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A reduced cell-based phase model 
for tissue polarity alignment 
through global anisotropic cues
Kaori Sugimura & Hiroshi Kori

Ordered polarity alignment of cell populations plays vital roles in biology, such as in hair follicle 
alignment and asymmetric cell division. Although cell polarity is uniformly oriented along a tissue axis in 
many tissues, its mechanism is not well understood. In this paper, we propose a theoretical framework 
to understand the generic dynamical properties of polarity alignment in interacting cellular units, where 
each cell is described by a reaction–diffusion system, and the cells further interact with one another 
through the contacting surfaces between them. Using a perturbation method under the assumption 
of weak coupling between cells, we derive a reduced model in which polarity of each cell is described 
by only one variable. Essential dynamical properties including the effects of cell shape, coupling 
heterogeneity, external signal and noise can be clarified analytically. In particular, we show that the 
anisotropicity of the system, such as oriented cell elongation and axial asymmetry in the coupling 
strength, can serve as a global cue that drives the uniform orientation of cell polarity along a certain 
axis. Our study bridges the gap between detailed and phenomenological models, and it is expected to 
facilitate the study of polarity dynamics in various nonequilibrium systems.

Spatially ordered patterns are ubiquitous in nature and have been of central importance in various disciplines1–3. 
In particular, we are concerned with the dynamical alignment of polarity in nonequilibrium systems of inter-
acting cellular units, including chemical and biological systems, where polarity can be regarded as asymmetric 
distributions in chemical species within a cellular unit. Polarity has great importance in biology, and it is essential, 
for example, in cell movement and oriented cell division4. A well-known example in biology is planar cell polarity 
(PCP), which refers to the coordinated alignment of cell polarity across the planar tissue. This results in the for-
mation of the ordered pattern of, e.g., hair follicles and cilia positioning4. Although cellular polarity aligns over 
long distances in skin and wing, its mechanism is not well understood5. Recently, several possibilities have been 
suggested5–7. Attributed to the challenge of experimental investigation, theoretical work provides an important 
role in developing a unifying explanation of the phenomenon. Several mathematical models have been proposed 
to describe the effects of various factors on polarity alignment, including cell shape, external signal and noise. 
Some studies employ detailed models, where each cell is described by a reaction–diffusion system, and these cells 
are further coupled by contacting surfaces8,9. Other studies employ simple phenomenological models similar 
to models for magnetisation or synchronisation6,10, which is a reasonable approach because the cell alignment 
process phenomenologically resembles those observed in a population of spins or oscillatory units11–15. Detailed 
models contain several free parameters and are too complicated to provide a general understanding of the pro-
cess. Nevertheless, phenomenological models are rather arbitrary and may lack essential dynamical features.

In the present paper, the generic dynamical properties of cell polarity alignment are examined by the deri-
vation and analysis of a reduced model for coupled reaction–diffusion systems. For simplicity, a planar tissue is 
considered, as in previous studies on PCP6,8–10. As a first step, each cell is described by a reaction–diffusion sys-
tem. The cells mutually inhibit one another through their contacting surfaces, by which polarity alignment occurs 
between neighbouring cells. It is then shown that a perturbation method under the assumption of weak coupling 
between cells enables the reduction of the reaction–diffusion model to a phase model, which is drastically simpler 
than the reaction–diffusion model yet it is a reasonable approximation to it. In particular, the phase model of a 
simple case, which is a particular case of Eq. (55), can be derived as
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where φi is the phase of cell i, which approximately describes the position of the maximum of a reaction–diffusion 
component, A(i) is the group of cells adjacent to cell i, ηij is the cell-to-cell direction from cell i to cell j and aij and 
cij are functions of the width dij of the contacting surfaces (see Figs 1 and 2). In the absence of the second term, 
this phase model is same as the model describing spin states in ferromagnets, known as the XY model, and a 
special case of spatially extended phase oscillator models16–18. Such a model was employed in a previous study on 
PCP10. Our phase model is distinct from the study, as it includes novel terms representing geometric information, 
such as the cell shape and the relative position between neighbouring cells. As the model is easily manageable, 
essential dynamical properties including the effects of cell shape, external signal and noise can be clarified analyt-
ically, which have only been studied numerically in previous works using detailed models6,8,9. Finally, we discuss 
symmetry-breaking patterns in PCP5–7 by using of our model. In particular, we point out that axial asymmetry 
in the system, such as oriented cell elongation and asymmetric distribution of coupling strength, can be a global 
cue for the orientation of cell polarity across the entire tissue. Our study bridges the gap between detailed and 
phenomenological models, it is expected to facilitate the study of polarity dynamics in various nonequilibrium 
systems.

