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General description and 
understanding of the nonlinear 
dynamics of mode-locked fiber 
lasers
Huai Wei1,2, Bin Li3,4, Wei Shi5, Xiushan Zhu4,6, Robert A. Norwood4, Nasser Peyghambarian4,6 
& Shuisheng Jian1,2

As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex 
behaviour. It is a challenging task to understand the fundamental physics behind such complex 
behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative 
analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a 
complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber 
lasers by going beyond reductionism. This hierarchically structured framework provides a model with 
variable dimensionality, resulting in a simple view that can be used to systematically describe complex 
states. Moreover, research into the attractors’ basins reveals the origin of stochasticity, hysteresis and 
multistability in these systems and presents a new method for quantitative analysis of these nonlinear 
phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked 
fiber lasers. We expect that this paradigm will also enable potential applications in diverse research 
fields related to complex nonlinear phenomena.

As ideal ultra-short pulse sources, mode-locked lasers, particularly fiber based mode-locked lasers, have gen-
erated great interest because of their inherent advantages and attractive properties1–3. The interplay among the 
many factors (nonlinear, dispersion, and positive and negative feedback) in the cavity results in the rich and com-
plex nonlinear dynamics of the pulses in mode-locked fiber lasers. Typical pulse shapes include sech2 2, parabolic 
(self-similar)4–6 and flat top dissipative soliton resonance (DSR)7–12. The working states of the laser can include 
single-pulse state2, multi- pulse state13–16, Q-switched mode-locking state1, and unstable pulses with periodic or 
non-periodic fluctuation state17–27. Moreover, stochastic phenomena, hysteresis and multistability28–31 further 
exemplify the complexity of the dynamics of mode-locked fiber lasers. The broad range of temporal scales (from 
the femtosecond scale for pulse detail to the millisecond scale for Q-switched envelope fluctuations) presents 
significant difficulties in the analysis of mode-locked lasers. The description, understanding and control of the 
complex dynamics governing the behaviour of mode-locked fiber lasers require further study. Extensive effort has 
been devoted to the understanding of mode-locked fiber lasers, fundamental equations have been developed2, 32–34,  
new types of pulses have been discovered4–12, and multi-pulse phenomena have been analysed13–16, However, the 
relevant nonlinear partial differential equations can usually be solved only by numerical methods (particularly 
for multi-pulse states and unstable pulse states)33–35. If the time resolution is high and time span is excessively 
large, the numerical simulation will require a relatively large amount of computing resources. Moreover, because 
of the complex nonlinear interactions, stochastic character and initial value sensitivity28–31, it is difficult to clearly 
and efficiently analyse the roles of various factors. There remains a lack of an ideal framework with convenient 
mathematical representations and clear physical meaning that can be used to provide a unified description for the 
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various states of a mode-locked laser and to determine the driving force behind the complex nonlinear behav-
iour observed. In particular, the lack of a mathematical analysis tool for quantitative analysis is a fundamental 
limitation.

From a methodological point of view, most current models attempt to study complex nonlinear phenomena 
using the traditional reductionism approach. Undoubtedly, many important and useful results have been derived 
from models based on this approach. However, explaining all complex nonlinear phenomena with this approach 
is inefficient and impractical. It is difficult to develop clear physical insight, particularly for macroscopic phenom-
ena emerging from highly structured complex nonlinear behaviour36–39.

Figure 1. Schematic diagram of the mode-locked laser.

Figure 2. The hierarchy model used to analyse the dynamics of the mode-locked laser. (Variables characterizing 
the system dynamics are arranged by temporal scale).
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Complexity theory is becoming a powerful approach to address a wide range of problems in chemistry, biol-
ogy, economics and geomorphology36–39. Here, we use this methodology to analyse the dynamics of mode-locked 
fibre lasers.

In this paper, by implementing hierarchy and the multi-scale method, the problem can be simplified from an 
infinite dimensional problem into an iterative mapping with finite but changeable dimensionality. We find that 
the complex dynamical behaviours of mode-locked lasers are actually manifestations of various attractors with 
different dimensions under various conditions. In addition, this theoretical framework can help us reveal the 
origin of complex dynamical behaviour and provide quantitative analysis of many nonlinear phenomena, such as 
stochastic phenomena, hysteresis and multistability. We find that multi-attractors, fluctuations, and the variation 
of attractor basins according to control parameters are the core factors for these phenomena, the mechanism of 
which will be discussed in detail in this article.

