantages of our method are substantial. Whereas our reaction-diffusion model given in equation
(2) is an N- set of reaction-diffusion systems with multiple variables, this complicated system is reduced to an
N-dimensional system of ordinary differential equations as given in equation (17). Using the steady state of the
unperturbed reaction-diffusion system, we obtain the coupling function I';, by which we can perform various
analytical and numerical analyses, which are presented in this paper. Although the studied phenomena are non-
linear, our framework enables us to obtain analytical results even in the presence of noise.

Finally, we discuss the symmetry-breaking patterns of cell polarity in biological tissues®~’ with the help of our
model. As reviewed by Aw and Devenport®, although PCP aligns over long distances in skin and wing, the global
cues that orient tissue polarity are not well understood. This review highlights two plausible choices. One is a
factor expressed in tissue-wide gradients along the axis of polarity, supported by experimental and theoretical
studies [see list of references in’]. The other is mechanical tension applied to the tissues, which may act over long
distances. Aw et al. recently reported that in mouse skin, an axial asymmetry in a PCP component (Celsr1, an
atypical cadherin) emerges during the process of mechanical deformation along the anterior-posterior (AP) axis;
i.e., the concentration of Celsr1 is higher on the junctions perpendicular to the AP axis. They demonstrated that
such Celsrl asymmetry emerges spontaneously during neighbour exchange, because the junctions perpendicular
to the AP axis are persistent and there is sufficient time for Celsrl to accumulate on those junctions, whereas
other junctions are nascent. They speculated that such axial asymmetry contributes to the formation of polar
asymmetry, as indeed developed in the skin. As also reviewed by Aw and Devenport®, in the Drosophila wing, a
similar axial asymmetry in PCP components is formed during the process of mechanical deformation, and cell
polarity is eventually aligned along the AP axis®. Our model can provide an understanding of how the axial asym-
metry in the system contributes to the formation of globally aligned patterns of cell polarity. Because PCP compo-
nents are essential to cell-to-cell communication for polarity alignment, the concentrations of PCP components
can naturally be associated with the coupling strength; i.e., coupling is expected to be stronger on cell-to-cell
junctions with higher concentration of PCP components. Therefore, we interpret the vertical axis of Fig. 7(b) as
the AP axis, with which polarity is eventually aligned. This symmetry-breaking phenomenon does not emerge in
the XY model, i.e., equation (27) with b;=0 and ¢;=0, because in that case, the model has rotational symmetry
even when asymmetry in the coupling strength is considered. The symmetry-breaking phenomenon occurs in
our phase model because it has geometry-dependent interaction terms originating from geometry-dependent
interactions in our reaction-diffusion model. Further investigation on the robustness of global alignment against
randomness in cell shapes and coupling strengths is required. For this aim, we need to extend our theoretical
framework to arbitrary cell shapes, and investigations along this line are in progress.

Methods

Numerical implementation and visualisation. In Fig. 2, we obtained U6, ) in steady state by numeri-
cally solving the equations of the reaction-diffusion model given by equations (2) and (5). The arrows indicate 6;
at which Uy(6,, ) is maximal.

Figure 3(a) shows the analytical results, given by equations (24) and (26), whereas Fig. 3(b) shows the numer-
ical results obtained using the activator-inhibitor model, given by equations (2) and (5), for ¢ =0 and its adjoint
equation Z, = L£'Z, with (Z,,Y,) =1.

Figure 4 shows the numerical results: Solid lines were obtained from the reaction-diffusion models, given by
equations (2), (4), and (5). Symbols were obtained from the phase models, given by equations (27) and (29). For
the reaction-diffusion models, the phase ¢;(#) was numerically determined as follows. Firstly, the first Fourier
component of U,(6,t) was calculated as

~ 1 2 )
= fo 10, e (57)

Then, the phase ¢,(f) was given as the solution to
U(t) = C(t)e ), (58)

where C(t) > 0 and ¢,(¢) are real. In this way, §,= ¢,(t) approximately coincides with the maximum of U;(6;) when
Ui(0;) is nearly harmonic because

U8, t) = C(t)cos(6; — ¢(1)). (59)
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Figures 5-7 show the numerical results obtained by the phase model. Initial phases were taken randomly from
a uniform distribution —g, g , (—0.5, 0.5)and (% - %, % + g) in Figs 5-7, respectively. For such initial con-
ditions, no defect in the polarity patterns appears.

In Fig. 8, numerical results were obtained from the reaction-diffusion model given by equations (43) and (4)
with an inclusion of additive noise p.(¢,, t) = (p.(l),O) and external signal G;= (cos(¢) — 6,), 0) with ¢ =m. The
phase was determined in the same manner as Figl. 4. The theoretical probability distribution was obtained using
P(¢,) = fZﬂP(qbl, ¢,)d¢,, where P(¢,, ¢,) is given by equation (53). The two cells were aligned vertically, as
shown in Igig. 2(d), thus 1, =0 and 7),, = 7. Other parameter values were v, =1, =0.005, €,=0.0002 and Dy =0.2.

Calculation of equation (47). Equation (47) is obtained as follows.

2w
Elg,(0] = EUO d0z(0 — ¢) -pi(t)dé']

(60)
- E f T a0 20 — 6)p™do
- ! Pi
0 m (61)
_ f T a0z 0 $)E[p™1d6
0 m (62)
=0, (63)
and
2m
Elq,()g,(1)] = E[ [ [ dodoriz — 61 - p(OHZE — 60") - p,(t’)}]
0 (64)
2 27w ' '
- E f f f dody' 70 — @ )p™ () 20 — ¢ e)
0 0 m m' (6 5)
2T p p
= E ff dodeo’ Z Z(m)(g _ ¢i(t))1)i(M)Z(m )(01 _ qu(t/))pj(m )(t’)
0 m,m’ (66)
o ( (' ( '
= [ ava0 = 270 — )20 ~ G NER" 0p! 1)
0 m,m’ ! (67)
27 ,
- f f d0de’S" 20 — GNZNO — G185 38,d(0 — 0)E(E — 1)
0 m,m’ (68)
2 2
= [ a0y 20 - s
0 m (69)
27 5
= Y [ a0z o),
m 0 (70)
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