Reaction–diffusion model
The entire system is composed of a population of planar cells aligned in two-dimensional space. Reaction–dif-
fusion dynamics of each cell takes place on the one-dimensional surface, and the cells further interact with one 
another through the contacting surfaces between them. For simplicity, it is assumed that every cell has identical 
shape, which is either regular or elongated hexagonal with a perimeter of 2π, and they form hexagonal lattices, as 
shown in Fig. 1. Each cell obeys the equation,

Figure 1. Schematic of (a) the cell shape and (b) cell alignment. Regular or elongated hexagonal cells are 
considered with a perimeter of 2π, thus 2δ + 4δ′ = 2π. ηij and dij denote the midpoint and the length of the 
contacting surface between cell i and j, respectively. θ θ θ=⁎ ⁎( )j j i  denotes a point of θj at which cell j faces the 
point θi of cell i, while ηij can be regarded as the cell-to-cell direction from cell i to cell j.

Figure 2. Polarity patterns of (a,b) single cell and (c,d) two coupled cells. In (a) and (b), a steady profile of Ui 
and its colour scale representation are displayed, respectively. The arrow in (b) indicates polarity orientation. 
In (c) and (d), typical examples of polarity patterns of two coupled cells with different cell alignments are 
displayed.
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where Xi = Xi(θi, t) (i = 1, …, N) denotes the concentration of chemical species at time t and the position 
θi (0 ≤ θi < 2π) on the surface of each cell, F(Xi) describes the local reaction dynamics, D̂ is the diagonal matrix 
consisting of diffusion coefficients, A(i) is the group of cells adjacent to cell i, Hij = Hij(θi, t) describes interactions 
between cells and ε is the coupling strength. Interaction occurs at every contact point and depending on the state 
at the contact point, i.e.,

θ θ θ= ⁎H H X Xt t t( , ) ( ( , ), ( , )), (3)ij i ij i i j j

where θ θ θ=⁎ ⁎( )j j i  is a point of θj at which cell j faces the point θi of cell i, as illustrated in Fig. 1(b), and Hij(θi, t) van-
ishes if cell i does not contact cell j at θi. As it is described later, external signals and noise may also be considered. In 
each cell, Xi(θi, t) is assumed to form a unimodal distribution for ε = 0; i.e., polarity is spontaneously formed. The 
orientation of polarity of cell i at time t is defined by the θi value at which the first component of Xi(θi, t), denoted by 
Ui(θi, t), is maximal.

Here, some concrete examples are provided. For F and D̂, two examples are considered: (a) the real Ginzburg–
Landau equation (GLE)19 and (b) the activator–inhibitor model20. Both models have two variables, denoted by 
Xi = (Ui, Vi), and F and D̂ can be written as
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where D0 is set to 0.3 at which a stable unimodal distribution is obtained, and
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where ρU = 0.01, ρV = 0.02, μU = 0.01, μV = 0.02, σU = 0.0, κ = 0.0, DU = 0.005 and DV = 0.2, respectively. The 
parameter values for the latter model are taken from the reference20. The former is a long-wave amplitude equa-
tion, which is widely used to describe various systems near the onset of instability. The latter is a reaction–diffu-
sion model, describing biological pattern formation20. In these models, given appropriate initial conditions, Xi 
exhibits a stationary unimodal distribution for ε = 0, thus, they are suitable as dynamical models describing cell 
polarity. Figure 2(a,b) shows a steady profile of Ui(θi,t) for ε = 0 numerically obtained using the activator–inhib-
itor model given by equation (5).

As a simple example of intercellular interaction, we consider a linear coupling given by
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The coupling given by equation (6) acts as mutual inhibition between neighbouring cells through the 
U-component for ε > 0, causing polarity ordering, as shown in Fig. 2(c,d). Later, another type of linear coupling, 
i.e., θ− ⁎U t( , )j j  instead of θ θ− ⁎U t U t( , ) ( , )i i j j , is considered to show the robustness of our results.

Derivation of the phase model
Our reaction–diffusion model given by equation (2) consists of N × M partial differential equations, where N and 
M are the numbers of cells and variables in each cell. For such a model, both analytical and numerical treatments 
are difficult. Therefore, we applied a perturbation method to equation (2) under the assumption of weak coupling 
to obtain a phase model, which consists of N ordinary differential equations and can be useful for both analytical 
and numerical analyses. Our method is based on the well-known phase reduction theory13, and it is an applica-
tion of the recently developed method for oscillatory patterns reported in refs.21,22.