Hierarchical structure, the coarse-grain method and the phase space
The mode-locked laser is an infinite dimensional dynamical system with a feedback structure (see Fig. 1(a)) and 
constitutes a complex nonlinear system40, 41. Large composite systems, despite their complexity on the small scale, 
sometimes crystallize into large-scale patterns that can be conceptualized relatively simply36. When focused on 
these macroscopic phenomena, we can divide the complex system into several levels. Using the hierarchical and 
coarse-grain method, we can observe that nonlinear dynamical phenomena emerge at the macro level, which 
allows key aspects of the system to be separated from extraneous details36–41. The mode-locked laser is such a 
system, with a hierarchical structure that can be naturally divided into three levels. (see Fig. 2).

Because there have been many reports in the literature on models of the pulse details (for a review arti-
cle, see, e.g., ref. 7) and because of space limitations, we will not analyse this level. As a bridge to connect 
micro- and macro-phenomena, the intermediate-level is a crucial part of the hierarchical model and will be 
our primary focus. The top-level view and interactions among the various levels will be discussed concisely 
near the end of this paper. The pulses in a mode-locked laser exhibit quantization13, 14, which allows a simpli-
fied description of the mid-temporal scale level. We ignore the details of the pulse, i.e., a pulse is considered 
a basic unit (a grain). The existing model16 gives a geometrical description of the onset of multi-pulsing in 
mode-locked laser cavities, and as such are embryonic coarse-grain models. We have improved upon this 
description and incorporate it within a hierarchical model. Next, as an important step, we employ “dimen-
sions” and “phase space” concepts to provide a deeper analysis, as will be explained in detail below. The pulse 
energy Ej (the subscript “j” is the number index of the pulse in the laser cavity) is determined by the equivalent 
width tj (pulse duration) and equivalent amplitude xj (Eq. (1)). In the simplest case, the pulse energy is inde-
pendent of the pulse duration, and the picture reduces to the model based on pulse energy, as in ref. 16. In the 
more complex case, if the pulse amplitude is relevant to the pulse duration, then Eq. (2) should be used. Gain 
saturation has an influence on the average laser power, as determined by the pulse number in the laser cavity 
and the individual pulse energies (Eqs (3 and 4)). In addition, nonlinear loss attributable to the mode locker 
affects each pulse. There are many types of models can be used to describe the effect of the mode locker (f(xj) 
in Eq. (5))16, 42–44.
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Two types of mode lockers are widely used in mode-locked fiber lasers: one type is based on saturable absorp-
tion. (e.g., the semiconductor saturable absorber mirror (SESAM), and absorbers constructed from carbon-based 
materials, such as single wall carbon nanotubes (SWCNTs) and graphene). The other type of mode locker is 
based on nonlinear polarization rotation (NPR). Although the fiber lasers with a mode locker based on saturable 
absorption (e.g., CNT-based absorbers) are commonly independent of the polarization of laser and have high 
environmental stability44, here, we focus on the NPR mode locker because in addition to its high power tolerance, 
the nonlinear property (nonlinear loss) of the NPR mode locker is more complex than that of absorbers based 
on saturable absorption. When the input power is increased, the sign of the feedback (e.g., whether it is positive 
or negative) can be changed. This variation causes such lasers to exhibit more abundant nonlinear phenomena. 
Another advantage of this mode-locking method is that, unlike the absorbers based on saturable absorption, for 
which the properties cannot be changed after production, we can change the nonlinear loss property by adjusting 
the components of the NPR mode-locking lasers (e.g., the polarizer and polarization controller). In addition, we 
can use multiple transmission filters to engineer the nonlinear loss property42, 45.

The coarse-grain method transforms an infinite dimensional dynamical system (Fig. 1(a,b)) into a discrete 
dynamical system generated by an iterated map of countable dimensions (Fig. 1(c,d)). The phase space for the 
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mode-locked laser system is an Rm space, where a vector in Rm space can be used to represent a state at a given 
moment in time in a mode-locked laser system. Every component of the m-dimensional vector is a representation 
of the equivalent power of each pulse. The dimension “m” corresponds to the number of pulses in the laser cavity.

The intra-cavity pulse number, which is our primary focus, reflects the competition and influence among 
the pulses. This behaviour can be described and analysed by a high-dimensional discrete dynamical system. 
The time-dependent states of the pulses can be expressed as a trajectory in the phase space. Note that the “m” 
in the m-dimensional Rm space is neither infinite nor invariant, as will become clear below. Changes in the laser 
parameters are often accompanied by extension or collapse of the dimensions in phase space; mathematically, this 
transformation constitutes a mapping with changeable dimensionality.

Attractors: the existence states of pulses in mode-locked lasers
Relative to common nonlinear systems, mode-locked lasers exhibit more interesting and unique characteristics 
based on their dimensionality.