Let XS(θ) be the stationary distribution of a cell in the unperturbed system (ε = 0). Because of the translational 
symmetry, XS(θ − θ0) with any constant θ0 is also a steady solution. The phase φi(t) of Xi(θi, t) is defined such that 
Xi(θi, t) converges to XS(θi − φ) as t → ∞ in the unperturbed system. In other words, yi(θi, t) → 0 as t → ∞ for 
ε = 0, where the deviation yi(θi, t) is defined by

θ θ φ θ= − +X X yt t( , ) ( ) ( , ), (8)i i i i i i
S
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with φi(t) being the phase of state Xi(θi, t). Without the loss of generality, we assume that US(θ), which is the 
U component of XS(θ), takes its maximum at θ = 0. Then, for sufficiently small yi(θi, t), φi(t) of Xi(θi, t) is well 
approximated by the maximum of Ui(θi, t), i.e.,

φ θ≈ .θt U t( ) argmax ( , ) (9)i i ii

Thus, φi can be regarded as the orientation of polarity of cell i.
The linear operator  is defined by

θ
= +

∂
∂

ˆJ D
(10)

2

2

with Jacobian J = ∂F(X)/∂X determined at X = XS(θ). The adjoint operator † is defined such that it satisfies 
 〈 〉 = 〈 〉†A B A B, , , where the inner product of the 2π-periodic functions, A(θ) and B(θ) is defined by
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For equation (2), it can be shown that
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where JT is the transpose of J. The eigenfunctions of  and † are denoted by θ


Y ( ) and θ


Z ( ) = …( 0, 1, ), 
respectively. In particular, the zero eigenfunctions are denoted by Y0 and Z0, i.e.,  = =†Y Z 00 0 . Here, we 
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These eigenfunctions are assumed to form a complete orthonormal system and are normalised as
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The deviation yi can be expanded as
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1

where φi is the phase of state Xi(θi, t). Note that Y0(θi − φi) is absent in this expansion because yi(θi, t) → 0 as 
t → ∞ for ε = 0.

Substituting equation (8) into equation (2), we obtain

∑θ φ φ ε ε− + = + + .
∈
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i i i i i
j A i

ij0
( )

2

Taking the inner product with Z0(θi − φi) and omitting O(ε2), we finally obtain the phase model as
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S S S . Given the functional forms of XS(θ) and Z0(θ), equation (17) pro-

vides a closed equation for the phases φi (i = 1, …, N).
It is convenient to express Γij in terms of Fourier coefficients, ∈u z s, ,k k k

ij( ) , defined by
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where it is assumed that Sij(θ + ηij), US(θ) and θZ ( )U
0
( )  are even, even and odd functions, respectively. By substitut-

ing these expansions into equation (18) with Hij given by equation (6), we obtain a general expression:

∑π η φ φ η φΓ = − + − − − + − .− − −z u s k l k l s k l2 [( 1) sin{( ) } sin{( )( )}]
(22)
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For the regular and elongated hexagonal cell shapes shown in Fig. 1, we have = ≠ =
π π

s k ssin ( 0),k
ij

k

kd ij d( ) 1
2 0

( )
2

ij ij . 
The coefficients uk and zk can be obtained for a given model.

For the GLE, the phase reduction is analytically performed. By solving
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Furthermore, by solving =†Z 00  with the normalisation 〈Z0,Y0〉 = 1, where =†  in the GLE, we obtain
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Functions XS and Z0 are shown in Fig. 3. Therefore, equation (17) with equation (22) reduces to

φ ε φ φ η φ η φ φ= − + − + − − a b c{ sin( ) sin2( ) sin(2 )}, (27)i ij j i ij ij i ij ij i j

where

π π
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In the GLE Z0 is proportional to Y0 because the linear operator is self-adjoint, i.e. =† , in this particular 
model. Expressions for all other eigenfunctions are known23, although we only need the expressions for Z0 and Y0 
here.

For most models, phase reduction is performed numerically by solving equation (2) for ε = 0 and its adjoint 
equation =

†Z Z0 0 with 〈Z0, Y0〉 = 122. For the activator–inhibitor model, US and Z U
0
( ) are obtained, as shown in 

Fig. 3(b). Their Fourier coefficients are given approximately as u0 = 0.925, u1 = 0.397, u2 = 0.065, z1 = −0.180, 
z2 = −0.062, and the rest of coefficients are negligibly small. We obtain Γij by substituting these values into equa-
tion (22). Then, our phase model becomes

Figure 3. Profile of the steady state US(θ) (black lines) and the phase sensitivity function θZ ( )U
0
( )  (red lines) for 

(a) the GLE and (b) the activator–inhibitor model.
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As shown in Fig. 4, we confirmed the accuracy of our reduction theory for both the GLE and the activator–
inhibitor models by comparing the time series of the original model given by equation (2) and that of the phase 
model given by equation (17) with the corresponding Γij.

It should be noted that the phase sensitivity function Z0(θ) is very useful in understanding the response of the 
orientation of polarity to perturbation. See Fig. 3(a) as an example. If the U variable is perturbed upwards at 
θ = π/2, φ increases because π >Z ( /2) 00 , i.e., the pattern eventually shifts to the right.