The attractor shape and topological structure are not the only origins of attractor diversity, as dimensional-
ity also plays an important role. Consider Fig. 3 as an example. When g0 is too low (g0 < 1.46), there is no pulse 
(Fig. 3, point A). Under the appropriate conditions for the gain coefficient (1.46 < g0 < 2.02), the laser operates 
stably in the single-pulse state, and the attractor is a fixed point in phase space (Fig. 3, point B). At points C 
(2.02 < g0 < 2.32) and D (2.32 < g0 < 2.40) in Fig. 3, the attractor becomes two (or more) discrete points, i.e., the 
operating state is a single pulse with periodic fluctuations. At point E (2.43 < g0 < 2.47) in Fig. 3, the attractor is 
a set of discrete points, i.e., a strange attractor in 1 dimension. In other words, there is a single pulse that exhibits 
chaotic fluctuation. At point F (2.47 < g0 < 2.53), the attractor is once again a fixed point. However, different from 
point B, point F is a point in 2-dimensional space. At points G (2.53 < g0 < 2.74) and H (g0 > 2.82) in Fig. 3, peri-
odic orbits and chaos attractors emerge in 2D phase space.

In fact, when increasing the gain coefficient to higher values, we can identify attractors in higher-dimensional 
space (Supplementary Videos S1–S3). In these cases, however, the bifurcation diagram becomes a four- (or even 
higher) dimensional graph from which it is difficult to provide an intuitive graphical representation.

Even these simple examples can provide many physical insights regarding the dynamics of mode-locked 
lasers. An attractor is generally a set of points in the phase space; thus, for a given parameter g0 and a phase space 
with a sufficiently large dimensionality (as an initial condition), all of the points of the attractor will finally be 
located in a sub-space with limited dimensionality (Supplementary Video S3). For different values of the param-
eter g0, the dimensionality of the sub-space may be different. In other words, the variation of the gain coefficient 
can cause extension or collapse of the dimensions in phase space (Supplementary Videos S1 and S3), showing 
that increasing dimensionality can provide space for increasing complexity. In this process, fluctuations seed the 
creation of new dimensions, and the control parameter (gain coefficient) determines the dimensionality of the 
attractor.

By using the coarse-grain method, we observe that the behaviour of complex systems can be successfully 
modelled using a small number of macroscopic quantities. Such macroscopic observables play the role of a 

Figure 3. Bifurcation orbit diagram in multi-dimensional phase space under certain initial conditions with 
different gain coefficient g0. Point A (1 < g0 < 1.46), there is no pulse; point B (1.46 < g0 < 2.02), stable single 
pulse state; point C (2.02 < g0 < 2.32) and D (2.32 < g0 < 2.40), single pulse with periodic fluctuations; point E 
(2.43 < g0 < 2.47), single pulse that exhibits chaotic fluctuation; point F (2.47 < g0 < 2.53), stable double pulse 
state; point G (2.53 < g0 < 2.74), double pulse with periodic fluctuations; point H (g0 > 2.82), chaotic fluctuation.
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thermodynamic order parameter in the synergetic framework46–49. Here, the phase point in the multi-dimensional 
mapping phase space with variable dimension represents the state of the mode-locked laser. Switching of the laser 
operating states by changing the control parameter can be interpreted as the order parameter switching between 
attractors in the phase space. Dimension mutation of this parameter (extension or collapse of the dimensions) 
occurs at the bifurcation points on the bifurcation diagram (Supplementary Videos S1 and S3), essentially acting 
in a manner similar to a phase transition process (i.e., a nonequilibrium phase transition). We find that variation 
of the attractor basin is the driving force for this transition process and that the random fluctuation acts to seed 
the transition.

Complex and diverse operating states can be presented by attractors with various styles and shapes. The strange 
attractors exist in a variety of forms, as shown in Fig. 4 and Supplementary Videos S4–S7. Supplementary Table S1 
summarizes and lists the operating states of a mode-locked laser. Note that using the model and methodology we 
have provided, we can identify a state for pulses in mode-locked lasers, namely, coexisting multi-pulses that form 
a chaos attractor in phase space. Figure 4 shows the attractors for two pulses and three pulses (Supplementary 
Videos S4–S7). The Lyapunov exponent (Supplementary Fig. S1) and correlation dimension50–52 (Supplementary 
Fig. S2 and S3) confirm the existence of strange attractors.

The existence of the chaos attractor is also confirmed using a traditional direct numerical model. Figure 4(e,f) 
and Supplementary Video S10 show the pulse in the time domain and the Poincaré sections of the pulses (taken 
at the peak power of pulses) in phase space derived by direct numerical simulation.

According to experimental observations29, 31, an unstable mode-locking state is found when adjusting the gain 
parameter to change the number of pulses inside the cavity. “Chaotic behaviour between single- and multi-pulse 
operation”29 and “alternately evolving on the stable and unstable states”31 are reported. The reported experimental 
phenomena can be explained by the attractor changing from “a fixed point” to “a strange attractor” and then to a 
new “fixed point” in higher dimension space in our theory, as discussed above (see Fig. 3).