General properties of the phase model
We focus on the phase model given by equation (27) below for the following considerations. If US(θ) and θZ ( )U

0
( )  

are nearly harmonic, i.e., uk and zk with k ≥ 2 are small, an approximation for equation (27) can be obtained with

π π= = − = − .a b z u s c z u s4 , 4 (30)ij ij
ij

ij
ij

1 1 2
( )

1 1 0
( )

This is actually the case in our activator–inhibitor model: In the coupling function derived from the activator–
inhibitor model given by equation (29) the first three terms are considerably larger than the other terms. Thus, 
the dynamical properties of the activator–inhibitor model are expected to be similar to those of the phase model 
in equation (27).

We consider different cell alignments and investigate the effect of cell alignments and boundaries on the exist-
ence and stability of polarity patterns. Moreover, we investigate the effect of noise and external signals. Finally, 
we discuss the robustness of our results. Henceforth, without the loss of generality we set ε = 1 in numerical 
simulations.

Straight cell alignments. We first consider two coupled cells aligned horizontally, as shown in Fig. 2(d). 
For this alignment, we have η12 = 0, η21 = π, a12 = a21, b12 = b21, c12 = c21. For convenience, we introduce ξ = φ1 + φ2 
and ζ = φ1 − φ2. From equation (27), we obtain

ξ ε ζ ξ= − + b c2 ( cos )sin , (31)ij ij

ζ ε ξ ζ= − + . a b2 ( cos )sin (32)ij ij

Thus, the in-phase state (φ1, φ2) = (φ*, φ*) with φ* = 0, π and φ* = ± π
2

 are steady. By introducing Δξ = ξ − 2φ* 
and linearizing equations (31) and (32) for small Δξ and ζ, we obtain

Figure 4. Comparison of the time series obtained from the reaction–diffusion models (symbols) and the 
corresponding phase models (lines). (a) GLE. (b) Activator–inhibitor model. In this case, three regular 
hexagonal cells are aligned in a row, i.e., η12 = η23 = 0, η21 = η32 = π, = = = = =

π π π
a b c,ij ij

d
ij

dsin

4
3

8 4
1

12
ij ij  with 

ε = 0.001.
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˙ξ ε φ ξ∆ = − + ∆∗b c2 ( )(cos 2 ) , (33)ij ij

ζ ε φ ζ= − + .

⁎a b2 ( cos2 ) (34)ij ij

The solutions (φ1, φ2) = (0, 0) and (π, π) are thus linearly stable when

ε ε+ > + > .a b b c( ) 0 and ( ) 0 (35)ij ij ij ij

In this case, the solution φ φ = ± π π( )( , ) ,1 2 2 2
 is unstable. The GLE with ε > 0 satisfies this condition. For the 

1D straight chain of any number N of cells with open and periodic boundaries, we obtain the same stability con-
dition for the in-phase state φi = 0 and φi = π for 1 ≤ i ≤ N, which can be shown by applying the Gershgorin circle 
theorem to the corresponding stability matrix.

Effects of cell alignments, cell shapes and heterogeneity in coupling strengths. We investigated 
the dependence of polarity pattern on complex cell alignments and cell shapes, as well as the heterogeneity in 
coupling strengths. It should be pointed out that in equation (27), the second and third terms facilitate the phase 
φi and the mean phase 

φ φ+

2
i j  to be oriented to the cell-to-cell direction ηij, respectively. If only the first term is 

present in equation (27), which is the case in the XY model, there is a family of stable solutions φi = φ* (i = 1, …, 
N) with arbitrary φ* values, and the realised polarity pattern is determined by the initial conditions. However, if 
either bij or cij is nonvanishing, the in-phase state even with a particular φ* value does not exist except for special 
networks such as a straight chain.

To obtain useful insight into the dynamical behaviour of a complicated alignment of cells, we made an approx-
imation in the phase model using the assumption that the neighbouring cells are nearly in phase. Under the 
approximation that φi = φj for any neighbouring cells (i.e., the in-phase state), equation (27) reduces to

φ ε η φ= − R sin2( ), (36)i i i i

where Ri > 0 and η ∈i  are determined by

∑= +η η

∈
R e b c e( ) ,

(37)
i

j A i
ij ij

ii2

( )

2i ij

which can be interpreted as the effective strength and the preferred direction of the net interaction of cell i, 
respectively. For hexagonal lattices with each cell shape being regular hexagonal, Ri vanishes for cell i that does not 
facing boundaries of the lattice because bij and cij are not depending on i, j and ηij takes the values 0, 2π/n, 4π/n, 
…, 2(n − 1)π/n with n = 6. The same is true for square lattices with each cell shape being square. Nevertheless, for 
cells at the boundary, Ri is non-vanishing and ηi it is approximately parallel to the boundary line. Therefore, cell 
polarity at the boundary tends to be parallel to the boundary line and cell polarity of bulk cells is smoothly aligned 
to that of the neighbouring cells. As shown in Fig. 5, this prediction is confirmed using the system with winding 
cell alignment.