In addition to the previously mentioned unstable states, there have also been some experimental observations 
of chaos phenomena in mode-locked fiber lasers20, 53, 54. This paper provides a potential theoretical explanation 
for the emergence of chaos phenomena and other unstable states23–27.

The mechanism of the chaotic motions of multiple intra-cavity pulses is as follows. The optical pulse passes 
through the mode locker and the amplifier in the laser cavity. The nonlinear loss and gain characteristics of the 
amplifier form a feedback loop together; mathematically, they form a nonlinear mapping. The loop of the laser in 
the cavity corresponds to the iteration of the mapping. When the nonlinear mapping function has a large negative 
slope, the laser will be more likely to enter the chaotic state (Fig. 5 shows the orbit diagram for a chaotic pulse 
in the laser, which is similar to the case of logistic mapping16, 40. This effect causes the power of the pulses in the 
cavity to fluctuate. It is an important factor leading to chaos. For the case of multiple pulses, another factor is that 
pulses can interact with each other through amplifier gain (Eq. (4) and the transient model discussed in a later 
section “Outlook and discussions”). According to the sensitive dependence on initial conditions (SDIC), a.k.a., 
the so-called “butterfly effect”, the fluctuation of a pulse can have an impact on the trajectory of other pulses. Thus, 
the multi-pulse chaotic situation becomes more complex and evolves to the high-dimensional chaotic attractor, 
as previously discussed.

Figure 4. Chaos attractors in phase space. (a,b) shows the attractor for two pulses. (c,d) shows the attractor for 
three pulses. (e,f) shows the result derived by the full numerical model.
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Attraction basin, the mechanism behind stochastic phenomena, hysteresis and 
multistability
In the previous section, we analysed the operating states of the mode-locked laser. In this section, we will dis-
cuss another important problem: the dynamics of conversion between these states, including state transition and 
pulse start-up. There are many complex phenomena (stochastic phenomena, hysteresis, and multistability, among 
other phenomena) involved in these dynamics28–31. However, the mechanisms behind many of these phenomena 
remain obscure.

For a thorough grasp of the state transition problem, we need a global understanding of the laser’s behaviour 
under all possible initial conditions. Direct numerical modelling55 would require an enormous amount of com-
putation and would suffer from many uncontrollable factors (e.g. pulse splitting, pulse deformation and amplified 
spontaneous emission (ASE) noise). These factors make it challenging to perform a global quantitative analysis of 
the system’s dynamics. We have observed how the coarse-grain model for the mid-temporal scale level reduced 
the infinite dimensional problem in real space to a limited-dimension phase-space problem. This approach can 
provide improved controllability, reduce variations from uncertainties, and enable quantitative analysis of the key 
features.

Tracking the evolution of all points in phase space under a given set of parameters mathematically corre-
sponds to the attraction basin under different control parameters. The attraction basin phase portraits enable 
a glimpse of the entire picture and provide clues about the origin of the nonlinear phenomena in mode-locked 
lasers. Figure 6 and Supplementary Fig. S4 show the attractors and attractor-basin phase portraits for different 
gain coefficients (g0). By analysing this series of pictures, we can recognize patterns and then identify the source 
of stochastic phenomena, hysteresis and multistability. In Fig. 6(a,b), the gain coefficient (g0) is 1.70. There are 2 
types of attractors: 1) a fixed point at the coordinate origin (i.e., no pulse); and 2) a fixed point on the x-axis or on 
the y-axis. In the latter case, there is a stable single pulse in the laser cavity. Figure 6(a) shows the corresponding 
attractor basin, where the green area in Fig. 6(a) shows the attractor basin for an attractor at the coordinate origin. 
If the initial state point falls in this region, then the laser cannot sustain a pulse. The blue and red areas are the 
respective attractor basins for the other attractors. These basins have axially symmetric shapes about the symme-
try axis y = x. In this case, the laser can support only one pulse; the pulse with highest initial power predominates 
over the other pulses.

Figure 6(c) (g0 = 2.0) is similar to Fig. 6(a); however, some changes have occurred in the basins of attraction 
as a result of the different gain coefficient; note that the green areas are significantly reduced, and the red and 
blue areas are closer. We can observe the emergence of a small yellow area, which is the attractor basin for a new 
attractor (the point with the star marker in Fig. 6(d)). In other words, the laser can support two pulses under a 
narrow range of initial conditions. In Fig. 6(e,f) the gain coefficient (g0) is 2.5. Relative to Fig. 6(c,d) (g0 = 2.0), the 
fixed point attractor on the x-axis or y-axis is transformed into a periodic orbit, which represents a single pulse 
with periodic fluctuation. Smaller green areas and larger yellow areas indicate that the laser is easier to start up 
and more likely to enter the double pulse state than the laser in Fig. 6(c,d).