When the cell shape is elongated, Ri is non-vanishing even in the bulk. In this case, ηi tends to orient to the 
direction of a contact surface with a larger width. When the number of bulk units is much more than that of 
boundary units, polarity orientation is dominantly depending on the cell shape. In particular, when the cell shape 
is uniformly elongated as shown in Fig. 1(a), stability analysis is straightforward. In this case, equation (36) 
reduced to

φ ελ φ= − 2 sin2 , (38)i i

where

(a) (b)
t = 150t = 0

Figure 5. Polarity pattern for winding cell alignment with a regular hexagonal shape, obtained numerically by 
the phase model given by equation (27). (a) Initial and (b) final patterns. Each arrow indicates the phase of each 
cell. Initial conditions were chosen such that no topological defects appeared (see Methods).
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4 8
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(39)

2

Thus, stability depends on the sign of λ. For λ > 0 (λ < 0), which is the case for > πd
3

 < π( )d
3

, states φi = 0 or 
φi = π φ φ= = −π π( )ori i2 2

 for all i are stable. For λ = 0, which is the case for = πd
3

, φi dynamics becomes neu-
tral, and the steady state is determined by the initial conditions. To clearly demonstrate the effect of cell elonga-
tion, a two-dimensional periodic system was considered, as shown in Fig. 6. Initially, the cells were set to be 
regular hexagonal. Because the boundary effects are negligibly small for the periodic boundary condition under 
consideration, phases can be aligned with arbitrary values determined by the initial conditions. Here, a random 
initial condition was used, where phases were chosen from a uniform distribution within the range (−0.5, 0.5). At 
t = 100, phases were almost perfectly aligned at φi ≈ 0, which is approximately the average of the initial phases. At 
t = 500, the cell shape was changed to be elongated. Then, the cell polarity was aligned upwards, pointing to the 
direction of a contact surface with a larger width, as predicted above. This polarity pattern was maintained even 
when the cell shape was returned to be regular hexagonal (t > 1000).

A similar result can be obtained by considering heterogeneity in coupling strength even for regular hexagonal 
cell shapes. We considered the condition in which coupling strength ε in our reaction–diffusion model given by 
equation (2) is dependent on i, j, by replacing ε with ε(1 + αij). Then, the corresponding phase model becomes

∑φ ε α φ φ η φ η φ φ= + − + − + − −
∈

 a b c(1 ){ sin( ) sin2( ) sin(2 )},
(40)

i
j A i

ij j i ij i ij i j
( )

where = =
π

a b 3
8

 and =c 1
12

. By assuming an in-phase state, this equation reduces to

∑φ ε α η φ= + + − .
∈

 b c( ) (1 )sin2( )
(41)

i
j A i

ij ij i
( )

Now we introduce an axial asymmetry such that only the surfaces along the vertical axis, which are shown as 
bold lines in Fig. 7, have αij = α, and αij = 0 for other surfaces. In this case, we further obtain

φ εα φ= − + . b c2 ( )sin2 (42)i i

Thus, the sign of α plays the exactly same role as that of λ in equation (38); the polarity pattern is aligned along 
the axis with stronger coupling. In Fig. 7, numerical results can be seen obtained using our phase model with 
coupling heterogeneity, given by equation (40). To emphasise the effects of geometry-dependent terms, we also 
show results obtained using equation (40) with b and c being set to zero, corresponding to the XY model, which 
indeed shows no response to the coupling heterogeneity. The axial asymmetry of the system under consideration 
affects the dynamics only in the presence of geometric-dependent terms.

Effects of noise and external signals. Phase reduction is also possible when our reaction–diffusion 
model includes external signals and noise, given as

∑
θ

ε ε∂
∂

= +
∂

∂
+ + +

∈

ˆX F X X H G p
t

D( ) ,
(43)

i i
i

i
j A i

ij i i

2

2
( )

e

(a) (b) (c)

t = 1500t = 900

t = 650t = 100

Figure 6. Polarity pattern for planar alignment in a periodic system of 60 × 20 cells, obtained numerically by 
the phase model given by equation (27). In (a), initial cell shape (regular hexagonal, δ = π(0)

3
) and initial phases 

are shown. In (b), the time series of the mean phase Φ(t) defined as = ∑ φΦQ t e e( ) i t
N j

i t( ) 1 ( )j  with Q ≥ 0 and 
Φ ∈  is shown. Cells are elongated only for 500 ≤ t < 1000 during which δ = −π πt( )

3 10
; otherwise δ = πt( )

3
. 