In Fig. 6(g,h) (and Supplementary Fig. S4(a,b)) the gain coefficient (g0) is 3.0. Periodic fluctuations appear 
in both the single pulse and double pulse states. The area for the fixed point attractor basin at the origin has 
now almost disappeared, i.e., the laser features favourable self-starting characteristics. Finally, in Supplementary 
Fig. S4(c,d), g0 = 4.5 and the attractors become chaotic attractors. The power fluctuations are relatively large 
under this condition.

Many reports have described the nonlinear behaviour in the laser state conversion process (stochastic behav-
iour, hysteresis and multistability)28–31. To understand the underlying mechanisms of these nonlinear phenom-
ena, we perform an in-depth study of the attractor-basin phase portraits.

Stochastic phenomena in mode-locked lasers indicate that the same system under the same control parame-
ters can enter different states stochastically. The pattern of the attractor basin indicates the relationship between 

Figure 5. Orbit diagram for a chaos pulse in the laser. Red line: Nonlinear mapping function of the laser; Blue 
line: Orbit diagram of the pulse; Black line: x = y.
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the system’s initial state and its final state. Commonly, there are some coexisting attractors, as described above. In 
this case, even under the same control parameter, the system will enter a different final state if the system has an 
initial value that belongs to a different attractor basin. Thus, uncertainty in the initial state can cause the system 
to exhibit stochastic characteristics. For the mode-locked fiber laser system, stochastic phenomena commonly 
emerge in three cases: the start-up process, the pulse-splitting process, and the parameter-switching process. In 
the first two cases, ASE noise and unstable broken pulses give the system a stochastic initial position in some 
region of the phase space. In the third case, the system starts in either a periodic orbit or a strange attractor. The 
position of the point representing the state of the system changes with time in phase space. The trajectory of the 
point may cross multiple attractor basins for the new parameter value to which the system will be switched. Thus, 
the state in which the laser will finally settle is determined by two factors: the initial state at the moment the sys-
tem was switched to the new parameter value, and the attractor basins for the new parameter value.

Thus, if we know the statistical properties of the initial conditions (statistical properties of the initial phase 
point in the phase space) and the distribution of the system’s attractor basin, we can determine the probability of 
a given operating state into which the system will settle.

The coexistence of multi-attractors and their attractor basins is also the origin of hysteresis and multistability. 
Consider Fig. 6 as an example. We change the system status by adjusting the gain coefficient g0 as a control param-
eter. To ensure that the mode-locked laser has self-starting capability, we must increase g0 to a high level. Figure 6 
shows that increasing g0 can cause expansion of the attractor basins for the single-pulse (and double pulse) status 
and the shrinking of the attractor basins for the 0-pulse state. This can enable the system to enter the single-pulse 
state (red and blue area in Fig. 6(g)) from a low power noise initial state. If g0 is increased to an even higher level, 

Figure 6. The attractors and attractor-basin phase portraits for different gain coefficients. Any initial condition 
is a point in phase space. A square region for possible initial condition in phase space is subdivided into 
500 × 500 cells. We perform the iteration and track the points on the grid until the attractors are obtained. Then, 
we can derive the attractor basin. Different colours correspond to different attractors. (a,c,e and g) are attractor-
basin phase portraits for different gain coefficients (g0); (b,d,f and h) are attractors for (a,c,e and g). For Fig. 6. 
(a and b), g0 = 1.7. There are three attractors in (b) (blue, red and green points). The blue point and the red point 
are stable single-pulse state. The green point indicates no pulse. The attractor basins for the attractors are shown 
in (a) (use the same colour as the corresponding attractor in (b)) For Fig. 6. (c and d), g0 = 2.0. There are four 
attractors in (d) (blue, red, green and yellow points). The blue point and the red point are stable single-pulse 
states. The green point indicates no pulse. A new attractor (the point with yellow star marker) means that the 
laser can support 2 pulses under a narrow range of initial conditions. For Fig. 6. (e and f), g0 = 2.5; There are 
four attractors in (f) (blue, red, green and yellow points). The blue points and the red points are single-pulse in 
periodic fluctuation state. The green point indicates no pulse. The yellow point indicates stable double pulses. 
For Fig. 6. (g and h), g0 = 3.0; There are three attractors in (h) (blue & dark blue, orange & red, black circle). The 
blue & dark blue points and the orange & red points are single-pulses in a periodic fluctuation state. The black 
circle is for double pulses in a periodic fluctuation state.
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then we can increase the area of the attractor basins for double pulse status and get 2 pulses in the laser cavity 
(Supplementary Fig. S4). To change the double pulse state to a single-pulse state, we should decrease g0 to reduce 
the attractor basins for double pulses (Fig. 6(c)). If we want to extinguish the pulse in the laser, g0 should be 
decreased to a lower level than that of Fig. 6(a). This hysteresis and multistability process is shown in Fig. 7. In 
experiments, we often use a high gain to make the laser start up and then reduce the gain to obtain a stable single 
pulse. This has been verified here.