In (c) snapshots are presented. Initial conditions were chosen such that no topological defects appeared (see 
Methods).
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where Gi = Gi(θi, t) is the external signal, εe is its strength, and θ θ= …p p t p t( ( , ), ( , ), )i i i i i
(1) (2)  is white Gaussian 

noise that satisfies θ =p tE[ ( , )] 0i
m( )  and θ θ ν δ δ δ θ θ δ′ ′ = − ′ − ′p t p t t tE[ ( , ) ( , )] ( ) ( )i

m
j
n

m ij mn
( ) ( )  with E[·] represent-

ing the expected value, and νm is the noise intensity. For sufficiently small εe and νm, the same procedure was fol-
lowed as for equation (2) to obtain

∑φ ε φ φ ε φ= Γ + Π +
∈

 t q t( , ) ( , ) ( )
(44)

i
j A i

ij i j e i i i
( )

where

φ θ φ θΠ = 〈 − 〉Z G t( ) ( ), ( , ) , (45)i i i i i i0

θ φ θ= 〈 − 〉.Z pq t t( ) ( ), ( , ) (46)i i i i i0

Here, qi(t) is Gaussian white noise that satisfies

νδ δ= ′ = − ′q t q t q t t tE[ ( )] 0, E[ ( ) ( )] ( ), (47)i i j ij

where ∫ν ν θ θ= ∑
π d Z{ ( )}m m

m
0

2 ( ) 2 (see Methods).
In the case of GLE, any generic choice of external signal Gi(θi, t) yields

ψ φΠ = −c t t( )sin( ( ) ) (48)i i i i

because Z0(θ) contains only the first harmonics. As a simple example, we consider a unimodal distribution peaked 
at θi = ψ(t), given as

θ ψ θ= −G t( ) (cos( ( ) ), 0), (49)i i i

and we obtain

ψ φΠ =
−

− .
D

1
2 1

sin( )
(50)

i i
0

The phase model under consideration is actually a gradient system, i.e.,

(c)

(a) (b)
t = 1000 t = 1000

t = 1000 t = 1000

(d)

XY

XY
t = 0

t = 0

Figure 7. Polarity pattern in the system with heterogeneous coupling strengths. The cell alignment is the same 
as that of Fig. 6, while cell shape is fixed to be regular hexagonal. The coupling strength is initially homogeneous, 
i.e., αij = 0 for 0 ≤ t < 200. For t ≥ 200, we set αij = 0.1 and −0.1 for the surfaces with ηij = 0, π in (a), (b) and (c), 
(d), respectively; and αij = 0 otherwise. Thus, the contacting surfaces shown with bold lines have larger coupling 
strength. (a,c) Time series of the mean phase Φ(t) obtained with the phase model given by equations (27) (solid 
lines) and with its XY model variant (dashed lines) in which bij and cij values are set to zero, while =

π
aij

3
8

 is 
unchanged. (b,d) Snapshots are shown. The rightmost panels show snapshots obtained by the XY model variant. 
The same initial condition was used for all cases.
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φ
φ

= −
∂

∂
+ q

(51)i
i

i

with the potential function φ= ({ })i   given by

 ∑ ∑

∑

ε φ φ η φ η φ φ

ε ψ φ

= − − + − + − −

−
−

− .

∈
a b c

D

2
{ cos( ) cos2( ) cos(2 )}

1
2 1

cos( )
(52)

i j A i
ij j i ij ij i ij ij i j

e
i

i

( )

0

Thus, we obtained a probability distribution

φ
φ

ν
=






−







P C({ }) exp 2 ({ }) ,
(53)i

i

where C is the normalisation constant. As shown in Fig. 8, the probability distribution obtained numerically from 
the GLE, given by equations (43) and (4), is in good agreement with equation (53).

Robustness. We discuss the robustness of our results described above against changes in our model equa-
tions. Our numerical simulations for regular hexagonal cell shapes were performed using equation (27) with 

= =
π

a bij ij
dsin

4
ij  and =

π
cij

d

4
ij  where = πdij 3

. We verified that these results do not change qualitatively for small 
changes in aij, bij, cij values. Qualitative change is certainly expected when the stability condition given by equation 
(35) is disturbed.

We also observed that there is no qualitative difference between the phase models reduced from the GLE and 
the activator–inhibitor model, as shown in Fig. 4. This suggests that higher harmonics in Γij does not considerably 
affect dynamics, at least when they are small.

We can also consider different types of couplings in our reaction–diffusion model other than that in equation 
(6). For example, we considered

θ θ θ
=





− 




⁎
H t S U t( , ) ( ) ( , )

0
,

(54)ij i ij i
j j

which describes mutual inhibition, as well as equation (6). By assuming US(θ) and θZ ( )U
0
( )  are nearly harmonic, 

we obtain the following approximation

φ ε φ φ η φ η φ φ= − + ′ − + − − a b c{ sin( ) sin( ) sin(2 )}, (55)i ij j i ij ij i ij ij i j

where π π π= − ′ = = −a z u s b z u s c z u s4 , 4 , 4ij
ij

ij
ij

ij
ij

1 1 2
( )

1 0 1
( )

1 1 0
( ). The phase model given by (55) is again a gradient 

system with the potential function given by

 ∑ ∑ε φ φ η φ η φ φ= − − + ′ − + − − .
∈

a b c
2

{ cos( ) 2 cos( ) cos(2 )}
(56)i j A i

ij j i ij ij i ij ij i j
( )

The second term in equation (55) differs from that in equation (27), thus different dynamical properties may 
appear. However, in case of GLE given by equation (4), we obtain = ′ = =

π π
a b c, 0,ij

d
ij ij

dsin

4 4
ij ij . Thus, the corre-

Figure 8. Polarity orientation in two coupled cells in the presence of external signals and noise. (a) Time series. 
(b) The probability density function obtained numerically and theoretically.
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sponding phase model is a special case of (27) where bij = 0. It is straightforward to confirm that the existence and 
stability analysis performed above does not change in this case.

Discussion and Conclusion
A theoretical framework for understanding the general dynamical properties of the alignment process of cellular 
polarity has been proposed. We derived the phase model as a reduced model of coupled reaction–diffusion sys-
tems and investigated polarity dynamics using the phase model. The first term of our phase model facilitates the 
polarity ordering between interacting cells, which is the same as the in-phase coupling in the Kuramoto model 
and the ferromagnetic coupling in the XY model18. The remaining terms include geometric information of the 
system, i.e., cell-to-cell directions between neighbouring cells and the width of contacting surfaces. Therefore, our 
phase model exhibits polarity dynamics that depends on the shape of individual cells and the alignment of cell 
populations, as well as heterogeneity in coupling strengths. In particular, we show that the axial asymmetry of the 
system facilitates the formation of globally oriented polarity patterns.

The advantages of our method are substantial. Whereas our reaction–diffusion model given in equation 
(2) is an N- set of reaction–diffusion systems with multiple variables, this complicated system is reduced to an 
N-dimensional system of ordinary differential equations as given in equation (17). Using the steady state of the 
unperturbed reaction–diffusion system, we obtain the coupling function Γij, by which we can perform various 
analytical and numerical analyses, which are presented in this paper. Although the studied phenomena are non-
linear, our framework enables us to obtain analytical results even in the presence of noise.

Finally, we discuss the symmetry-breaking patterns of cell polarity in biological tissues5–7 with the help of our 
model. As reviewed by Aw and Devenport5, although PCP aligns over long distances in skin and wing, the global 
cues that orient tissue polarity are not well understood. This review highlights two plausible choices. One is a 
factor expressed in tissue-wide gradients along the axis of polarity, supported by experimental and theoretical 
studies [see list of references in5]. The other is mechanical tension applied to the tissues, which may act over long 
distances. Aw et al. recently reported that in mouse skin, an axial asymmetry in a PCP component (Celsr1, an 
atypical cadherin) emerges during the process of mechanical deformation along the anterior–posterior (AP) axis; 
i.e., the concentration of Celsr1 is higher on the junctions perpendicular to the AP axis. They demonstrated that 
such Celsr1 asymmetry emerges spontaneously during neighbour exchange, because the junctions perpendicular 
to the AP axis are persistent and there is sufficient time for Celsr1 to accumulate on those junctions, whereas 
other junctions are nascent. They speculated that such axial asymmetry contributes to the formation of polar 
asymmetry, as indeed developed in the skin. As also reviewed by Aw and Devenport5, in the Drosophila wing, a 
similar axial asymmetry in PCP components is formed during the process of mechanical deformation, and cell 
polarity is eventually aligned along the AP axis6. Our model can provide an understanding of how the axial asym-
metry in the system contributes to the formation of globally aligned patterns of cell polarity. Because PCP compo-
nents are essential to cell-to-cell communication for polarity alignment, the concentrations of PCP components 
can naturally be associated with the coupling strength; i.e., coupling is expected to be stronger on cell-to-cell 
junctions with higher concentration of PCP components. Therefore, we interpret the vertical axis of Fig. 7(b) as 
the AP axis, with which polarity is eventually aligned. This symmetry-breaking phenomenon does not emerge in 
the XY model, i.e., equation (27) with bij = 0 and cij = 0, because in that case, the model has rotational symmetry 
even when asymmetry in the coupling strength is considered. The symmetry-breaking phenomenon occurs in 
our phase model because it has geometry-dependent interaction terms originating from geometry-dependent 
interactions in our reaction–diffusion model. Further investigation on the robustness of global alignment against 
randomness in cell shapes and coupling strengths is required. For this aim, we need to extend our theoretical 
framework to arbitrary cell shapes, and investigations along this line are in progress.