The variation of the attractor basins with the control parameter plays a crucial role in the onset of hysteresis 
and multistability. The mechanics of the process are as follows: attractors locate in attractor basins, and fluctua-
tion causes the phase point that corresponds to the system state to move stochastically in the neighbourhood of 
the attractor in phase space. The conversion between the system states is represented by the switching between 
different attractors. During the course of this switching, the phase point must exit the current attractor basin 
and jump (drop) into a new attractor basin. To allow the system to escape from an attractor basin we can change 
the pattern of attractor basins by adjusting the control parameter. Shrinking or even eliminating the basin of the 
current attractor together with the expansion of the adjacent attractor basin can induce state conversion of the 
laser. When the conversion is complete, the system phase point must enter a new attractor basin with a large area. 
If we want to change the system state again, we can adjust the control parameter to decrease the area of this new 
attractor basin. On the macroscopic scale, the accumulation of control parameter changes results in a sudden 
change in the system state. To predict the system’s future state, both the control parameter and the history of the 
system must be known.

Briefly, the critical value of the state transition is jointly determined by the magnitude of the fluctuations and 
the shape and area of the attractor basin. Decreases in the local area of the attractor basin and increases in the 
fluctuations facilitate the state transition. The coexistence of fluctuations and the multi attractors is the funda-
mental origin of multistability and hysteresis.The macroscopic dynamic behaviour of a laser reflects the working 
state of the laser (single-pulse or multi-pulse, and whether it is stable). When designing a laser with a high power 
pulse, we often specify that the laser should operate in the stable single-pulse state, i.e., we intend for the attractor 
describing the laser state to be a one-dimensional fixed point. In the process of parameter optimization, we can 
obtain the working range and stability of the attractor in the one-dimensional fixed point state via the calculation 
of the attractor state and the attractor basin for the given parameters (The size of the attractor basin reflects the 
stability of the working state; the variation of attractor basin with the gain parameter can help us determine the 
laser’s operating range). Thus, we can achieve a global understanding of the characteristics of the laser with the 
help of our model. This can guide us to select the appropriate parameters. In addition, the study of the phenomena 
of hysteresis and multistability has potential importance for optical storage.

Outlook and discussions
We have proposed the multi-level hierarchy model for mode-locked lasers and discussed it in detail for the 
mid-scale level (Fig. 2). Note that for the actual system, there are interactions between the various levels, where 
these interactions constitute the coupling channels between levels. Because of the limited space in this paper, 
we will indicate only the sources of these coupling channels and omit in-depth discussion. These sources are as 
follows.

The first source is the character of the “grain” at mid-level, i.e., the relationship between the effective peak 
power and the effective pulse duration (for example, for DSR, the pulse duration increases while the amplitude 
remains almost unchanged). (In this article, we provide the simplest example of the “grain”. Indeed, many factors, 
including dispersion, nonlinearity and high-order dispersion, determine the grain’s characteristics. These charac-
teristics can be obtained by the traditional theory to provide the particle characteristic parameters for our model 
to analyse the macro behaviours.).

The second source is the threshold of pulse splitting and the property of the new pulses that emerge after pulse 
splitting.

The third source involves large time-scale processes, such as Q-switching, in which case the transient charac-
teristics of the rare-earth doped fiber should be considered. Statistical properties and pulse envelopes can be used 
for simplification.

Figure 7. Hysteresis and multistability for pulse number in the mode-locked laser.

http://S4
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Note that the “grains” (pulses) in the laser cavity we study here are relatively independent from each other, 
although the gain saturation of the amplifier can cause the indirect interaction between the pulses13, 14, 16. In some 
cases, there is a kind of soliton pulse –the bisoliton can be made using a mode-locked laser with special design in 
experiment56. In this case, two (or even more) consecutive dissipative solitons preserve a small equilibrium dis-
tance between them. The two pulses have overlapped optical fields in the time domain, and they can interact with 
each other directly56. In this situation, the bisoliton cannot be treated as two independent pulses. It is necessary to 
consider the soliton-soliton interaction when analysing such pulses. The bisoliton should be studied as a special 
“grain” or “coupled grain pair” instead of two independent “grains” at the mid-level of the hierarchical model. The 
characteristics of this kind of special “grain” should be analysed by the bottom-level model considering the action 
between the pulses. Some useful discussion about the bisoliton can be found in ref. 56.

In the previous discussion, the amplifier gain model (Eq. (4)), which is widely used for the analysis of dynamic 
characteristics of mode-locked fiber lasers (e.g. refs 14–16, 28, 33, 57 and 58), is a simplified model. When we 
consider the dynamics of the mode-locked fiber laser at large time scales together with the temporal response 
of the erbium doped fiber amplifier (EDFA), a complete EDFA transient model with the time-dependent rate 
equation59, 60 should be used.

∑ ∑
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The model contains many parameters of an EDFA (doping, absorption coefficient, emission coefficient, pump, 
etc.). The model can describe the interaction of the pulse and an EDFA more precisely.

For the EDFA in the mode-locked laser system, a train of ultra-short pulses with high peak power is injected 
into it. When the high peak power pulse arrives, the inversion level decreases to a low level immediately. 
(Mathematically, the step change is obtained by integrating the impulse signal.) Next, the reverse level rises grad-
ually by the pump power injected into the EDFA until the next pulse comes. The recovery process of the inversion 
level is determined by the specific characteristics of the EDFA and the pump. When the time interval between 
pulses in the mode-locked fiber laser is small, (particularly in the case of multi-pulse mode-locking status), the 
inversion level of the EDFA is always in the process of dynamic fluctuation. The fluctuation is related to the mag-
nitude of the input pulses and the characteristics of the EDFA.

This model can be used in studying large time-scale pulse fluctuations and Q-switch mode locking in which 
the EDFA’s transient dynamics are involved.

In addition, note that for the model discussed in this article, the pulses are assumed to have some special and 
stable shapes (e.g., generalized solitons). For pulse waveforms without a stable shape (e.g., rogue waves ref. 61), a 
separate discussion is required.

From the perspective of dissipative system theory, the mode-locked fiber laser is a thermodynamically open 
system operating far from thermodynamic equilibrium in an environment with which it exchanges energy47–49. 
The laser excitation occurs when the energy supply exceeds the threshold. For pulsed excitation, the mode 
locker is the key component for symmetry breaking in the time domain. The symmetry breaking together 
with the joint action of saturation and feedback cause the emergence of temporal patterns. Under the action 
of self-organization we can see that a system can vary from spontaneous emission in the disordered state to 
a continuous wave laser with a highly ordered state in the frequency domain, then to a pulsed laser with a 
highly ordered state in time domain (pulse with a specific shape Supplementary Video S9) and finally to a 
laser with multiple pulses that shows ordered and chaotic macro behaviour (Supplementary Videos S8–S10). 
Furthermore, the analysis of the attractors’ basin tells us that the fluctuations, the coexistence of attractors, 
and the variation of the attractors’ basins are the driving forces for the evolution and macroscopic nonlinear 
behaviour of the system.

We have proposed a new method that can clarify the chaotic behaviour and help explain the complexities of 
the behaviour exhibited by mode-locked lasers. At the methodological level, the proposed method may have a 
wide range of applications in the fields of physics, nonlinear dynamics and complex systems.

Methods
The direct numerical model and parameters for mode-locked laser. The mode-locked laser is com-
posed of optical fibers (gain fiber and standard single-mode fiber (SMF) and components (mode locker and 
output coupler)). The model is based on simulating every part of the oscillator (Fig. 1) separately.

In the fibers numerical simulations are based on a modified nonlinear Schrödinger equation6, 8 which can be 
solved by the split-step Fourier method35.
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Here, U(z, τ) is the slowly varying amplitude of the pulse envelope, z is the propagation coordinate, and τ 
is the retarded time. α is the attenuation constant. β2 and β3 are the second-order (GVD) and the third-order 
dispersion (TOD) parameters, respectively. γ is the cubic nonlinearity. v accounts for the quintic nonlinearity8.

The gain fiber has the following gain: g = g0/[1 + Epulse/Esat ].
g0 is the small-signal gain. Epulse is the energy of all the pulses in the cavity; Esat is the gain saturation energy. 

Additionally, the gain spectrum is simplified to a parabolic shape with a gain bandwidth of 40 nm.
Note that because the nonlinear loss model is used for the mode locker, the scalar equation (Eq. (7)) can 

be used. If the nonlinear polarization rotation model for the model locker is given and the nonlinear loss is 
unknown, then the coupled complex nonlinear Schrödinger equations57, 62 should be used.
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The parameters for Fig. 4(e,f):
Erbium doped fiber (EDF): The EDF has a length of 10 m, g0 = 2.38 dB/m, α = 0, β2 = 10 ps2/km, β3 = 0, γ = 5.0 

(km−1W−1), Esat = 50 (pJ).
Single-mode fiber (SMF): The SMF has a length of 11 m, g0 = 0, α = 0.17 dB/km, β2 = −23.6 ps2/km, β3 = 0, 

γ = 1.387 (km−1W−1), ν = 0 (km−1W−3).
The coupling ratio of the coupler is 40:60 (60% of the power is extracted from the cavity).
The mode locker is modelled by a nonlinear loss function (periodic nonlinear loss for nonlinear polarization 

rotation based laser)16, 42.
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Here we use Eq. (8) to model the nonlinear loss for mode locking using nonlinear polarization rotation. (In 
this model, the nonlinear loss curve is known to generate a periodic structure at higher intensities16, 33, 42, 45). 
Because the nonlinear loss is directly related to the nonlinear dynamical behaviour of the laser, the model can be 
conveniently used for dynamic analysis.