Methods
Numerical implementation and visualisation. In Fig. 2, we obtained Ui(θ, t) in steady state by numeri-
cally solving the equations of the reaction–diffusion model given by equations (2) and (5). The arrows indicate θi 
at which Ui(θi, t) is maximal.

Figure 3(a) shows the analytical results, given by equations (24) and (26), whereas Fig. 3(b) shows the numer-
ical results obtained using the activator–inhibitor model, given by equations (2) and (5), for ε = 0 and its adjoint 
equation =

†Z Z0 0  with 〈Z0,Y0〉 = 1.
Figure 4 shows the numerical results: Solid lines were obtained from the reaction–diffusion models, given by 

equations (2), (4), and (5). Symbols were obtained from the phase models, given by equations (27) and (29). For 
the reaction–diffusion models, the phase φi(t) was numerically determined as follows. Firstly, the first Fourier 
component of Ui(θ,t) was calculated as

∫π
θ θ= .

π θ−Û t U t e d( ) 1
2

( , ) (57)i i
i

0

2

Then, the phase φi(t) was given as the solution to

= φ−Û t C t e( ) ( ) , (58)i
i t( )i

where C(t) ≥ 0 and φi(t) are real. In this way, θi = φi(t) approximately coincides with the maximum of Ui(θi) when 
Ui(θi) is nearly harmonic because

θ θ φ≈ − .U t C t t( , ) ( )cos( ( )) (59)i i i i
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Figures 5–7 show the numerical results obtained by the phase model. Initial phases were taken randomly from 
a uniform distribution − − . .π π( ), , ( 0 5, 0 5)

2 2
 and − +π π π π( ),

4 2 4 2
 in Figs 5–7, respectively. For such initial con-

ditions, no defect in the polarity patterns appears.
In Fig. 8, numerical results were obtained from the reaction–diffusion model given by equations (43) and (4) 

with an inclusion of additive noise θ =p t p( , ) ( ,0)i i i
(1)  and external signal Gi = (cos(ψ − θi), 0) with ψ = π. The 

phase was determined in the same manner as Fig. 4. The theoretical probability distribution was obtained using 
∫φ φ φ φ=

πP P d( ) ( , )1 0

2
1 2 2, where P(φ1, φ2) is given by equation (53). The two cells were aligned vertically, as 

shown in Fig. 2(d), thus η12 = 0 and η21 = π. Other parameter values were ν1 = ν2 = 0.005, εe = 0.0002 and D0 = 0.2.

Calculation of equation (47). Equation (47) is obtained as follows.

∫ θ θ φ θ=






− ⋅






π
pq t d Z t dE[ ( )] E ( ) ( )

(60)i i i0

2

∫ ∑θ θ φ θ=




 −







π
d Z p dE ( )

(61)m

m
i i

m

0

2 ( ) ( )

∫ ∑θ θ φ θ= −
π

d Z p d( )E[ ]
(62)m

m
i i

m

0

2 ( ) ( )

= 0, (63)

and

∫ ∫ θ θ θ φ θ φ′ =






′ − ⋅ ′ − ′ ⋅ ′






π
Z p Z pq t q t d d t t t tE[ ( ) ( )] E { ( ( )) ( )}{ ( ( )) ( )}

(64)i j i i j j0

2

∫ ∫ ∫ ∑ ∑θ θ θ φ θ φ=








′





−










′ − ′ ′













π π

′

′ ′d d Z t p t Z t p tE ( ( )) ( ) ( ( )) ( )
(65)m

m
i i

m

m

m
j j

m

0

2

0

2 ( ) ( ) ( ) ( )

∫ ∫ ∑θ θ θ φ θ φ=






′ − ′ − ′ ′






π

′

′ ′d d Z t p Z t p tE ( ( )) ( ( )) ( )
(66)m m

m
i i

m m
j j

m

0

2

,

( ) ( ) ( ) ( )

∫ ∫ ∑θ θ θ φ θ φ= ′ − ′ − ′ ′
π

′

′ ′d d Z t Z t p t p t( ( )) ( ( ))E[ ( ) ( )]
(67)m m

m
i

m
j i

m
j
m

0

2

,

( ) ( ) ( ) ( )

∫ ∫ ∑θ θ θ φ θ φ ν δ δ δ θ θ δ= ′ − ′ − ′ − ′ − ′
π

′

′
′d d Z t Z t t t( ( )) ( ( )) ( ) ( )

(68)m m

m
i

m
j m ij mm

0

2

,

( ) ( )

∫ ∑θ ν θ φ= −
π

d Z t{ ( ( ))}
(69)m

m
m

i
0

2 ( ) 2

∫∑ν θ θ= .
π
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(70)m
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m

0
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