Note that another model is often used for the nonlinear polarization rotation mode-locked fiber laser. (The 
model has been well described in refs 57 and 62). The model is a direct simulation of the physical process of the 
polarization rotation in the laser cavity. Unlike the nonlinear loss model, the advantage of this model is that it has 
a stronger correlation with the parameters and characteristics of the device (e.g., the fiber, the polarization con-
trollers, and the angle of the polarizer and analyser). Thus, it can be more easily associated with the experiment. 
However, the relationship between the parameters and the final nonlinear loss curve is indirect.

In the actual laser design process, first, the nonlinear loss model can be used to analyse and design the laser 
to obtain the optimized mode-locker loss curve. Next, the specific parameters of the device are set by reverse 
engineering and using the model based on physical process simulation. This method has been used to optimize 
the multiple transmission filters for nonlinear polarization rotation mode-locked fiber laser42, 45 and to obtain the 
DSR in the polarization rotation mode-locked fiber lasers43.

The coarse-grain model and parameters for mode-locked lasers. The equations and the introduc-
tion are detailed in the main text (Eqs (1–5)). For the schematic diagram, see Fig. 1(c,d).

The pulse duration is irrelevant to pulse energy and is normalized to be 1 (Eq. (2) becomes: teff = 1).
The mode locker is modelled by a nonlinear loss function (periodic nonlinear loss for nonlinear polarization 

rotation based laser)16, 42.

The parameters for Fig. 3:
M0 = 0.1, MN = 0.36, PM = 8, Pθ = 0 (Eq. (8)); Esat = 5 (Eq. (4)).
The cavity loss caused by the coupler is 50% (50% of the power is extracted from the cavity).
The initial condition: x1 = 3.00, x2 = 2.12 (Eq. (1) in the main text).

Method for obtaining the attractors. To obtain the attractors (e.g., Fig. 4(a,b,c,d)), we iterate for 1000 
cycles to cause the transient effects of the system to decay. After the system settles down to its eventual state, we 
then plot points for the following 10,000 iterations in phase space.

The parameters for Fig. 4(a,b,c,d):
M0 = 0.1, MN = 0.3 (MN = 0.1 for Fig. 4(b)), PM = 8, Pθ = 0 (Eq. (8)); Esat = 5 (Eq. (4));
Fig. 4(a) The initial condition: x1 = 3.00, x2 = 2.12; the gain coefficient: g0 = 3.2;
Fig. 4(b) The initial condition: x1 = 5.00, x2 = 1.00; the gain coefficient: g0 = 7.0;
Fig. 4(c) The initial condition: x1 = 3.00, x2 = 2.12, x3 = 2.00; the gain coefficient: g0 = 3.90;
Fig. 4(d) The initial condition: x1 = 3.00, x2 = 2.12, x3 = 2.00; the gain coefficient: g0 = 3.95.

Method to getting the attractor basin. Any initial condition is nothing more than a point in phase 
space. A square region for the possible initial condition in phase space is subdivided into 500 × 500 cells. We per-
form the iteration and trace the points on the grid until we obtain the attractors. Then, we can derive the attractor 
basin. Different colours correspond to different attractors.

The parameters for Fig. 5:
M0 = 0.1, MN = 0.36, PM = 8, Pθ = 0 (Eq. (8)); Esat = 5, g0 = 2.45 (Eq. (4)).
The cavity loss caused by the coupler is 50% (50% of the power is extracted from the cavity).
The initial condition: x1 = 3.00 (Eq. (1)).

The parameters for Fig. 6:
M0 = 0.1, MN = 0.3, PM = 8, Pθ = 0 (Eq. (8)); Esat = 5 (Eq. (4)).
The cavity loss caused by the coupler is 50% (50% of the power is extracted from the cavity).
The gain coefficient: g0;
For Fig. 6(a,b) g0 = 1.7;
For Fig. 6(c,d) g0 = 2.0;
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For Fig. 6(e,f) g0 = 2.5;
For Fig. 6(g,h) g0 = 3.0.

The parameters for Fig. 7:
M0 = 0.1, MN = 0.3, PM = 8, Pθ = 0 (Eq. (8)); Esat = 5 (Eq. (4)).
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